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Molecular dynamics experiments made on a system of 864 particles interacting through a
Lennard-Jones potential for various high-density states are used to study the self-correlation
in classical fluids. The self-diffusion constant is computed and interpreted in terms of a hard-
sphere model. The memory-function formalism is used to give a simple phenomenological
fit for the computed velocity autocorrelation function and for the self-intermediate-scattering
function. A detailed comparison is made with the various existing theories for the latter
quantity.

I. INTRODUCTION
This paper is devoted to the phenomenological

description of the self-motion of atoms in liquids.

We would like to interpret for instance the self-dif-
fusion coefficient and the incoherent scattering of
neutrons in simple liquids. In order to establish
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such a phenomenological description, we need some
experimental material. We shall use that provided
by molecular dynamics experiments on Lennard-
Jones molecules, inspired by the work of Rahman. ~

The advantage of these "experiments" is that they
are more complete, generally more precise, and
better controlled than the corresponding experi-
ments on argon and other simple substances. The
similarity of the Lennard- Jones fluid with argon is
well known as far as equilibrium properties are
concerned. We shall see that the same is true
for the self-diffusion constant. We may hope to get
a very good understanding of time-dependent prop-
erties of simple liquids by the study of the Lennard-
Jones fluid.

In Sec. II we review the theoretical framework in
which the results will be interpreted. This is the
memory function approach which constitutes a gen-
eralization of hydrodynamics for finite wavelengths
and frequencies. This formalism has the advan-
tage of providing interpolation formulas in which
the known limits can be conveniently included.
In particular, through this formalism, one can eas-
ily use the fact that time expansions can be derived
through arepeateduse of the equations of motion.

In Sec. III we discuss in detail how the various
quantities —velocity autocorrelation function, self-
diffusion constant, time-dependent self-correLation
functions —are calculated, and we give estimates
of the precision which can be hoped for.

The results are then displayed in Secs. IV-VI.
The self-diffusion constant is first examined. A

simple empirical formula, valid at high density,
shows that its dependence on temperature is linear.
This formula can be used to interpolate our data
and to demonstrate that a very good agreement is
obtained with the self-diffusion coefficient measured
in the case of argon. ' We may try to compare these
results with the diffusion constant of hard spheres.
A quantitative agreement cannot be reached because
a hard-sphere model neglects the effect of the du-
ration of the collision. But a slight modification to
that model can be made to include this effect, and
an excellent agreement is then reached.

The variety of the velocity autocorrelation func-
tions obtained in Sec. IV seems to preclude a sim-
ple analysis. There the memory function formal-
ism turns out to be useful. With a simple form of
the memory function depending on three parameters
only, it is possible to fit very precisely these vari-
ous autocorrelation functions. This memory func-
tion, which is interpreted as a generalization of the
friction coefficient, nonlocal with respect to time,
is composed of two parts, one of short range in
time, characteristic of the two-body collision, and

the other, effective at large times, which is con-
nected with the collective response of the neighbors
to the self-motion.

Sec. V contains the description of the self-inter-
mediate-scattering function or of its Fourier trans-
form, which is proportional to the differential cross
section for incoherent neutron scattering. We may
pursue the memory function approach. Various re-
laxation time approximations lead to results which
are not precise enough to represent the computer
data. The same can be said of the well-known
Gaussian approximation, ' and of a recent approxi-
mation due to Lebowitz, Percus, and Sykes. ' Both
approximations lead to similar results, which are
better than those provided by the relaxation-time
approximations. They both require the complete
knowledge of the velocity autocorrelation function.
A further improvement, as is well known, can be
obtained by considering the corrections to the Gaus-
sian approximation. We introduce a two-parameter
approximation for that correction with the help of
which excellent results are produced. Another ap-
proach, almost as good and more closely related
both to experiment and to the physical description
of the situation, consists in generalizing to finite
k's the memory function introduced in order to de-
scribe the velocity autocorrelation function. This
can be made at the expense of introducing one more
parameter which may be interpreted as measuring
the range of the many-body motion accompanying
the self -motion.

II. MEMORY FUNCTION FORMALISM FOR SELF—COR-
RELATION FUNCTIONS

The probability density of a particular particle
labeled by i is

p,. (r, f) =~(r- r,. (f)),
with, on average, for a homogeneous system in
equilibrium,

(p, (r, f) & = i/V,
where V is the total volume of the system.

The Van Hove function'4 Gz(r, f), which gives the
probability density for having the particle at r at
time t, when it was at the origin at time t = 0, is,
with this notation,

G, (r, f) =V(p, (r, f)p, (O, O) &..
Its spatial Fourier transform, the so-called inter-
mediate scattering function is given by

There we have introduced the Fourier transform
of the probability density for particle i:

(f} e- i li ~ Fq (t)

Let us introduce the Fourier-Laplace transform of
the intermediate scattering function:

s, (u, ~) = f" df e"'z, (u, f) . (6)
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As is well known, the cross section for incoherent
neutron scattering is given in terms of the function
S,(k, Io):

S,(k, ~) =(1/ao) f dt e'"' E (k, t)

=(1/o)F', (k, ~), (v)

where the real part is denoted by a prime. The in-
termediate scattering function can be expanded in
Taylor series. We write this expansion as

is normalized to 1 for t=O. The t term in the ex-
pansion of Es (k, t}, which is known, is to be included
as a condition on the small-time behavior of ms(k, t).
This may not be convenient. A more transparent
way of taking this knowledge into account is provided
by extending the above memory function formalism
to the self- current- current correlation function.

Let us consider the current of particle i; its kth
Fourier component is given by

2 t 2 2 t 2
2 4 6

Es(k t) 1 os + os +1s +os +2s2 4! 61

(s)

& t~=vi pin ~ (is)

Let us define the self-current-current correlation
function as

The application of the equations of motion enables
us to calculate the coefficients

~os =ks Tk/m,
2 2 2

~SS =3~0S+ ~0 ~

&2s =(a;,)(m/ks T} + 15+os &a+ 1swos ~ (11)

(,)
d'Es (k, t)

dta

=(k T„(t)k T, ,(0))

and introduce the function

cs(ki t) =Cs(k, t)/+os,

(ao)

(ai)

The constant Qo can be calculated from the radial
distribution function g(r), and the pair potential
V(r), by

0 o
= (p/am) f dr g(r) V V (r) . (ia)

It can be obtained in some cases from the isotopic
separation coefficient. ~;, is the time derivative
of the z component of the acceleration felt by the
ith particle.

