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The general expression for the transport coefficients at finite frequency is given by the

spectral function of the autocorrelation of the flux corresponding to the transport phenomenon

considered. Because the explicit analytical solution of such a correlation function involves
the whole many-body problem for strongly coupled systems, appeal must be made to a model

in order to derive the explicit frequency dependence of the transport functions. In the first
part of this paper, we calculate these functions analytically [i.e. , the diffusion D(~), the

viscosities ps(~) and g~(~), and the thermal conductivity v(co)] from the generalized Berne-
Boon-Rice model. The frequency dependence of these transport functions becomes signifi-
cant at high frequencies, i.e. , when ~ approaches ~,-~, , where g~ is the collision time,
and should be essentially responsible for the departure from classical hydrodynamics. This
is shown in Sec. II of this paper, where we present a calculation of the spectral distribution of
the light scattered from thermal fluctuations in simple fluids. When the transport functions
are introduced in the hydrodynamic equations to replace the usual constant transport coefficients,
the spectrum of the scattered light is modified significantly, to second order in I'k, where I'

is essentially a linear function of the transport functions. The second-order spectrum ob-
tained here is in agreement with previous results, but it is shown that the main effect arises
from the frequency dependence of the transport functions, which was ignored in previous work.
These effects induce a small but significant negative dispersion in the first-sound velocity. This
prediction is in qualitative agreement with the recent light scattering experiments by Fleury
and Boon on liquid argon, which were initially interpreted as a possible experimental observa-
tion of the frequency dependence of the transport functions in simple liquids.

I. INTRODUCTION

It is presently quite well established, from recent
molecular dynamics exPeriments' and from neutron
scattering data, that classical monatomic liquids,
e. g. , argon, exhibit a dispersion curve in (&u, k)
space, somewhat similar in shape to the well-known
4He dispersion curve. However, it appears to be
a very difficult task to develop a rigorous theory
yielding a complete analytical description of the
structure factor S(k, ~u) in the whole (v, k) space.
Recent theoretical developments have been attempted
in this direction, but practical computation still re-
quires the introduction of model calculations. A
recent analysis of the linearized hydrodynamic
modes by Resibois may appear as a very elegant
and fruitful starting point for further studies in this
domain.

The dispersion curve ~(k) presents an inflection
point for a value of k of the order of k, -10' cm ';
this inflection may serve to separate the (~, k) space
roughly into two regions': a low-k-low-w region,
characteristic of the collective modes, the hydro-
dynamic domain, and a high-k-high-+ region, or
kinetic region, also called by some authors the
domain of generaEyzed hydrodynamics. In the pres-
ent work, we are essentially concerned with that
region of the (m, k) space which can be denoted as
the intermediate region, i. e. , where at least one of
the two variables (d and k can no longer be consid-

ered as tending to zero. In other words, if the
hydrodynamic region is defined by

lime =0, limk= 0

and the generalyzed hydrodynamics domain by

&u/~, -1, k/k, -1,
where v, is the characteristic frequency of the order
of the reciprocal collision time and k, is the char-
acteristic wavelength of the order of the intermole-
cular distance, then the intermediate region is the
domain where ~/v, and k/k, are finite but small
quantities. In this intermediate range the classical
hydrodynamic approach is still valid, in so far as
one accounts for the existence of not strictly zero
values of co and k. It is then expected that some
new effects will be observed as small, but signifi-
cant, deviations from classical hydrodynamics.

The situation where v is taken in the hydrodyna-
mic limit, i.e. , ~ -0, while k becomes slightly
larger than zero, has been considered recently by
Foch on the basis of the Burnett equations. In the
present work we investigate the case where k «k,
and ~/~, is finite but small, which corresponds to
the physical situation of a light scattering experi-
ment performed on a monatomic liquid. Indeed,
Fleury and Boon have recently carried out Brillouin-
Mandelstam scattering experiments on liquid argon
(as well as on liquid neon)' where they detected
thermal phonons in the frequency range ~ -10'—
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o(v)=C j,"dt e '"'q(t) -. (1.4)

The transport function consists of two parts: a
real (dissipative) part whose first term is merely
cro and an imaginary part, which accounts for the
nondissipative part of the transport phenomenon.
The latter contribution will become significant when
~ approaches v, . In Sec. II, we present the general
form of the different transport functions, namely,
diffusion D(m), viscosity g(m), and thermal conduc-
tivity K(M).

