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A more powerful version of a numerical method published before is given which permits the

integration of the Schrodinger equation for a large ensemble of particles. A new method for ob-
taining quantum expectation values is outlined. Numerical results are tabulated for the energy
of the ground state of a system of 32 bosons interacting by Lennard-Jones potentials and with

periodic boundary conditions. This is a commonly used model of liquid He . The present re-
sults are substantially lower and closer to experiment than variational estimates based on a
Jastrow-type wave function.

I. INTRODUCTION

It is the purpose of this paper to show that it is
possible to derive useful reliable numerical re-
sults for large quantum systems by Monte Carlo
integration of the Schrodinger equation. The ap-
plication is to a boson system interacting by
Lennard-Jones pair potentials. A second aim is
to present numerical results for the binding energy
for the ground state of such a fluid.

The general outline of the method has been giv-
en before, ' but it seems worthwhile to give a
brief summary of the main ideas. A fundamental
one is that the solutions of certain classes of inte-
gral equations can be developed rather easily by a
Monte Carlo method, the generation of a numeri-
cal random walk. To see this, let R be a point in
a space of arbitrary dimensionality and y(R) a
function satisfying the conditions

y(R) ~ 0 and f p(R) dR= ] .
Consider also a kernel K(R, R') obeying

K(R, R')~ 0, fK(R, R') dR & 1, for all R'. (2)

We define an algorithm for generating a sequence
of random points (Rf as follows: Let the initial val-
ue of R be drawn at random from the probability
distribution function y(R). Call R' the value of the

coordinates at a later step in the sequence. At

that stage let a new value R be selected at random

from the distribution K(R, R') conditional upon R'.
Because of the normalization (2) there may be no

next point and the sequence of values of R termi-
nates.

Now 1st us calculate g (R) the expected density
with which points appear at any stage of the ran-
dom walk in a unit volume near R. There are two

contributions. The first point of the sequence may

be in the neighborhood of R; this possibility con-
tributes y(R) to the density. Secondly, a point

may appear near R after a previous arrival at

some R' and then a move —with probability K (R, R')
—to the neighborhood of R. This process contrib-
utes j K (R, R') g (R') dR' to the density of arriv-
als at R. In sum,

g (R) = g (R)+f K (R, R') g (R') dR' . (3)

Thus an observation of the density which arises
when the random numerical procedure described
above is carried out, provides a method of solu-
tion of integral equations of the type (3). In par-
ticular, if (R;f is the set of points which appears
in M complete repetitions of the random walk, then,
in the sense of the central limit theorem of statis-
tics, the average value of any function f (R) has
the limiting value

—Z, y(R, )-fy(R) e(R) dR
1

(4)

so that an arbitrary linear functional of the solu-
tion of Eq. (3) may be estimated.

Homogeneous integral equations may also be
treated when K(R, R') is repla, ced by &K(R, R').
Introduce the eigenfunctions of the homogeneous
equation

g, (R) = X, f K (R, R') g„(R') dR', k = 0, I, . . . (5)

lf one expands y(R), the inhomogeneous term of
Eq. (3), in these eigenfunctions, it is possible to
prove that the asymptotic density after many steps
of the random walk is gp (R), corresponding to the
lowest eigenvalue Xo. The size of the population
diminishes or grows accordingly as X /Xp is less
than or greater than one. The value of Xo may
also be found at this stage of the calculation.

All of these techniques can be carried out in
many dimensions and suggest themselves for the
solution of certain many-body problems.

Here we consider the integration of the Schro-
dinger equation for the fundamental state of a sys-
tem of N bosons. Using units in which a / 2m = 1,
this is
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[ -5, V', + V(x». . . , x„)] g (x». . . , x„)
=E g(x&, . . . , x„) (6)

To cast this as an integral equation, it is neces-
sary to use an appropriate Green's function. We
give a summary of how this may be done in a par-
ticularly simple case, that of Ref. 1.