The behavior of Es (k, ~) for small values of k
and ~ is known. It is described by the equation of
transport for the density of labeled particles. If
D is the self-diffusion constant, it is given by

F (k, ~}= 1/(- i~+ Dk ) .
This corresponds for small k's and large times to

(k t) e 2Dt (i4}

Equation (13) can be generalized, by writing

Fs (k, (u) = 1/[- i (u+ M, (k, &u)] .

a t—Fs (k, t) + d7' Ms (k, &)Fs(k, t —v) = 0 .
(is)

Using the known expansion (8) for Es(k, t), we can
write the small-time expansion for the memory
function:

This equation defines the so-called memory function
Ms(k, ~). Divided by k, this quantity is a diffusion
coefficient generalized for finite values of k and ~.
Written with time variables, Eq. (15) exhibits the
causal character of the memory function

t2 t4
cs (k, t) = 1 —M g s —

t
+ (02 s ! (22)

v,'s, which appeared in the fourth order in Fs(k, t),
now comes in the second order. It is obvious from
(20), (21), and (9) that

lim cs(k, t) =(m/ks T) (v„(t)v„(0)),
0

(23)

which is the normalized velocity autocorrelation
function f(t) .

Let us introduce a memory function &s (k, &u) by

c,(k, ~) =1/[-i~+Ots(k, ~)]. (24)

We must take into account the fact that Cs (k, t) is
the second time derivative of Fs(k, t) This .condi-
tion can be written as

Fs(k, t) =1 —f do (t &)Cs(k, &-) . (as)

As Es(k, ~) =0, the following two conditions are ob-
tained:

J dv Cs(k, r) =0,
0

(as)

f" dr r Cs(k, r) = —1.
From this, one gets the small-~ behavior of Cs
x(k, (u):

c, (k, oo) =(1/oosos) f"dt e' 'C, (k, t)

(2v)

= 0 —(i&a/(osos) + O((u') . (as)

which is normalized to 1. Its small-time expansion
is obtained from (8)

Ms (k~ t) —(Dos[1 2 ((ops QPOS) t + ]
The function

m, (k, t) =M, (k, t)/~o,

(iv)

(is)
(as)

From (28) and (24) it follows that

Xs (k, (o) = (&usos/- i (u) + N s (k, (o),

where Ns(k, ~) is regular at small ~. Taking the
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Fourier transform of (29},

st, (k, f} = ~',, e(f)+N, (k, f), (so)

that type of approximation to the current-current
correlation functions.

where e(t) is the Heaviside distribution and Ns(k, f}
tends to zero when f tends to infinity. Using (24)
written in time variables, one gets the small-time
expansion

Ns(k~ f} = &ass —&os 2 (+ss +1 s) f2 2 i 4 4 2 (sl)

We introduce, as above, the normalized memory
function

ns(k t) =Ns(k t}l(oEis oEos} ~ (32)

f ((u) =[-f(o+ noon (sOo))] ' (s4)

Qo ns (0, f} =Ns(0, f} is the memory function for the
velocity autocorrelation function. It was first in-
troduced by Berne, Boon, and Rice. It is identical
with the generalized friction coefficient of Forster,
Martin, and Yip. o From (33}Fs(k, &o) is obtained

by multiplication by &uoss/o)s. It is seen that Ps(k, o))

is given now by an expression which exhibits all the
coefficients of the small-time expansion of Fs(k, f}

up to the fourth.
The hydrodynamic relation (13) imposes a sup-

plementary condition

mD
= lim lim cs(k, o))

~-0 0 0

(s5)

The aim of developing such a formalism lies in the
hope that the memory functions ms (k, t) and espe-
cially ns (k, f) are simpler objects than Es(k, f) itself
and can therefore be more easily approximated.
It is also apparent that even a rough approximation
on ns(k, t) (as the relaxation-time approximation)
may give a rather correct Ss (k, &o) since its first
four moments are automatically included. Once
these memory functions are known they can be used
as ingredients for obtaining approximations for the
coherent scattering. One can write, for instance,
for the coherent scattering an expression similar
to (15). The replacement of the normalized memory
function appearing in this expression by ms(k, f) is
simply Kerr's approximation, "as is easily seen if
one uses a recent formulation of that approximation
due to Nelkin. ' One can, of course, generalize

The normalized current-current correlation function
is therefore given by

cs(k, cu) = [- i oE+ o)os/- i oE+ (oE,s —&sos)ns(k, o))]

(33)

From this expression, the normalized velocity auto-
correlation function is obtained by taking the k-0
limit:

III. COMPUTATIONAL TECHNIQUE

f(f) = (m/Sks T)(v, (0} v, (t)), (37)

where the average is made both on the 864 particles
labeled byi and on the (& —f)/d+1 possible choices
for the origin of time.

The error on the normalized velocity autocorre-
lation function is of two types, numerical and statis-
tical. The first is negligible as compared to the
second. To estimate the latter one some care is
necessary: All the elements appearing in (3V) are
not statistically independent. Only after some typi-
cal relaxation time 7 does the correlation tend to
disappear. Explicating this viewpoint Zwanzig'
has given the following estimate for the error 5f(t)
on normalized autocorrelation functions:

&E(t)=+ ( && )
)E(t) —

))~ . (38)

Tyyically r/W = $. Then 5f (f) = + 0. 004 jf(t) —I ) .
The comparison of two normalized autocorrelation
functions obtained at the same temperature and
density with different initial configurations confirm.
this estimate.