However, it is easily recognized that the compact
form of Eq. (l. 4) involves the solution of the full
many-body problem for (in the present case) strong-
ly coupled systems. Therefore, for practical com-
putation we need to introduce a model, In Sec. III,
the expressions for the different transport functions
are explicitly derived from a generalization of the
Berne-Boon-Rice (BBR) model. 'o The interest of
this computation follows, in particular, from the
fact that the frequency dependence of the transport
coefficients should appear as essentially responsible
for the departure from classical hydrodynamics in
the intermediate hydrodynamic range defined above
by k-o, ro/v, -lo '.

In Sec. IV, we solve the linearized hydrodynamic
equations, "where the usual transport coefficients
are no longer constants, but have become the cor-
responding transport functions defined above, lead-
ing to a new dispersion equation. In the limit
lim„, o(v)= oo, one obtains the roots, i. e. , the
poles determining the spectrum of the scattered
light, ' as presented in earlier work, '3 leading to
the well-known spectrum consisting of three Lorent-
zians (the central Rayleigh component and the Bril-
louin-Mandelstam doublet). " Now, in the present
case involving the transport functions o(&u), we find
a modified spectrum (Sec. V) whose main feature
consists in the second-order effect on the Brillouin
shift; we predict a negative dispersion for the hy-
persound propagationvelocity. The modifications on

the linewidths are also analyzed in Sec. VI. Finally,

10"cps. Since the collision time for simple liquids
is of the order of 10 "-10"sec, we have the ratio
&e/~, -10~, while k/k, is an order of magnitude
smaller (-10 ') which, as will be seen below, can
be considered as satisfying the hydrodynamic limit
A' -0.

The general form of the linear transport coef-
ficients at zero frequency is given by'

vo=C j dt g(t) (1.3)

where C is a thermodynamic constant depending on
the transport phenomenon considered and g(t) is the
autocorrelation function of the flux associated to the
transport property. Now, at finite frequency, o
becomes ~ dependent and is given by the spectral
function g(&u), i. e. , the transport function readsg

In this section, we briefly recall the general ex-
pression and some properties of the frequency-de-
pendent linear transport coefficients. For the
sake of convenience, we define the transport func-
tion as the normalized transport coefficient at finite
frequency"

o„(u))=limjs(e+ i(o) . (2. 1)
g ~Q

Here g„(e+iv) is the Laplace transform of the nor-
malized autocorrelation function gN (t):

y„(f)= (z(0)z(f))/([z(0)l'), (2. 2)

where At) is the flux corresponding to the transport
property considered, and the brackets ( ) denote
the ensemble average.

The normalization introduced here permits us to
eliminate the constant C from the usual definition,
Eq. (1.4). However, we shall mainly be concerned
with the ratio

o(~)/o, = G((u) —iH(~)

where G(v) is the normalized power spectrum

G(~)= j(0) ' j"did(t)cos(~t)

(2. 3)

(2. 4)

and H(v) is the corresponding sine Fourier trans-
form

a(~) = q(0)-' j df q(t) sin(&st) . (2. 5)

Notice that the normalization procedure also leads
to a consistent definition for the transport coefficients
since they are now all expressed as reciprocal fre-
quencies.