We discuss the problem in which the potential
energy V is never positive and may be written
V= —X 8', so that the lowest energy is negative;
E = -B & O. Let R be the vector that stands for
(x» xz, . . . , x„). Equation (6) is rearranged as

( —V +B)g (R)=A. Wo(R) g (R)

Green's function for the operator ( -V +B) is
known; call it Go (R, R'). The integral equation
equivalent to (7) is then

$ (R) =& J Ga(R, R') Wo(R')y (R') dR'. (8)

Ga (R, R') Wo (R') satisfies the conditions of Eq.
(2) so that the discussion pertaining to homoge-
neous integral equations applies, providing one is
willing to use as eigenvalue the strength of the
potential required to give a fixed energy.

Clearly, however, Eq. (2) is not satisfied if
V (R) can be positive and particularly if it is un-
bounded from above. We are compelled to con-
sider the use of Green's functions for more gen-
eral operators,

[-Va+ W(R)] G~ (R, R')=6(R —R'), W(R)~ 1 (9)

The ground state of a boson system requires G~
which is positive everywhere, and it is easy, by
integrating Eq. (9), to show that G~ also satisfies
the other condition of Eq. (2). The function W(R)
determines the probability of the disappearance of
a point in the course of a random move from R' to
R.

The actual form of W(R) which must be used is
to some extent arbitrary, but it must contain any
strongly repulsive part of the potential energy of
the system. For hard-core or Lennard-Jones
forces, G~ is not known explicitly. However, all
that is needed is a method of randomly selecting a
point R, given a point Ro, that is, an algorithm for
sampling Gv (R, Ra). We show below that Gv is
the solution of a class of integral equations in
which known Green's functions appear as kernel.
The discussion given above for inhomogeneous
integral equations applies so that a random walk
whose expected density satisfies such an integral
equation samples G~. This can be carried out so
that Gv either vanishes at infinity (in R), or that
G& is a multiply periodic function of R. Certain
theoretical and technical developments are strongly
motivated by computational considerations, parti-

Sampling of Green's function G~ is accomplished
with the use of the following theorem: We suppose
that with every point R there is associated a sur-
face 6'(R) with R inside. I et Gn be Green's func-
tion for the operator [-V + U(R)] which vanishes
on the surface 8(RO) and

[-V + U(R)]Gp (R, Ra)= 6 (R-RO),

Gz(R, Ra) = 0, for R on 6' (Ro)

= 0, for R outside 8 (Ro).
Then set

(10)

Q~ (R, Ra) = 6 (R —Ro) + [ U (R) —W (R) ]
x G U (R, R') Qq, (R ', Ra) dR '

+ — R, R' Q~ R', Ro dR', 12

G, (R, R,) = fG, (R, R')q, (R, R,)dR'.
The integration in Eq. (18) and the first integral

of Eq. (12) are extended over those R' for which R
lies on the interior of 6' (R'). The second integral
of Eq. (12) is taken over those R' for which R lies
on e5' (R'). The proof is straightforward; apply the
operator [-V +U(R)+ W(R) —U(R) ] to Eq. (13) to
get

[- ' V+]WG( , R)R=oJ [-V'+U(R)]G, (R, R')

x q~ (R', R~) dR'+ [W(R) —U(R) ]
& f G, (R, R')q, (R', R,) dR' .

(14)

The first integral of Eq. (14) has a contribution
from the interior of 6' (R') where [ —V + U]G~
= 6 (R -R') and another from the discontinuity of the
normal derivative of Gz at 6' (R'). Thus

[ —V + W(R) ]Gg (R, RO) =Q~ (R, Ra)+)I (R, R')

cularly the necessity to evaluate the total potential
energy of the system as rarely as possible during
the random walk. Thus, although the method can
be shown to have as a limiting case a Wiener in-
tegral, it is computationally much more efficient
in the form given here.

Each step of sampling G~ constitutes an itera-
tion of the integral equation equivalent to the
Schrodinger equation. Although the method appears
somewhat elaborate from this description, it is
possible to carry out hundreds of such iterations
on a fast modern digital computer to ensure the
convergence to the ground-state wave function of
a 32- or 256-body system of bosons interacting
with a variety of potentials.