The diffusion constant D is calculated either with
the help of (35) written here in the usual Kubo form

D = (k T/m ) g"f (t)dt

or by considering the large-time behavior of the
mean- square displacement of a particle:

(so)

lim([r, (0) —r, (t)] )s=8Dt +C as f- ~, (40)

where C is a constant. Both methods give consis-
tent results with a similar uncertainty which is of

The computer experiments were performed using
the technique described in Ref. 2 which is derived
from Rahman's work. We consider a system of
864 particles of mass m enclosed in a cubic box with
periodic boundary conditions, interacting through a
Lennard- Jones potential

V(r) =4& [(o/r}"- (o/r}o] .
We choose o, e, and (ma /48@)"s, respectively, as
length, energy, and time units. We integrate the
equations of motion of the system for a time V cor-
responding to at least 1200 integration steps starting
with initial equilibrium configurations. We take the
value 0. 032 for the time increment. This corre-
sponds to 10 ' sec in the case of argon. Several
states, shown in Table I, were considered. In each
computation, the positions and velocities were re-
corded for time intervals d =0. 128. Thus, at least
300 configurations were in our possession.

The normalized velocity autocorrelation function
at time t is calculated as



2518 D. LEVESQUE AND L. VERLET

Ao

0.88
0.42
0.25

—0.22
—0.31
—0.45

0.85
0.55
0.52

—0.08
—0.27
—0.36
—0.52
—0.62
—0.68
—0.75
—0.67
—0.82
—0.85
—1.59
—2. 39
—1.87

p

0.85
0.85
0.85
0.85
0.85
0.85
0.8442
0.8244
0.8244
0.75
0.75
0.75
0.75
0.75
0.75
0.65
0.65
0.65
0.65
0.40
0.30
0.30

0.76
1.08
l. 273
2.145
2.81
4.70
0.72
0.820
0.824
0.88
1.12
1.30
2.04
3.81
5.09
l.43
l.827
3.67
5.09
2.00
1.62
1.92

5.98
7.17
7.73

10.25
ll. 95
16.20
5.68
5.68
5.68
4.69
5.32
5.76
7.41

10.75
12.91
4.51
5.15
7. 92
9.83
2. 56
l. 66
1.76

0.0052
0.0080
0.0097
0.0175
0.0244
0.040
0.0051
0.0068
0.0069
0.0112
0.0140
0.0160
0.0245
0.045
0.059
0.0257
0.032
0.060
0.081

0.0045
0.0080
0.0096
0.0179
0.024
0.038
0.0047
0.0067
0.0068
0.0101
0.0143
0.0172
0.026
0.045
0.060
0.027
0.034
0.059
0.079

0.0048
0.0078
0.0095
0.0182
0.0245
0.040
0.0047
0.0065
0.0067
0.010
0.014
0.017
0.026
0.046
0.059
0.026
0.031
0.058
0.077
0.076
0.095
0.11

TABLE I. In this table, we give for the various states listed in columns 1 and 2 the values of 00 as given by Eq. (12),
of the diffusion constant [column 4: values obtained from molecular dynamics; column 5, use of approximation (49);
column 6, hard-sphere model, formula (50)], and the values of Ao [coefficient of the large time term in the memory
function defined by Eq. (52)]. T and p are in Lennard-Jones reduced units.

T 0() DMD D %8

&~"(f)& =&[~,(f) -~,(0)]"). (42)

From its moments, Gs (x, f) can be reconstructed
through the expansion

p
3/2

G, (~, f)= — e-s' tl+ Z s, Z, P(Pr')],
l~l

where

P = —,
' &r~) and LP(Pr')

(43)

(44)

is a Laguerre polynomial obeying the condition

f
I' E

s r r' r — ss' pan I )
8 -Br g ]/2(p ~2)g+2(p ~2) g

+ 2

(45)

When the coefficients a, are related to the moments

the order of 5%. It should be noticed that if there
exists a long tail of the velocity autocorrelation
function decreasing very slowly in time' and of an
amplitude corresponding to the noise level (a frac-
tion of the percent), its contribution to the diffusion
constant would not be taken into account and the
quoted error could be larger.

From its definition (3) the self-correlation func-
tion Gz(r, f) is given by

Gs(r, t) = (1/4' Ar) &N(r, (f) —r, (0) —r)), (41)

where N(R- r ) is equal to 1 if the distance X lies
between r and r+4r, and to zero otherwise. One
can also calculate the 2lth moment of the self-cor-
relation defined by

through the formula

pl K&2k) = 2
F(l +)l~t g (- 1)~

I"(-,')
~ o jl (I —j)l ' (46)

it follows from the choice of P, as given by (44),
that a&

———0.
The convergence of the series is fairly rapid:

The moment of order 10 gives a contribution of the
order of 10, much less than the statistical error
on Gs (r, f) which is of the order of 1%.

From this moment expansion, the spatial Fourier
transform can be obtained without computation as

' gF, (k, f) = e "~4' 1+ g-
g 2 4p I!

The validity of this expression can be tested by cal-
culating direc'tly F~(k, f) through its definition (4).
Because of the periodic boundary conditions one
should take for k one of the reciprocal vectors of
the box in which the system is enclosed. The di-
rect computation of Fz(k, f) implies a triple average:
an average over all vectors k having a length be-
tween k and k+dA, and, as above, averages over
the possible values of the origin of time and over
the 864 particles. We thus obtain a confirmation
of the results obtained through the moment expan-
sion: The difference between the two sets of values
for Fs(k, t) is less than 0. 01.

In order to make a direct comparison with experi-
ment, it is necessary to calculate the self-dynami-
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cal form factor Sz(k, &o) through the Fourier trans-
form Sz(k, v). It is necessary to extrapolate the
moments (46) for very large values of the time.
The main contribution comes from the second mo-
ment (ra(t)) which is fitted by the linear form (40).
The very large time contribution of the next mo-
ment may play a little role and we estimate it by the
following extrapolation:

5 (r'(t)) t
(48)

The error on Sz (k, v)/Sa (k, 0) is of the order of 0. 01
and may reach 0. 02 for small values of co.