The detailed spectrum of the transport functions,
Eq. (2. 3), is not known explicitly, because this
would require the knowledge of the exact analytical
form of the autocorrelation function P(t). However,
some information can be obtained from the extreme
ends of the spectrum. For low frequencies
(v «v, ), cr„(&u) may be expanded in a power series
in ur to yield

o„(~)
~
„«„=o„(0)++, q'„"'(0),

n=1

with

(2. 6)

we present the evaluations for liquid argon, and
compare our numerical results with experimental
data; there is qualitative agreement between theory
and experiment, as the hypersound velocities' seem
to be systematically lower than the low-frequency
values. " However, the smallness of the effect pre-
cludes quantitative conclusions as well as analysis
of the linewidths. These points should be reexamined
in the near future, with greater experimental ac-
curacy.

II. TRANSPORT FUNCTIONS
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(2. 7)r}$"'(0)=$, dft"4$(t)

and where cr„(0) is the normalized transport coef-
ficient at zero frequency, i. e. , with Eq. (1.3),

TABLE I. Analytic expressions of the coefficients for
the transport functions, Eqs. (2.3), (3.6), and (3.7).

a„(0)= c-'a, /& [«0))'& . (2. 8)

The high-frequency behavior (v» cd,) of o „(u&) is
given by

"( )I.».,=Z ( )'"( } '" '& [&'"'(0)]'&/& [«0)]'&
n=o

(2. 9)

&v'v)

&[~"(p)]'&
&[ g3Ql(p)]2)

«xx(p) g sisr(p))

«(p)~~(p))

ma'
kgT

Ok~ T7]',

&f ~""(p)l'&

Ok~ T(g~ —37],)
«xx(p) gsrsr(p))

with the moments

8"'(0)= (f~) «0), (2. 10)

& f Zxx(p)]2)
(p)]')

Qk~T(~ 7],+g~)
& [g xx(p) ]2 )

where 2 is the Liouville operator. One observes
that cr„(v» ur, ) becomes purely imaginary, char-
acterizing in this way the nondissipatedness of the
high-frequency transport process. Notice that Eq.
(2. 9) can be computed in practice, since all we need
to evaluate is & [J(0)]), &[J(0)]&, . . . , which quan-
tities can be calculated without great difficulty.

III. MODEL TRANSPORT FUNCTIONS

In the present work, we are interested in the in-
termediate region, as defined in Sec. I. Although
the frequencies involved here are much higher than
those encountered in the usual hydrodynamic re-
gion, the intermediate domain is nevertheless in the
low-frequency range of the spectrum, where com-
putation of the transport functions is a very hard
task, which requires the solution of Eqs. (2. 6) and
(2. 7). Since the exact analytical form of g(t) is not
known, we introduce a model which merely consists
in a generalization of the model initially developed
by BBR, for the velocity autocorrelation function. '0

Consider the master equation governing the evolu-
tion of the autocorrelation function g„(t)

PN (f) = —J,
' dr A(r)g (f r)- (3.1)

where we introduce the following ansatz for the
kernel K(f):

ff(t) = a'e

with

(3.2)

' = &(0)=
& P(0}]'&/&[«0)]'&, (s. 3)

b = a /K(0) = a o N (0) = C '
cro& [«0)] &(& [«0)] &)

(s.4)
The BBR exponential model has been shown' to
provide quite good results for the evaluation of the
velocity autocorrelation function; in particular, it
leads to very satisfactory agreement between the
theoretical and experimental power spectra of c}(t)
[namely, in this case, the diffusion function D(rz)],
especially for not too high frequencies (e. g. , v/
rd, -10 }. As the BBR model presents the advantage
of analytical simplicity, we have generalized the

&[J (p)]')
&f~ (p)]')

3Qk~T2KO

&f gE(p)]2)

exponential model to describe the general transport
functions. These are now calculated in a straight-
forward manner from the expressions given above.
From Eqs. (2. 1) and (3. 1)

cr$(cd) = [1'(d+ If(rd)] (s. 6)

using Eqs. (2. 3)-(2. 5) and (3.2)-(3.4), we obtain

G((u) = 1[1—((u/a)']'+ [cr„(0)~v]') ', (s. 6)