II. SAMPLING GREEN'S FUNCTION FOR —V ' + W(R)
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x Q~ (R', R ()) dR' + [ W (R) —U (R) ]

x Q U 8, 8'
Q@ 8', Ro d&' ~

Using Eq. (12), we have

[ —V + W (R) ]G)(, (R, R()) = 6 (R -Ro) .
If U (R) ~ W (R), then every term in (12) is pos-

itive and may be used as a density function in a
random walk. Note that GU (R, R') describes a dif-
fusion process in which a point begins at B' and is
followed until it crosses 6' (R') for the first time,
which takes place with probability per unit area on
6'(R ) of —()G(J/()n. The probability per unit volume
of being absorbed at a point on the interior of 8 (R')
before crossing for the first time is U(R)G~ (R, R').
Thus, Eq. (12) for Q is the same as the equa-
tion for the density of arrivals in a random walk in
which steps are made from R' to a point on 6' (R')
chosen with density -()G((/en, or to a point inside
8 (R') with density UG((. Such interior points con-
tinue in the random walk for Qv with probability 1
—W(R)/ U (R); points moved to the surface 8 (R')
always continue the random walk. If W(R) ~ 1,
then it is always possible to guarantee that the
density G(( integrates to a quantity less than one so
that no branching is required in the last step (13)
of the random walk that develops Q((, . This conve-
nient property can always be arranged.

According to Eq. (13), every point drawn from

Qv (that is, every point in the random walk for Q)), )
contributes to G~. But, on rewriting the equation
as

W(R)Gq, (R, R())

WR
J U(R)G(((R, R')Qv (R', Ro) dR', (16)

we observe that a point moved to the interior of

8 (R') with density UG(, contributes to WGv with

probability W/U, i.e. , precisely when it termi-
nated the random walk for Q(v.

This method may be applied in one particularly
simple way. The surface 8 (R,) is taken as a
sphere (in configuration space) centered at Ro and
U as a constant which bounds W(R) from above
over that sphere. The radius may be chosen so as
to maximize the probability of terminating the
walk at any step.

For a Lennard-Jones potential, the sharply
rising repulsive potential suggests that a bound
may be found by examining the effect of moving
together the closest pair of all. In fact, this does
not give a rigorous bound, but practically, depar-
tures are extremely rare. A value of Wexceeding
the bound has never turned up in several million

samples.
Green's function for (-V + U) which vanishes on

a sphere of radius r can be written in terms of
Bessel functions of imaginary argument,

G (R B ) —— K„(p) 1 — " "
) . (&7)

2v 2)(p " f, (p())

v= &N-1, for an N-body system,

and p = g(U) )R Ro )
—+ g(U) r = po (16)

In the limit x - 0, the method becomes particu-
larly simple, since then

G(((R, RO) - 1 —Ur /6N .
Furthermore, if W is continuous, then

U- W(RO)

The product of successive Green's functions
becomes exp [ -f W (R (f) ) dt ] with the integral
taken along the path of a diffusive walk, that is,
when ~ - 0, the method reduces to a Wiener inte-
gral. The practical objection to the latter is that
for the quantum -mechanical many-body problem
W derives from the potential energy function.
This depends (at least) upon all pairs whose sepa-
ration is within range of the pair potential. Com-
putationally it is the most time consuming part of
the calculation. Converging to the ground state
and obtaining nearly statistically independent es-
timates drawn from it require a random walk that
may extend far in configuration space. An effi-
cient calculation will generally be characterized
by long steps, with calculation of the full W being
done as rarely as possible. Thus x should be
chosen reasonably large. For Lennard-Jones or
other potential energy function repulsive at close
distances, too large a radius implies a large
bounding U which tends to inefficient sampling.

With the computational requirements clearly in
mind, another, even stronger, use of the basic
theorem is possible. Large values of W are as-
sociated with closely spaced particle pairs. It is
likely that only a few of all pairs which contribute
to W determine the large value. In that case, a
bounding funcion U(R) ~ W can be calculated in
much less time than W. Of course, GU is then
unknown, but it in turn can be sampled by finding
Gx for X ~ U. It is practical to take X constant
over a sphere as above. The bulk of the random
walk is then devoted to sampling GU; only when
this terminates is W itself calculated. If (U-W)/
U is usually close to 1, the efficiency of sampling
t"~ is little degraded. A drawback of this refine-
ment is the necessity for keeping track of which
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pairs are or may become close. The scheme can
be further developed using a hierarchy of many
levels of bounding potentials, but this has not been
carried through. The efficiency of the method de-
pends strongly on details of the computer program,
and has not been optimized in any sense. Never-
theless, a scheme of this kind has been construct-
ed which results in a saving of a factor of 20 in
computer time for a 256-body calculation.