IV. DIFFUSION CONSTANT

As can be seen from Table I, this simple expression
represents quite well the data within the precision
of the computation, except at very low temperature
(T& 1) where it appears to overestimate the comput-
er results by at least 5%. It should be noticed that
the first term in (49) contributes about 90% of the
total value of the diffusion constant. That is to say
that the diffusion constant of the Lennard- Jones liq-
uid is nearly proportional to the temperature. We

shall now investigate whether the hard-sphere mod-

el, so successfully designed to explain the equilibri-
um structure of simple liquids, ' canbe extended to
study the self-diffusion. Let us first recall that
the hard-sphere model at equilibrium is based on
the very near coincidence between the structure
factor of the liquid at density p and temperature T
and that yielded by the Wertheim-Thiele solution
of the I'Y equation for the hard-sphere gas of diam-
eter a at the same density p, when it is required
that the heights of their first peak be the same.
This requirement fixes the only parameter of the
hard sphere, i. e. , the packing fraction g = 6 m pa .
Should the exact hard-sphere solution be used, this
agreement would remain except for a slight renor-
malization of the packing fraction.

In order to extend this model to the study of the
diffusion constant, we shall recall that this quantity
is given, for a hard-sphere gas of diameter a and

packing fraction p, by

D =~(&P'C(n)/(z(&) —1) (50)

There z(g) is the compressibility factor P/pk T.
It can be written as"

(51)

This expression summarizes the known computer

The diffusion constant obtained through the molec-
ular dynamics calculation, given in Table I, can be
summarized except at low density (p & 0. 65) through
the empirical formula

D = 0. 006428T/p'+ 0. 0222- 0. 0280 p. (49)

results2~ within the statistical accuracy. In Enskog's
approximation C(g) = (& w)v —,'6. At high density there
is a deviation from Enskog's expression. Alder and
Wainwright'8 have deduced the "exact" C(ri) from
their computations on the hard-sphere gas that we
denote C„(rl). In terms of (50), the simplest way
to interpret our data would be the following: Let us
consider the same hard-sphere model as described
above that fits the structure factor of the Lennard-
Jones fluid with the Wertheim-Thiele expression.
The values of the packing fraction g thus obtained
are fed into (50): This leads to values of the diffu-
sion constant which have the right order of magni-
tude but are 25% smaller than the corresponding
ones for the Lennard- Jones fluid. The use of val-
ues for the diameter and the packing fraction cor-
responding to "exact" structure factors for the
hard-sphere gas still increases the discrepancy.
This discrepancy is qualitatively understandable.
When we interpret the Lennard-Jones results with
the help of a hard-sphere gas, we neglect the dura-
tion of the collision, which, in real liquids, turns
out to be of the same order of magnitude as the time
between collisions. The effect of the collision time
is reflected in the shape of the velocity autocorrela-
tion function; it has a Gaussian appearance for
small t in the case of the real fluid, where the col-
lision time is finite, whereas it l'ooks like an expo-
nential in the case of a hard-sphere gas. Assuming
that the properties at larger times of the velocity
autocorrelation function are mainly determined by
the collision with other particles and that they are
the same in the two cases, it is clear that the area
under the curve, which is equal to the diffusion
constant, is larger in the first case. In any case
it is necessary to improve (50) so as to allow for
the finite duration of collisions. The data of Table
I are then used to determine C(q). It is not obvious
that such a fit is possible, but it happens to be so.
Moreover, it turns out that C(q) is proportional to
the Alder-Wainwright factor C„(q).

The factor C„(r)) is plotted in Fig. 1, and the re-
sults obtained using (50) with C(g) taken as 1.28
C„(ri) are shown in Table I. We see that a very good
agreement is obtained. We thus possess a semi-
empirical relation linking the packing fraction ob-
tained from the analysis of the structure factor with

the diffusion constant.
The comparison with experimental data on argon'

shows an excellent agreement between the computed
diffusion constants and the experimental ones.
Within the 5% experimental error, and an error of
the same magnitude on the molecular dynamics
computation represented by (49), we find the agree-
ment illustrated by Table I. We see that the Len-
nard- Jones potential provides us with an excellent
description not only of the equilibrium properties
of argon but also of some of the transport proper-
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V. VELOCITY AUTOCORRRELATION FUNCTION
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limit and such that only its first term contributes
at short times. Substituting into (34) we can thus
obtain the small-time expansion of the normalized
autocorrelation function as

f(t)=l — ' + no'(no'+Bo) —, +0(fo) . (53)

Comparing with (ll), it is seen that

&k~.) = &o(&o+Bo) (54)

We have used Eqs. (32) and (34) to calculate the
velocity autocorrelation function and to adjust,
through a least-squares fit, the three parameters
Bp, Ap, and ~p. The error on the fit is negligible
for small times and is of the order of 0. 01 at lar-
ger times. A little information is lost through the
fit since the statistical error on the normalized
velocity autocorrelation function has been seen to
be less than 0. 005.

The diffusion constant can be calculated, using
(35). We obtain

m
' 2mp

+m, 2Bp Qp
(55)

The error on this quantity is of the order of 3/o,
less than the statistical error. It should be noticed
that the contribution to the diffusion constant of the
tail of the memory function may reach 30/o of the
total.

It is found that, for all states considered in Table
I, Bp depends only on the temperature. This depen-
dence turns out to be linear. Specifically, one gets

Bp= 1, 65+ 10 43T. (56)

ao =4 12 2 61p (57)

The amplitude Ao of the large-time term has a
more complicated behavior. It can be, in principle,
obtained from (55), when the other constants are
known: Ao and D are calculated directly (see Table
I) and Bo and n are obtained from (56) and (57), re-
spectively. It should be noticed, however, that Ap
is then given as the difference of two terms which
are of the same magnitude; one of these terms con-
tains the diffusion constant which is known only
within 5/o. We found it useful therefore to give in
Table I the results of the direct determination of
Ap through the fitting procedure we have described
above.