II(cd) = G (u&)f [o„(0)—1/a cr$ (0)]++ ru /a' o „(0)f &

(3.7}

where a$ and o„(0)are given by Eqs. (3. 3) and
(2. 8), respectively. The specific expressions for
a$ and cr„(0) for the different transport properties
are displayed in Table I. Here we have chosen to
consider the first (or shear) viscosity r}$; the sec-
ond (or dilatational} viscosity ri =-rie- —', ri$ (with rie,
the bulk viscosity); the total viscosity ri =-3 7/$+
and the thermal conductivity rc, because these are
the quantities which appear in the hydrodynamic
equations of Sec. IV. For the sake of completeness,
the expressions for the diffusion D are also given
in Table I. The expressions for the generalized
forces, J~"(p,, v=xry) for the viscosities and J
for the thermal conductivity, as well as the quan-
tities &J""(0)J""(0)&and &

[J' (0)] & are given explic-
itely in the Appendix. " The other symbols used in
Table I are 0 for the volume, m for the mass, T
for the temperature, k~ for the Boltzmann constant,
and V for the pair potential energy of the system.
Furthermore, D, g~, g~, and ~ denote the usual
transport coefficients at zero frequency. All these
quantitites are known, i. e. , they can be calculated
or obtained from experimental data; therefore, the
functions G(cd) and H(cd) [Eqs. (3. 6) and (3.7)] can
be evaluated explicitly for the different transport
functions.
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IV. HYDRODYNAMIC MODES

Consider the Laplace-Fourier transformed line-
arized hydrodynamic equations, '"'8

j,(t)=po J dr'v(t)e"',

j,(t) = p, J dr'v(t)e"",

(4. &)

spi, (s)+ ik jo(s) = po(0) (4. i) with

[s+ k'v(s)]j, (s)+ ik(c'o/y)p, (s)+ ik(c'o/y)Pg, (s) = j,"', kj=Q or V j~=Q, !

(4. 2) ~0

q' jp= Q or + ' jll=Q (4. io)

[s+ q'v'(s)] j',"(s)= j,"'(O)

[s+ e'v'(s)l j,"'(s)= j',"(O) (4. 4)

[s+ k'l1(s )]g,(s ) + ik[(y - 1)/p]. j,(s) = g,(0) . (4. 6)

p~(s)= J'"dte "J'dr 'e"'5 p(r, t) {4.6)

with the complex Laplace variables s = c+ iv; while

jo, j,"'(i= 1, 2), and go represent the longitudinal
current, the transverse current, and the heat cur-
rent, respectively:

Here the quantities Ro(s) denote the Laplace-Fourier
transforms of the fluctuations 6x(r, t), e. g. ,

g(r, t) = po67'(r, t) . (4. 11)

The other quantities appearing in the linearized hy-
drodynamic equations are the following: eo, the
low-frequency limit of the first sound velocity;
y= cp/c„, tile I'Rtlo of tile speclflc lleRts; RIld

P= —(&p/ST)I /po, the coefficient of thermal expan-

sion. v(s), v (s), and X(s) are the transport func-
tions corresponding, respectively, to the kinematic
vlscosltles v= Ii/po~ v ='gs/po~ Rlld to tile tllel'II10-

metric conductivity 1= ii/poc„.
From the set of Eqs. (4. 1)-(4.5) it is straight-

forward to obtain the following dispersion equation:

~o/y

Q

s+ k'v(s) ik(c', /y)P

ik(y —1)/P s+ k'R(s)

s+ q'v'(s)

~ q'i'(s))

I=Q

The two shear modes

Si I o= —I v (s) (4. 13) vo {8 Is+ UB)/po (4. 16)

o{oi)= IimiI(s) (4. iS)

according to Eq. (2. 1). Now, from Eqs. (2. 3),
(S.6), and {S.7), it is easily seen that to the lowest
order in (d, the transport functions are

v(oI) = v,(1-ia„o~),

X(oI) = X,(I —in„&o),

(4. 16)

