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It is shown, by almost rigorous arguments, that there exist many-body states of a system
of interacting bosons which exhibit both crystalline order and Bose-Einstein condensation into
the zero-momentuxn eigenstate of the single-particle density matrix. The implications of this
result are discussed in relation to theories of superfluidity and the nature of quantum crystals.

I. INTRODUCTION

Little is known about the connection between

Bose-Einstein condensation and superfluidity. It

has, for example, been conjectured that Bose-
Einstein condensation is sufficient to insure super-

fluidity and the converse has also been put forward

as being plausible. In this paper, me shRQ be

concerned with model states for a system of

strongly intex'acting bosons. These states are all

normalizable and symmetric and are thus possible

states for such a system. %e shall show —almost

rigorously —that these model states can simul-

taneously exhibit both Bose-Einstein condensation

and crystalline ordering. The presence of crys-
talline order mould presumably prevent the appear-

ance of any normal superfluid properties.
Given the existence of these model states the

question arises whether they are, in some sense,
sufficiently good approximations to the true states
of a physical system that our conclusions are
applicable to that system. For example, if one

of our model states mex'e a sufficiently good

approximation to the ground state of solid helium

four then me could conclude that the quantum crys-
tal mould possess a Bose-Einstein condensate .
The physical applicability of our results is dis-

cussed in Sec. V.
Our almost rigorous" proof is based on a,

theorem which is presented in Sec. II and on a
conjecture which is put forward in Sec. III. In

Sec. IV, we discuss the conclusions that cRn be

drawn from the theorem and conjecture. Sec-

tion V is devoted to generalizations and a discus-

sion of the applicability of our conclusions to solid

helium four.

II„THEOREM

The theorem me present has recently been

proved by Reatto' and is a generalization of earlieI

mork by Onsager and Penrose. ~ Consider N bo-

sons in a volume V, then any Jastrom state

yN= lip'(~)g)=expl- k &u(~;~)], (2. l)
t~j

with u(~) such that

u(~)=~, ~&a

u(~) &0, a &v'&5

and (u(x) (
& )gy-3-'j y ~h

with A. , a, b, and e positive constants, has a Bose-
Einstein condensRte 1n the zero-momentum stRte.
These conditions on u(r) imply that it has a hard
core, is bounded below and has a finite range.
The proof of this theorem is completely x'igox'ous

except that the thermodynamic limit of I(N+ 1)
&Qg/Qg g] is assumed to exist. Here Qg is the nor
malization constant for 4&. This limit can be
formally identified as the activity of R classical
system of N particles with a pair potential propor-
tional to u(r). It is almost universally accepted
that this identification of the activity is indeed
correct, and if this is granted, then the proof be-
comes completely rigorous.

The theorem can be extended to include states
which have the zero-point motion of the long-wave-
length density waves built into them. ~en these
corx'elations are included our model states have
the form

where u(r) fulfills the same conditions as before
and y(r) is given by the equation

y(~)=(1/N) Z e'"' (2. 4)
0&0~

The prime on the summation means that the k = Q

term is omitted. Since y(w) behaves like x 2 for
large ewe have adde'd to u(x) a long-range func-
t1on. Kith the same pxoviso Rs me hRve Rlxeady
IQentioned) 1t cRQ be proved that this IQ0661 state
has a Bose- Einstein condensate. It is interest-
ing to note that Rn alternative condition mhich al-
lows both theorems to be proved is that the varia-
tional energy per particle should exist in the ther-
xQodynamlc limit.

III. CONJECTURE

The wave functions given by Eqs (2 l) and
(2. S) lead to probability distributions of the form
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Par =@'„=exp[- Q v(rq))], (3 1)

where v(r, &) is either u(r, &) or u(r«)+X(r~q) .If we
introduce an effective potential cp(r), an effective
temperature T,ff and set p(r)/AT, «=v(r) then
this quantum-probability distribution is identical
with the classical Gibbs distribution for N parti-
cles interacting with a two-body potential qr(r) at
a temperature T,fq. The conjecture we make is
that, for a wide class of potentials y(r), or equiv-
alently functions v(r), the probability distribution
P& will exhibit crystalline ordering at sufficiently
high densities and fluid ordering at low densities.
We make this conjecture because it is widely ac-
cepted that the Gibbs distribution is in principle
capable of describing all the phases of a single
classical system. If y(r) were a typical inter-
molecular potential, for example a Lennard- Jones
potential, then there is no reason to doubt that if
the density of the system is increased sufficiently
then a phase transition will take place to a crys-
talline state and this would be well described by
the single Gibbs distribution. For a small num-
ber of particles (-IO~), this has been demonstrated
by machine calculations. There is also strong
evidence4 that a crystalline transition occurs with
the u(r) that is often used for helium wo», name-
ly, u(r) = (5/r)" with m = 4 or 5. We do not know ex-
actly for which potentials y(r) crystallization will
take place. It is, however, sufficient for the pur-
poses of our discussion that there are some, but
we see no reason not to believe that there are
many. We finally comment on the presence of the
long-range potential y(r). The argumentss that
lead to the introduction of this type of correlation
are equally valid for the solid phase of helium and
we would indeed expect the N-body probability
distribution for the crystalline phase to have this
factor. Consequently, we do not believe that it in
any way affects the conjecture that this kind of
probability distribution will exhibit crystalline or-
dering. It would be interesting to determine with
computer experiments the range of potentials for
which our conjecture is valid.