It is seen that Ap varies rapidly with temperature
in the liquid region and tends to be very weakly
temperature dependent at high temperature. The
long-time part of the memory function thus depends

The time decay of the large-time part of the mem-
ory function is also very simple. For all states
considered in Table I, ep depends only on the densi-
ty. Its behavior can be accurately described through
the simple formula

practically only on the density at high temperature.
On the other hand, we see that, when the tempera-
ture increases, the short-time part of the memory
function (52) becomes more and more like a delta
function. Since we note that except at very low
temperature 9 p~ is linear in T~', the strength of
this delta function, which is proportional to QpBp~,
depends on the density and very weakly on the tem-
perature. For high values of the temperature, the
memory function thus depends little on the tem-
perature and appears to resemble the memoryfunc-
tion which is expected in the case of the hard-sphere
gas.

VI ANAI. YSI OF Fs(k, t) AND Ss( ~)

We now investigate various representations of the
intermediate scattering function Fs(k, f) or equiva. -
lently of its Fourier transform, the self-dynamical
structure factor Ss (k, &g).

We measure the accuracy of the various approxi-
mations for Fo (k, f) by calculating the root-mean-
square deviation 6 with respect to the value Fo(k, t),
computed from the molecular dynamics data as ex-
plained in Sec. III:

TABLE II. For case I (p =0.8442, T=0.722), we give
the deviation of the approximate I"~ (k, t) from the exact
one, for various values of k, as measured by 100 0,
where 6 is given by (58). The headings of the columns
refer to the various approximations of Sec. UI. ME:
density-density memory function of exponential form
[(Eq. 61)]. NE: current-current memory function of
exponential form [Eq. (65)]. NG: same with Gaussian
form [Eq. (68)]. G: Gaussian approximation. CG: cor-
rected Gaussian approximation as defined by (73). LPS:
Lebowitz-Percus-Sykes (Ref. 13) approximation. NC:
current-current memory function using the corrected
form (81). k is in Lennard-Jones reduced units [the k
unit is equal to (3.405 A) '].

ME NE NG G GC LPS NC

2. 5
5.0
7.5

12.5
25.

1.2 0.7 0.9 1.0 0.15 0.4
27 14 2 6 2 2 03 0 9
2. 8 1.4 1.8 1.7 0. 2 1.2
20 08 08 08 03 15
1.6 1.2 0.7 0.1 0.1 1.4

0.5
1.1
0.5
0.2
0.2

6 = l(l/ y f, ((F', (k, t) -F,(k, t))'dtj"', (58)

where ~ has been taken equal to 8.96 reduced-time
units.

In Tables II and III we give results of such a com-
putation for the seven approximations studied below.
They are shown for various values of A. Two typi-
cal examples are given: one near triple point (p
=0. 8442, T=O. 722), and the other at lower density
and higher temperature (p=0. 65, T=1.827). We
shall refer to these two examples as case I and case
II, respectively. We have made the same kind of
tables for the other states of Table I: The numbers
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TABLE III. Same as Table II for case II (p =0.65,
T= 1.827

ME NE NG G GC LPS NC

1.14
2. 3
4. 6

11.4
22. 9

0.12
0.3
1.3
1.9
1.6

0.4
0.8
0.8
1.4
1.4

0.8
2.4
2.5
0.12
0.1

0.3 0.03
1.0 0.18
1.1 0.12
0.3 0.07
0.06 0.05

0. 2

1.2

1.1
0.6
0.3

0.06
0.5
0.7
0.3
0.1

Z(k) = vk'as, (k, O),

~(k) = ~vP(k'II),

(5S)

(60)

where &v&2 is the half-width at half-height of Sz(k, v).
These two quantities are equal to one in the hydro-
dynamical limit. Z(k) is given for ease I and case
II in Tables IV and V, respectively. h(k) for the
same case is given in Tables VI and VII.

We should note that the state considered in case
I is very near to the one considered by Nijboer and

Rahman, who have studied in detail the state p
=0. 838, T=O. 714. The potential they have is not
a Lennard- Jones potential, but an exponential-6
potential which is quite similar. For A = 6. 8, these
authors obtain 5=0.98, 6=0. 915, when we obtain
Z= l. 00, 4 =0. 88. The agreement is therefore

are very similar to those quoted in those two tables,
and more or less lie inbetween.

It may turn out that 5 is smaller than the average
statistical error, which is of the order of 0. 004.
In that case the "experimental" results are, on the
average, approximated better than they deserve
from a statistical standpoint, and then the precision
reached is partly illusory. On the other hand, the
error may be small on the average, but unaccept-
ably large for some values of the time variable.
A more detailed investigation is therefore neces-
sary. Since we are especially interested in giving
a phenomenological representation of real experi-
ments, we shall make those tests on Ss (k, &u) and

consider, with Nijboer and Rahman, " the following
quantities:

excellent. In comparing with Nijboer and Rahman's
work, it should be taken into account that their dif-
fusion constant is 8% larger than ours.

We now study various approximations for Se(k, m).

A. Relaxation- Type Approximation

In order to parametrize the function Se(k, &a), it
is natural to try a simple relaxation-time approxi-
mation for either of the normalized memory func-
tions me(k, i) and ne(k, i) as defined by (1I) and

(82). These functions may be given an exponential
or Gaussian form.

l. Exponential Approximation io me(k, t)

The memory function

m, (k, f)=e ' ' "' (61)

has been used by Chung and Yip. It leads to an ex-
ponential velocity autocorrelation function of the
Langevin type with

r (0) =mD/(k, r). (62)

Using (61), (18), and (15) we get a simple analytical
form for the self-dynamical form factor:

S,(k, (o) = CO

vr„(k) ((o'- uroe)'+(o'/r'(k) ' (68)

We note that, in case I, the hydrodynamic frequency
Dk stays, up to high values of A, much smaller
than the kinetic frequency +0~. Thus the hydrody-
namic behavior persists for a substantial range of
k. Comparison with exact results shows that this
is so, and that this persistence of the hydrodynamic
behavior is confirmed by the fact that r„(k) stays
constant in the low-k region.

It is seen from (68) that for high values of k such
that ~os 7 (k) & —,', there exist self-diffusion waves
corresponding to an oscillatory behavior of Ez(k, f).
Since these oscillations are not present in the "ex-
act" Fe(k, i), they can be considered as a defect of
the model.

In this approximation only the trivial second mo-
ment of Se(k, ar) is taken into account explicitly.