(4. IV)

may be immediately separated off, and we shall not
consider them in more detail subsequently, since
such modes have not been observed in simple liquids
to date. Thus, the dispersion equation which re-
mains to be solved for the three other modes is

s'+ s'[v(s)+ l1(s)]k'+ [c,'k'+ v(s)X(s)k']s

+ (co /y)li(s)k' = 0,
where the transport functions reduce to

~o = iso/poco ~

nk, rv, o, (([d""(0)]'}}'
([Z*»(O)]o) nk, rv, p,([i* (0)]o) '

Snk, r'~, (([Z'(0)]')}I
([Z'(0)]'I Snk, r'x, ([i (O)]'} '

(4. 1e)

s= —I'pk (1 —51)

s = + ico k(1 —5o) —I",k (1 —&I)

with

(4. 22)

(4. 2s)

Since the a's are of the order of (d,', the first-order
approximation [Eqs. (4. 16) and (4. 17)] is certainly
appropriate to describe the intermediate region
considered bere, where &o/&, -10 . It is now a
matter of simple but lengthy, algebra to solve the

dispersion equation (4. 14)'o; we, therefore, merely
quote the results
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ri, = xo/y

r', = —,'(v, + [(y- I)/y]~, ],
5, = (y —1)(yv, /X, —1)(I'k/c, )'

5, = n, (I', k/c, )+ ,'(r—,'k/c, )' —,'-5, ,

6, =n, (r', k/c, )+(n, + n, )(r,'k/c, )

—(-,' yv, /r', - l)(r,' k/c, )',

(4. 24)

(4. as)

(4. 26)

(4. 27)

(4. 26)

V. SPECTRAL DISTRIBUTION

The spectral distribution of the light scattered
from thermal fluctuations in a simple fluid is es-
sentially given by the Van Hove correlation func-
tion, ' introduced in Sec. I,

S(k, ~) = 2 Re [lim(p ~(0)p,(s))]
6-0

(5. 1)

by the frequency effects. This will be discussed in
more detail in Secs. V and VI.

c,k (1 —y)
n~A0 —a„g0,' e) —

g0)P n), .
(4. 29)

Equation (4. 22) represents the diffusion mode,
arising from density fluctuations at constant pres-
sure, and Eq. (4. 23) represents the two (shifted)
propagation modes, corresponding to the density
fluctuations at constant entropy. It is easily re-
cognized that the "high"-frequency effects arising
from the nondissipative part of the transport func-
tions appear in those terms containing the factors
&, while the other correction terms represent pure
second-order effects. It should be noticed that the
latter are the only corrections which affect the dif-
fusion mode, whereas the frequency, as well as
the lifetime of the thermal phonons, is also modified

where the symbols p are used here to denote the
density fluctuations, according to the definition
given in Eq. (4. 6). Solving the set of Eqs. (4. 1),
(4. 2), and (4. 5) for p, (s) yields

p, (s) = M 'p, (0)/s'+ s[v(s)+ R(s)]k'

+ v(s)K(s)k'+ c,'k'(1 —y ')] (5. 2)

where M is the left-hand side of the dispersion equa-
tion (4. 14). In Eq. (5. 2) we have omitted the terms
involving i,(0) and g~(0), because they are thermo-
dynamically independent of p, (0) and will therefore
vanish by constructing the correlation function
S(k, v), which is the next step to be performed to
obtain the spectral distribution. From Eq. (5. 1)
with Eqs. (5.2) and (4. 14), combined with the re-
sults of Sec. IV, one finds

I', k (1 —5 ) 1 ~+ c, k(1 —5,)
[I',k (1 —5,)] + [~ —cok(l —5z)] y

' [I',k (1 —5,)] + [~+ cok(1 —52)]

(5.3)

with S(k), the static structure factor,

s(k) = (p „(o)p,(o)), (5. 4)

which is discussed in great detail in the literature.
In Eq. (5. 3) we have

&, = 2n, (I', k/co)+ (y —3+ ayvo/Xo)(r, 'k/c, )', (5. 5)

