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The time development of the coherence properties of a beam of light interacting linearly
with a gas of two-level atoms maintained at fixed population levels is determined. For ini-
tially coherent light, the results obtained differ from those of a previous theory.

In a recent letter,' Chandra and Prakash con-
sidered the time development of the density matrix
for a beam of light in resonant interaction with a
collection of identical two-level atoms. They de-
rive the time dependence of the second moment of
the photon number distribution, and use the result
to draw conclusions about the changes in statisti-
cal and coherence properties of the light. Their
theory provides the constant and linear terms in
the time development,

In the present paper we treat essentially the
same problem as Chandra and Prakash, but we
obtain solutions correct to all orders in the time
t. The more complete solutions lead to entirely
different conclusions about the effect of one-photon
interactions on the statistical properties of an ini-
tially coherent beam.

The Hamiltonian for the system of photons in
interaction with a two-level atom is

H=tiata +ot0) +ig (6Ta +aTo), (1)

where w is the common frequency of the light and
the atomic transition, g is the usual atom-radia-
tion interaction, af and a are photon creation and
destruction operators, and of and o are operators
which excite and deexcite the atom.

We work in the number representation, using
states | #) for the photon field. Let p, be the cor-
responding diagonal element of the photon-density
matrix; only the diagonal elements are required
to evaluate the moments of the photon distribution.
The equation of motion for p, is23

dp,/dt = = N,G(n +1)p, + N,Gnp, .,
-N,Gnp, +N,Gn+1p,, ,, ()

where G =4g%T. (3)

Here N, and N, are the populations of the ground
and excited states of the atom and I is the ordi-
nary linewidth of the atomic transition. The equa-
tion of motion can be derived by standard density-
matrix techniques?'?; it has a very simple signifi-
cance, the terms on the right representing the ef-
fect of transitions on the occupancy of the state

[N

| ) of the photon field. We assume that N, and
N, are fixed quantities.

The first and second moments of the photon dis-
tribution are defined by

(n) =22, np, , (4)

{n?y =23, 7%, . (5)
Simple differential equations for (#) or (#%) can
be obtained by multiplying both sides of Eq. (2) by
n or n? and summing over n. The solution for {(n)
is

(n) = {[{n)o(Ny = Ny) + Ny]e¥a- ¥t

~N, }/(N,-Ny) (8)

where the zero subscript refers to the value at
t =0. It is convenient to give the second-moment
result in terms of the combination

(n?) = An)¥-(n)
=((n?)o= 2(n)§ - (n)g)e®¥e-¥v 6t )

Results equivalent to these were first derived
many years ago.*

The first-order coherence properties of light
can be inferred from a knowledge of the first and
second moments of the photon distribution.! For
chaotic, or incoherent, light

(n?) = 2An)2-(n) =0, ®)
while for coherent light,
(n?) —(n)%=(n) =0, )

If the photon distribution is initially incoherent,
or if there are no photons present initially, Eq.
('7) shows that the distribution is incoherent at all
subsequent times. The terms linear in ¢ derived
from Egs. (6) and (7) agree with the results of
Chandra and Prakash (note a missing minus sign
in the final exponent of Eq. (12) of Ref. 1).

Now consider an initially coherent photon distri-

bution. It is convenient to define the quantities
<n>c =(n>0e(Na-N1)Gt , (10)
(n)y = Ny[e Mo "% 1]/(N, - Ny), (11)
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in terms of which Eqs. (6) and (7) can be rewritten

(n) =(n), +{(n),; , (12)
(n2) —(n) =(n)2 +4(n)(n) +2(n)} ,  (13)

where the condition (9) has been assumed to hold
at £ = 0. Results (12) and (13) are those which
hold®® for the statistical properties of a mixture
of coherent light of mean photon number (%), and
incoherent light of mean photonnumber(#);,. Thus
the initially coherent light is amplified or attenu-
ated in accordance with Eq. (10), but remains co-
herent; the amplification process generates inco-
herent light, of strength specified by Eq. (11),
which is added to the coherent light.”

For the case of absorption, where N, > N,, the
coherent light is ultimately removed and only an
incoherent contribution remains at sufficiently
large times £. For atomic population inversion,
where N,> N, both (n), and (n); grow exponen-
tially with time, The statistics of the light at large
times are seen from Eqs. (10) and (11) to depend

on the relative magnitudes of (%), (N, - N;) and N,.
For a feeble initial excitation of coherent light,
where (n)y(N,~ N,) < N,, the spontaneous emis-
sion of photons dominates the net result of the ab-
sorption and stimulated emission processes and

leads at large times to a predominance of incoher-
ent light, On the other hand, for a strong initial
excitation of coherent light, where (n) (N,- N,)

> N,, the stimulated emission process dominates
and leads to predominantly coherent light at large

times.
This result is not contained in the small-¢ be-

havior given by Chandra and Prakash; their pre-
dictions of the statistical properties of amplified
light differ from ours. The conclusions of the
present work confirm the accepted view® that stim-
ulated emission maintains the coherence proper-
ties of the stimulating light, whereas spontaneous
emission generates incoherent light,

The above theory does not explain the operation
of a laser oscillator, since coherent light can be
obtained only if a sufficiently large amount of co-
herent light is initially supplied to the system.
The full quantum-mechanical theory of the laser®
requires a consideration of saturation effects in
the rate of photon emission achievable for a given
atomic pumping rate, and of the loss of photons
from the laser cavity, These factors produce a
more complicated version of Eq. (2) which is not
easily amenable to the type of exact solution car-
ried out here for the simpler system.
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