TABLE IV. Ratio Z(k) of the self-dynamical form factor at zero frequency to its hydrodynarnical limit tEq. (59)]
for case I. Same headings as in Table II; in the last column labeled by E are given the exact results.

2. 5
5.0
7.5

10.0
12.5
15.6
18.7
21.8
25.0

ME

0.99
1.01
0.96
0.92
0.91
0.96
1.06
l.19
1.33

NE

1.00
1.01
0.98
0.96
0.98
l.05
1.15
1.25
1.36

NG

0.98
0.94
0.92
0.94
0.99
l.12
l. 21
1.34
1.49

0. 98
0. 91
0, 87
0.87
0.89
0.96
l.06
1.19
1.30

GC

1.00
1.00
0.98
0.96
0.95
1.02
l.10
1.20
1.32

LPS

1.01
1.04
1.08
1.14
1.21
1.31
l.43
1.51
l.64

NC

1.00
0.99
0.98
0.99
1.01
l.07
1.15
1.26
l. 37

E

1.00
1.01
1.00
0.98
0.9S
l.03
1.10
1.21
1~32
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TABLE V. Same as Table IV for case II.

l.14
2. 29
4.57
6.86
9.14

11.4
17.1
22. 9

ME

1.04
l.16
l.55
l.86
2. 23
2. 62
3.66
4.75

NE

1.06
1.17
l.51
1.86
2. 24
2.62
3.67
4.77

NG

1.02
1.08
1.32
1.68
2. 13
2. 62
3.92
5. 24

1.01
1.12
1.42
l.76
2. 14
2.54
3.60
4. 69

GC

1.03
l.17
1.51
1.86
2. 22
2. 59
3.61
4.70

LPS

1.02
1.11
1.42
1.81
2. 23
2. 67
3.78
4. 91

NC

l.03
1.14
1.45
1.80
2.19
2. 60
3.66
4.74

1.03
1.16
l. 50
1.86
2. 23
2. 62
3.65
4.73

The success of the fit rests on the adjustment, for
each k of the function r (k) which is theoretically
not known and from which we learn little about the
system. This is a heavy price to pay, considering
the mediocrity of the results shown in Tables II
and III. The function r (k) is given by

r.(k) = r.(0)/Z (k) . (64)

V.
It can therefore be obtained from Tables IV and

2. Exponentia/Approximation to ns(k, t)

We use the memory function

(k t)=e-" "' (65)

r, (0)=ksT/mDAo ~ (66)

In this approximation the fourth moment of Ss(k, &o)

is correct: A fit of the experimental material
using this approximation will provide a determina-
tion of Qo. The error is less than in the preceding
approximation by roughly a factor of 2, but it is
still too large to fit our data in a satisfactory man-
ner.

Against this approximation, it can be said that,
as in the preceding case, it depends on an un-
known and apparently uninteresting function of k.
This function can be obtained from Tables IV and
V through the use of the formula

in conjunction with formula (33). This corresponds
to the Berne-Boon-Rice memory function when k
is equal to zero. Then we have

r„(0) Z(k)
1+ 2&@ /0

3. Gaussian Approximation to ns (k, t)

(67)

As a variant to the preceding approximation we
may choose a Gaussian memory function

ns(k, t) =e

This corresponds to the Singwi-Tosi ' Gaussian
memory function for the velocity autocorrelation
function:

(66)

n (0 t)=e 'o' "2
(69)

If this last memory function is taken seriously,
then its small-time expansion is obtained in terms
of the self-diffusion coefficient [using (35)]:

m mDAO
(70)

From (11) and (54), the t term in the expansion
of Es(k, t) can be expressed as

(ass = IIo (Qo B+)o1+5(u oQs+o15(gos .2 (71)

On the other hand, using the small-time expansion
of (66) with (33), (20), and (71) it is easilyseenthat

&o+ 3&os (3+ 2&os/IIo)
1 + 2(d os /Qo

We see that, in contrast with the two approxima-
tions mentioned above, no arbitrary function of k
is introduced here. The results, however, are
not quite as good as in the preceding approximation

TABLE VI. Ratio 4(k) of the half-width at half-height of S~(k, co) to its hydrodynamical limit [Eq. (60)] for case I.
ME NE NG G GC LPS NC

2. 5
5.0
7.5

10.
12.5
15.6
18.7
21.8
25.

1.02
1.03
1,14
1.31
l.44
1.45
1.32
1.19
l.06

1.00
0.97
l.00
1.04
l.06
1.05
1.01
l.02
1.05

1.03
1.09
1.14
1.16
l.15
l.13
1.07
l.01
0.86

1.01
1.04
1.11
l.22
1.32
1.49
1.35
1.20
1.09

0. 97
0.92
0.91
0.99
1.15
1.35
l.30
1.18
1.07

0.97
0.93
0.85
0.78
0.74
0.79
0.83
0.80
0.75

0.99
0.96
0. 93
0.94
1.05
1.19
1.16
1.10
1.05

0.97
0.89
0.88
0.96
1.08
1.34
l.29
1.17
1.07
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ME NE

TABLE VII. Same as Table VI for case II.

GC LPS NC

1.14
2.3
4. 6
6.9
9.

ll. 4
17.1
22. 9

0.99
0.95
0.84
0.76
0.63
0.54
0.38
0.29

0.96
0.91
0.75
0.64
0.56
0.50
0.45
0.38

1.00
1.01
0.96
0.80
0.64
0.52
0.34
0.25

1.03
0.99
0.86
0.74
0.63
0.55
0.40
0.31

1.00
0.94
0.78
0.68
0.60
0.53
0.40
0.31

1.00
1.01
0.87
0.70
0.57
0.49
0.37
0.29

1.00
0.96
0.83
0.71
0.61
0.53
0.40
0.31

1.00
0.94
0.79
0.68
0.59
0.52
0.39
0.31

for nz(k, t).
The present approximation has clearly two im-

portant defects: The memory function (69) is, as
we have seen in Sec. V, an oversimplification and
the value of Bo given by (70) may be substantially
wrong; although the high k-limit of B given by (72)
is correct, the perfect-gas limit of the memory
function nz (k, t) is not of the Gaussian form (68).
We shall see later on how these two defects can
be remedied.