82 = 2n (I' k/co)+ yn&(r&k/co)

—(y 1)(y —3+ 2yv, /x, )(r—,'k/c, )'

&, = (r,'k/c, )+ (y —1)(r,'k/c, )+ O(r'; k/c, )',
(5. 6)

i=s, p . , (5 7)

The calculation presented here is valid to the second

order in (r; k/co), and we may therefore ignore the
last term in Eq. (5.7). It is easily recognized that
neglecting all the correction terms in Eq. (5.3) '-
namely, putting 5&=0, and 8&=0, j=1,2, 3 —leads
to the simple usual expression for the spectral dis-
tribution in the hydrodynamic limit. ' Furthermore,
if one simply ignores the frequency dependence of
the transport functions, i. e. , setting e„=@~=0, one
retrieves the spectrum involving the second-order
terms. " These different effects are illustrated in
Fig. 1, where they are considerably amplified for
practical purposes. In particular, we observe a
slight departure from the Lorentzian shape of the
Brillouin lines. This will be discussed in detail in
Sec VI. , where we also present numerical evalua-
tions of these effects for liquid argon.
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II

c k (i E)e-e)-

FIG. l. Spectrum of
the scattered light Ifull
lines, Eq. (5.3}j. The
dotted curves represent
the "classical" spectrum
(to the lowest order in
A,}. The effects inducing
changes ln the Brlllouln
lines are decomposed and
illustrated for the Stokes
line by the dashed curves.

VI. MSCUSSION

In order to discuss the modifications introduced
by frequency effects and second-order effects to
the "classical" spectrum of the scattered light, as
depicted in Fig. 1, we calculate the spectral char-
acteristics: the frequency shift, the linewidths, and
the intensities ratio. More precisely, we shall es-
sentially be concerned with the relative changes
introduced with respect to the first-order spectrum,
whose characteristic quantities mill be denoted by
a superscript 0. We also present the numerical
evaluations for argon in the normal liquid range,
i.e. , 85-100 K, along the liquid-vapor equilibrium
curve, which are the conditions under which the
Fleury-Boon experiments have been performed. '

Let us first consider the central component. The
Rayleigh line is a Lorentzian, centered around the
incident frequency vo, i.e. , around v=(~, —no=0
(with uI„ the frequency of the scattered light) in
Fig. 1, with a total linewidth

~~&s=»s(I —~t) I

where

(e. 1)

I„/I' = (1+e,)/(1 —5,)

with

I„'=2(1 —y ')/(I', u'},
which in the case of liquid argon gives

(I„-I„')/I„'-4BIO~ .

(e.4)

(e. 5)

(e. 6)

Since the Lorentzian is a normalized function, the
integrated intensity is modified by e, alone. One

4m~ = 4I'pk

In comparison with the classical result, one thus
observes a slight narrowing, which is indebted to
second-order effects [see Eq. (4. 26)], and which is
actually impossible to detect for liquid argon. In-
deed, the evaluation of 6, yields

(dv„—b,vs)/»s -- 10 (e. 3)

Consequently, there is also a slight increase of the
peak intensity

finds

e„=2(I-X ')(1+e,)/s . (e. v)

~/2 ~,=(y- 1)(1+VxIO-') . (e. 1o)

All these corrections are, of course, negligible,
since they cannot be detected experimentally. How-
ever, the situation is somewhat different for the
frequency shift of the 8 illouin lines, which can be
measured with a much better experimental accu-
racy. The position of the Brillouin lines is dis-
placed by the action of two factors whose effects
add to each other to pull the Brillouin lines tomard
the central component. This situation is illustrated
in Fig. 1 for the Stokes line, The dotted, I orentz-
ian, representing the usual shape of this compo-
nent, centered at += —co&, is first displaced by
an amount equal to (1 —es}, as expressed by the
third term in Eq. (5. 3). Simultaneously, one ob-
serves a slight broadening by an amount equal to
(1 —5,}, with 5, &0. This first change, as will be
seen below from Eq. (4. 26), is represented by the
dashed Lorentzian centered around &u = —csi't(l —et).
In addition, the last term in Eq. (5.3), shown in
Fig. 1 as the 8-shaped dashed curve, introduces a
slight departure from the Lorentzian shape and as
a consequence of this asymmetry induces an addi-
tional pulling towards the central component. The
over-all effect is shomn for the anti-Stokes line in
Fig. 1.