IV. CONCLUSIONS

If we combine the theorem we presented in
Sec. II with the conjecture of Sec. III, then we
conclude that Bose-Einstein condensation can oc-
cur in a state which exhibits crystalline ordering.

The theoretical implications of this result are
twofold. First, it is certain that crystalline or-
dering would prevent the appearance of anything
like normal superfluid properties and we can,
therefore, conclude that the existence of a Bose-
Einstein condensation is not sufficient to insure
superfluidity. This is of course well known

for the ideal Bose gas. 5 Our arguments extend
this result to strongly interacting systems. Sec-
ond, the presence of Bose-Einstein condensation
with crystalline ordering tells us that the momen-
tum distribution in such states is radically differ-
ent from that in normal crystalline states.

Whether or not our arguments have any physical
implications depends on how accurately our states
represent real physical systems. We shall de-
fer the discussion of this until Sec. V. For the
moment we merely remark that there are good
reasons to believe that these states —or simple
generalizations of them —do give a reasonable
description of real boson systems. If this is
granted then we speculate that solid helium four
may have a Bose condensate in the zero-momen-
tum state. It is unlikely to occur in any other
crystal because the phenomenon clearly requires
large exchange effects and these are present only
in solid helium. This kind of ordering is unlikely
to set in without a phase transition and, thus, we
are led to speculate that there might be an unde-
tected phase transition in the solid phase of helium
four. It is, unfortunately, impossible to say
where in the solid phase the transition might take
place. It cannot be along the exact continuation of
the & line in the liquid phase, as this would contra-
dict the phase rule. It might indeed be suppressed
to much lower temperatures in the solid phase.

V. GENERALIZATIONS AND DISCUSSION

The theorem and conjecture we have discussed
was based on explicit two-particle correlations in
our model states —although of course these ex-
plicit two-particle correlations lead to implicit
many-particle correlations. The theorem can
easily be generalized to states which include n-
particle explicit correlations, provided suitable
restrictions are placed on the effective potential
function u„(r, ~ r„) These re. strictions are es-
sentially the same as one stated in Sec. II,
namely, that u should have a hard core, and be
bounded below and have a finite range. The intro-
duction of n-particle effective potentials in the
equivalent classical probability distribution will
surely not affect our conclusion that it will exhibit
crystalline order at high densities. The only cir-
cumstance in which this statement might be untrue
is if the n-particle correlations completely domi-
nated the two-particle correlations. Then we
would be dealing with a very unusual equivalent
classical system and would, consequently, be un-
certain whether crystallization will take place.
Apart from this possibility, our conclusions are
valid for this much wider class of wave functions.

Ne now speculate that a wave function of this
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type will give an accurate description of the exact
states of solid and liquid helium four. We make
this statement because the arguments presented
above allow us to include in the wave function as
complicated explicit correlations as we like. It is
of course true that there are other states one can
envisage which do not satisfy our condition, for
example, a linear combination of Jastrow states.
Indeed, if no state in this wide class of model wave
functions adequately describes the spatial correla;
tions of a real-quantum crystal, then these corre-
lations must be fundamentally different from those
which occur in a classical crystal. For these
reasons, we believe that our speculation about real
physical systems are on much firmer grounds than
would appear at first sight.

Finally, we comment on the proof by Onsager
and Penrose that a state with crystalline order
cannot have a Bose-Einstein condensate in the
zero-momentum state. This proof is based on a
particular class of model states in which each par-
ticle is localized on a lattice site, each site is
occupied by a particle and symmetry is ignored.
If either of the latter restrictions is removed, then
the original proof fails. In particular, if there

are vacancies in the model state and symmetry is
ignored, then a condensate exists and this conden-
sation would presumably persist if symmetry were
taken into account. It is now interesting to note
that we expect all the model states we have dis-
cussed to lead to crystalline order with vacancies
present. This is because the equivalent classical
system would be expected, on physical grounds,
to lead to crystallization with a finite fraction of
vacancies. We may therefore add one final specu-
lation, namely, that a quantum crystal can only
have a Bose-Einstein condensate if it has a finite
fraction of vacancies. We see no reason, whatso-
ever, to suppose that a quantum crystal cannot
have a finite fraction of vacancies at absolute zero.
Liquid helium exists at absolute zero and this sug-
gests that a crystal with a finite amount of spatial
disorder could exist at absolute zero. If, on the
other hand, a finite fraction of vacancies can only
exist at elevated temperatures, then it might be
impossible to have a Bose-Einstein condensate be-
cause of the high temperature. We pointed out in
Sec. IV that it is almost impossible to predict
the temperature at which such a condensation
might occur.
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