B. Gaussian Approximation and Its Improvement

The well-known Gaussian approximation consists
in truncating the expansion (47) to its first term:

E~ (k, t) = exp [-+ k'(r'(t) )]
=exp[-(o20, f dr (t -7)f(~)]

fl OO

2z, ", , coswt —
1)

0

This approximation requires more than the pre-
ceding ones, since it involves the complete velocity
autocorrelation function. It has the advantage of
being correct for small and large values of k, and
of giving exactly the small time expansion of I'~
&& (k, t) including the t6 term. 'O' ' It is therefore not
surprising that this approximation is fairly good,
as may be seen from Tables II-VII. Its main de-
fect has been pointed out by Nijboer and Rahman.
For intermediate values of k, S~(k, &o) as yielded
by the Gaussian approximation is less sharply de-
fined than it should be: Z(k) is too small, and the
reduced half-width at half-height n(k) is too large.
Another drawback of this approximation is that
only Fz (k, t) is expressed in a simple form which

is not directly appropriate to discuss the experi-
mental data.

In order to improve the Gaussian approximation
we shall take into account the first non-Gaussian
correction in the expansion (47). Since it is known

that the next terms in that expansion play a minor
role, "we limit ourselves to the first term, which
will be treated approximately. For all values of
the time the approximation (48) will be used, so
that the self-intermediate-scattering function is
given by

0 14 Oo 233 T

t 8 2 0.45VT

(74)

(75)

We emphasize that these formulas have obvious
defects: The high-temperature limit is clearly
wrong and all density dependence has been neglected.
They represent no more than a simple device in-
troduced in order to represent Ez(k, t) at high-den-
sity with an error less than 0.01.

C. Lebowitz-Percus-Sykes Approximation

Lebowitz, Percus, and Sykes" have recently
presented a kinetic equation for the one-particle
density, given that the other particles of the sys-
tem are in thermal equilibrium. This equation is
a part of a hierarchy. To close up this hierarchy
an approximation is made so as to obtain a correct
behavior for small times. This approximation re-

E~(k, t) = exp(- 6 [k'(r'(t))])

k'(r'(t))' Ct, ~tx ]. + ' exp — ~ —1

(73)
It is clear that the correction term introduced is
not correct for short times: It should behave like
t, whereas the approximate form varies as
t'exp[- (t, /t —I)]. This does not have too serious
consequences, however, since the main contribu-
tion of the correction term comes about at times
of the order of t, The fi.ts obtained using (73) are
quite good: The errors, as measured by (58), are
never larger than the estimated statistical error.

We have not given any table containing the val-
ues of C and t,- obtained through this fitting pro-
cedure because, owing to the statistical errors,
they behave in no sense as smooth functions of p
and T and prove to be useless as far as interpola-
tion to neighboring thermodynamic states is con-
cerned. We have therefore accepted some in-
crease in the error (by a factor of 2 at most) in
order to devise some simple, although somewhat
arbitrary, interpolating formula. Since it appear s
that the density dependence of C and t, is weak, we
neglect it altogether and fit all the high-density
data through
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quires the knowledge of the velocity autocorrelation
function, or, equivalently, of its memory function
Ns(0, t). Lebowitz, Percus, and Sykes (L. P.S.)
then succeed in solving analytically the approximate
kinetic equation and obtain the following expression
for Es(k, o)):

1 '

&@os io) o)os
N (D, t«) N(0, ) 'N (t«, ) N (t«, «))'

(76)

This reduces to the memory function (52) for the
velocity autocorrelation function when k is zero
and gives the correct t = 0 limit as seen from (31).
The unknown quantities in (81) a,re chosen as fol-
lows: (i) B is given by (72). This ensures that the
sixth moment of Ss(k, &u) is correct. (ii) Since the
results turn out to be rather insensitive to the
choice of a, it is taken equal to +0 for all values
of k. (iii) The k dependence of A is approximated
by

where - (kA, /Rs')
pe (s2)

C (a, x) = (e"/x') J dt e ' t' ' . (77)

The integral in this last expression is the incom-
plete gamma function y(a, x). Putting t = xe ", ex-
panding the exponential in (VV), and integrating
over a term by term, the following expression,
useful for numerical calculations, is obtained:

f1=~ g=n -1
C(a, x)=Q x" II (a+j)

n=0 J= 0
(vs)

It is easy to see from (Vs), (VV), and (78) that the
correct behavior is obtained both in the hydrody-
namic and in the perfect-gas limit. The second
and fourth moments of Es(k, v) are correct. The
sixth moment is only correct for low and high k's:
Carrying out explicitly the small-time expansion
of Es(k, t), as defined by (8), it is seen that

&o4s = Qo (Qo +Bo) + 10')os Qo+ 15&@os ~
2 2 2 2 2 4 (vS)

This expression, when compared to the exact re-
sult (Vl), proves to be incorrect.

It is seen from Tables II-VII that the results
obtained with the I .P. S. approximation are about
as precise as those obtained with the Gaussian ap-
proximation, except at high k's, where they are
substantially worse, owing probably to the error
introduced by (VS).

D. Memory Function Approach

Ns(k, t) =(2&os+ Qo) e [I —~ost )P(4oost)l

(81)+At e

We wish, in this section, to return to the type
of approach already considered at the beginning of
this section: Namely, we want to find a simple
approximation to the memory function Ns (k, t).
Once this memory function is known, the self-
dynamical structure factor Ss(k, o)) can be obtained,
as seen in Sec. II, through

o)os Ns(k )~)
o) Nso(k &o)+[to o)os &uNs (k o)) l

(so)
We shall assume that Ns(k, t) can be written in the
form

y (u) = C o+ Cou + ' ' ' (85)

The coefficients of this series can be obtained
from the small-time expansion of n(u). We get
in this way Cp=& CR= &p& etc. It appears, how-
ever, that the convergence is very slow for
a range of values of u around 1 where the mem-
ory function is not yet negligibly small. Since we
decide, for the sake of simplicity, to keep )t)(u)
in the form of (85) with only the first two terms
different from zero, we determinetheir coefficients
C, and Co in a different way: We require that n (0)
be correctly given and that the first zero of n(u)
be located at the right place. We then obtain Cp
= 0.7258, C2 ———0.1876.