To evaluated the frequency shift, we perform a
standard extremum calculation which yields the fre-
quency of the thermal phonons to be detected. %'e

Similarly for the Brillouin lines, since the second-
order contributions —i.e. , the two last terms in
Eq. (5.3), represented in Fig. 1 for the Stokes line
by the S-shaped dashed curve —vanish by integra-
tion, one obtains

2S, =2y-'(I+e, )/s .
Hence, from Eqs. (6. V) and (6.8), the Landau-
Placzck ratio is

s.i».=(~-I)(1 e,)/(1 e,),
which is evaluated for bquid argon to yield
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obtain

~a=+c, k(1 —5,)(1 —e),

with
3S', +e3' 1-C3 r', a

203 1 —62 C0

Correspondingly, the peak intensity reads

Is=Is (1+ e~+ e )/(1 —5~),

with

I =(yrk)'
e'= (e', —oe', )/4e', ,

and the Brillouin linewidth is given by

b,&us= h&uso(I —53),

(6. 11)

(6. 12)

(6. 13)

(6. 14)

(6. 15)

(6.16)

[with co, the low-frequency velocity (at 1.2 MHz)"],
which is about the order of magnitude of the experi-
mental error. Despite the fact that this uncertainty
precludes quantitative conclusions, their result
seems to be qualitatively significant because they
observe a systematicaly lower value for v, as com-
pared to c0, which difference does not seem to be
indebted to any kind of experimental error. In this
sense, the theoretical prediction (6. 25) would be in
qualitative agreement with the observation (6. 26);
however, in order to ascertain the existence of a
negative dispersion at frequencies ~/~, - 10
greater experimental accuracy would be highly de-
sirable. The same requirement holds for measur-
ing modifications to the linewidth of the Brillouin
lines. From Eq. (6. 16), one predicts for liquid
argon

with
(h&ea —r &ua)/&&us-+ 3 &&10 ' . (6. 27)

Q(d 0 2+0 k, 2 (6. 17)

Now, to compute the frequency shift we first notice
that to a good approximation we have

e = (-,' e,) (r,'k/c, ) = e "', (6. 18)

as a consequence of the expressions for 82 and 83
[Eqs. (5. 6) and (5. 7)] and 5z and 63 [Eqs. (4. 27)
and (4. 28)]. It is also important to note that 5a can
be written as the sum of two contributions:

O2 = e2'"'+ e,"', (6. 18)

where the superscript (m) denotes the term contain-
ing high-frequency effects, i. e. , the term involv-
ing o., in Eq. (4. 27), while 5a ' represents the other
terms, which are purely second-order terms.
Since e' ' is also a second-order contribution, we
may therefore rewrite &ua, Eq. (6. 11), by separat-
ing out the frequency effect

It is interesting to notice that, while the total line-
width is modified by 63 alone, the half-linewidth,
because of the asymetry induced by the second-or-
der terms, is affected by 03 also. One obtains to
first order

—,
' n~, = I', k'(I —5,)(I ~-,'e, ), (6. 28)

~ &~s ——.&~a (I —5&+ -,' e3), (6. 29)

where the plus (minus) sign corresponds to the inner
(outer) half of the Brillouin line. Notice that

83 e ' ' also corresponds to the amount by which
the Brillouin line is shifted because of the second-
order effects. As far as relative changes are con-
cerned with respect to the classical spectrum, this
departure from the usual Lorentzian shape of the
Brillouin lines should be the most important effect.
Indeed, we have

with

g (2) g (2) ~ (2)+6

va:—a cok(1 —5a'"' —5 N'), (6. 20)