where X, is a length which remains, tobe determined.
The function q (o)ost) is to be defined by the re-

quirement that the correct high-k limit is obtained:
In that limit the memory function reduces to

N, (k, t) = 2(uose t'[I —u'q (u)], (83)

with u = ~«t. It should be equal to the memory
function of the perfect gas 2~osn(u), where n(u)
is normalized, i.e. , n(0) =1. This memory func-
tion is easily obtained from (33), since the normal-
ized self -current-current correlation function
Cs(k, t) is equal to (1-u ) e " i' in the high-k lim-
it. The perfect-gas memory function n(u) de-

„3/ RQ2creases more rapidly than e ' '" for small u's,
vanishes for u = 1.24, and shows thereafter strongly
damped oscillations. The correction y(u) dis-
places the frequency spectrum of the memory
function towards higher frequencies. When this
correction is neglected Ns(k, 0) is therefore over-
estimated, in the perfect-gas limit, by a factor
easily shown to be 2//3 = 1.15. In view of the re-
lation

Z(k) =Ns(k, 0)/Ns(0, 0),
which follows from (59) and (80), it is seen that,
in the same situation, Z(k) is overestimated by
the same factor. This defect of the Gaussian
memory function for high k's, already mentioned
in Sec. VIA, can be seen from Tables IV and V.

The correction term y(u) can be written as a
series expansion
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FIG. 5. Ratio Z(k) of the self-dynamical form factor
at zero frequency to its hydrodynamical liInit for case
I with the memory function (81)-(82). Solid line:
X, =-0. 46; dashed line: X =0.31; dash-dot-line: X,=0.69.

Given the assumptions made above, the calcula-
tion of Sz(k, ur) through (80) requires the knowl-
edge of the velocity autocorrelation as described
by the parameters Bo, Ao, and no, and the de-
termination of the parameter A, This parameter
has the character of a correlation length for the
tail term of the memory function. We suggest that
it is related to the spatial extent of the collective
motion accompanying the motion of the distinguished
particle, as observed by Alder and Wainwright
in the hard-disk gas. Fitting the "experimental"
E~(k, f) with the help of (80) and (81), we obtain

It turns out to be of the order of 0.5 for case
I and more generally for all states in the immediate
neighborhood of the triple point, where the con-
stant Ao is positive and rather large. On the other
hand, for the states like that of case II, where the
temperature is higher and eventually the density
lower, and for whichAO is clearly negative, X, is
found to be of the order of 2. In the transition
region where Ao is small in magnitude, the tail
term plays a minor role. If we try to determine
X, in that case, the error is very large and nothing
definite can be said.

We see that the correlation length is, when Ao
is negative, four times larger than near the triple
point, and that, in the first case, many more par-
ticles should be involved in the mechanism pro-
ducing the large-time tail of the memory function.
This agrees very well with the picture proposed
by Alder and Wainwright to which we have already
alluded: For those states where the attraction
plays a minor role, a moving particle develops
around itself a correlated motion involving many
neighbors which may correspond to the backflow
pattern observed by Alder and Wainwright. Near
the triple point, on the other hand, where the den-
sity is very high and the cohesive effects are very
strong, such a collective motion does not exist.
Only the nearest neighbors play a role. They tend

to act so as to reverse the initial motion.
We see from Tables II-VI that the memory func-

tion approximation (80) and (81) gives a fit to the
computed data, which although not perfect, is clearly
better than the Gaussian and Lebowitz-Percus-
Sykes approximation. The price to pay for this im-
provement is the necessity of introducing one more
parameter, the correlation length X, which may be
given a physical interpretation. The memory func-
tion approximation is, on the other hand, not so
good as the corrected Gaussian approximation
studied in Sec. VI 8 where two parameters are
needed instead of one as in the present case.

The great advantage of the approximation we
have just defined is that it yields the simple form
(80) for the dynamical structure factor S~(k, ~)
which is the observable quantity. The comparison
with the results from neutron scattering experiment
is thus quite direct.

In view of this comparison, we find it useful to
give a discussion of the sensitivity of the results
to the various parameters so far introduced. The
aim of this discussion is to determine what can be
practically obtained from an analysis of neutron
scattering experiments.

It is clea.r that for k» 2v/X„ the role of the tail
of the memory function is negligible. As already
shown by Nijboer and Rahman, ' high-k measure-
ment will provide Qo and, with possibly less pre-
cision, Bo.

Information on the remaining parameters will
be obtained from observation at lower k's. It
turns out, however, that the results are very in-
sensitive to the range no of the tail term of Nz(k, f)
as long as the total area of this tail, proportional
to Ao/uos, remains constant when no is varied
This means that the neutron scattering results will
not provide complete information about the long-
time part of the velocity autocorrelation function.
Fortunately no depends only on the density, as we
have seen in Sec. V. It may be hoped that it de-
pends little on the details of the interaction and
that when it comes to analyzing experiment, the
value (5V) may be a good estimate.

Near the triple point (case I), the results depend
sensitively on the value of X,. We have plotted in
Fig. 5 the values of Z(k) obtained for several val-
ues of X, differing by about 30/o. With precise
measurements, it should be possible to determine
the spatial extent of the many-body correlation
accompanying the self-motion, as measured by

Such a determination would be very interesting
in case II, where A., should be large. There the
precise determination of this quantity appears to
be quite difficult, as may be seen from Fig. 6.
Very precise measurements, extending to as low

values of k as is feasible, could at least give a
lower limit to the value of ),.
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3.

'& (k) terial provided by the computer experiments on
self-correlations in fluids, and we have shown that
it can be understood in terms of a rather simple
memory function.

A similar analysis is presently being carried
out for the total current-current correlation of
the transverse currents and for the total dynamical
structure factor, quantities which have been com-
puted with some details and precision in the neigh-
borhood of the triple point.

20. K
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VII. CONCLUSIONS
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