(6. aS)

with, for liquid argon,

3 x10-',

0 =8x10'
(6. 30)

(6. sl)
Evaluating these different contributions for liquid
argon yields

Q
("'= —1.8 x102

g(» =+ 2. 4 x1O-',

a' '=+2. 4 10 ',

(6. 22)

(6. 2s)

(6.24)

from which one finds for the hypersonic velocity at
~- 3&&10"cps

v =— (u& /k)=c (1 —3 &10 ) . (6. 25)

(v, —co)/co:——5&&10 (6. 26)

In other words, the theory predicts a slight negative
dispersion. Now, from their experiments on liquid
argon, ' Fleury and Boon obtain

hence, one finds

(k ~~a - k n&a )~/~ &~a (6. s2)

However, this effect also appears to be the most
difficult one to measure experimentally, because
it requires the accurate determination of the posi-
tion of the peak and high precision in the measure-
ment of the total linewidth. Consequently, in so
far as deviations from classical hydrodynamics in
the intermediate region are concerned, it appears
that the most important measurable effect (at least
with the presently available experimental tech-
niques) is the frequency shift, i.e. , the dispersion
for the first-sound velocity.
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APPENDIX: GENERALIZED FORCES

The momentum flux is given by

N

k=1 m f&j

—~„„h—(E))( (y, , v=x, )), (Al)
N, Q

where P; denotes the p component of the momentum

of particle i, 6,„ is the Kronecker 0, P is the pres-
sure, E is the internal energy, R,j is the distance
between particles i and j, F&j is the force between
them, and the bracket denotes the canonical en-
semble average. The other symbols are defined in
the main text (see Sec. III). For the shear viscos-
ity, one has

(As)
yOO

([J""(0)])=QkeT pkeT+ ~qqvp dRg (R) —R
&0

with p the number density, and g' '(R) the radial distribution function; and for the total viscosity we have

([J""(0)))=SpQ(k~T) +([QR(,.F()] ) —[(ZR(~F(~}] — {oQ(keT) +[(PR()F. ()Q Vq~)
p&e

—(Z R,",F;q)(Z V)„)]j
i&j p&e

where

(As}

=(p Q(keT) + (QR*;qF";, Q V)„)—(Z R(g (q)(Z V)„)]' BpQ(ksT) + [((Q V„)')—((Z V~, ))2]) . (A4)
~~

~~

BE Ng

The generalized forces Jx" and Jx' are

J""= —P [sp-",,A, ,+ p, ,&;,],
m

J" = ——P PPc;, .
m

(A6)

(A6)

p]+2 V]j p; m
2m

N

+ ZZ P,.F,~R, ) —k 2 P. (/~
2m iAj i $1

(A1S)

Here the superscript a is subject to the usual sum-
mation convention for repeated indices, and we have

where h is the equilibrium enthalpy per particle.
From (Als) one has

([J (0)]')= (I/~)pQk, T[~(k,T)'+ ((k"k")
p =p —p.

A, j———F";j

B V]j
'j BR".BRjj

2

C' — BVij y B V]j
sR~

' " s(R" )'fj

BVij x B V]j
C]j = 2

BRx
+ R]j BRx BRs

fj B 'j
2

fj f j BRx BRgfj fj

The energy current is given by

(AV)

(A8)

(AS)

(A10)

(A11)

(AIS)

(A14)

k = 2 Z (V, ~f)~()+ F,; R~))
j4f

The corresponding generalized force reads

J =L+M+N

(A15)

(A16)

L=ZZ{P (Pu' 8R ) —Pg;(P s -
)

2B V)j
R&j pij' pi

BR;jBR;j
(A17)

where h ~ is the potential contribution to the micro-
scopic enthalpy per particle
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M=gg (P, I +2p;j;) ~

i gj BR]~
(A18) ~V;, m $g

~R~~ 'R~a-
A19
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