The methods discussed above naturally give
Green's function Gv (R, Ro), which vanishes at in-
finity in R. For some problems this is appropri-
ate. However, in treating an extensive system
like a quantum fluid in terms of a finite number
of particles, the most satisfactory method has
proved to be the widely used procedure of assum-
ing that the particles are contained in a box (usu-
ally a cube) and that the properties of the system
are periodic. In our problem this means that the
wave function, and therefore G~, must be con-
structed so as to be periodic. This is easily done
as follows.

Denote by R (I) all the points in space for which
results must be the same as at R = R (0) in a ba-
sic box. If R is in a 3N-dimensional space, then
I is a vector of 3N integers, each of which ranges
from -~ to ~. The points R (I) are developed
from R by displacements along coordinate axes.
The extension of G (which vanishes at infinity) so
as to be periodic is

G~ (R, R 0) = Q~ G (R, Ro (L )) (20)
for

G~ (R (I), Ro) = Qi G (R (I), R 0 (L ) )
= Qi G (R (0), Ro (L-I));= G p (R, Ro).

,

(21)
That is, by adding "image" sources at Ro (I) to
the source at Ro, C is constructed to be periodic.
Analytically, the extension from G to G~ is a
serious complication. However, sampling G p is
only a little more difficult than sampling t", for
we may select at random any of the terms of

Eq. (20) according to the probability that an R sampled
from G (R, RO(I )) is in fact in our basic cell. But
the chance that this is true is exactly the same as
the chance that R' drawn from G (R', Ro) is in box
(-L). That is, whenever a point moves out of the
basic box, we may move it back by suitable dis-
placements and suppose it to have come from an
image source outside the box. In effect, when a
particle leaks out of any face of the box, it must be
allowed to leak back in the opposite face. This
procedure is familiar in Monte Carlo or molecular-
dynamics treatments of classical systems. It is
the only device needed to ensure periodic behavior
of the solution.

III. MONTE CARLO INTEGRATION OF THE

SCHRODINGER EQUATION

Using the techniques afforded by Sec. II we may
take up the question of integration of the Schrodinger
equation. With units in which 5 /2m= 1, an N-body
system is described by

[-~&&&+ V (xg, ~, x„)]g (x„~~, x„)
=Rq(x„, x„) (6)

v(R) -v, . (23)

For any constant potential Z, add ( V~+Z) g (R) to
both sides of Eq. (22) to get

[-V + V (R) + V„+Z] |CI (R ) = (E + V„+Z) g (R),

g (R) = (E + V~+ Z) J G ~ (R, R') tIt (R') dR'

(24)

(26)

where W(R) is given by

w(R)=v(R)+v, +zoz . (26)

Iteration of the last integral equation converges
to the ground-state wave function ttIO (R); the value
of E which makes the population asymptotically
stable is Zo, the energy of the ground state. For
if the integral equation (26) is expressed as

t)t = (II+ V~+Z) (E + V~+Z)$

then

$0~ lim [ (II + V~ +Z) (E + V, + Z) ]"Q (R), (28)

provided that (go p) t 0. Z should be small com-
pared with Zo+ V, so as not significantly to slow
convergence.

The completeness of the eigenfunctions of H
gives the property that

lim [ (FI + V, + Z) ' (E + V, + Z ) ]"6 (R-Ro)

~ 40(R)4 o(RO) ~ (28)

In its dependence upon R the last equation is sim-
ply a special case of Eq. (28). In either case, the
distribution of points which have undergone many
steps of G~, that is, of (II + V, + Z) ', is given by
Po(R). But we have a second way of obtaining
$0 (Ro). Define

Let R be a vector in 3N-dimensional configuration
space that stands for x, x„. Then (6) is replaced
by

[ —V + V (R) ] g (R) =E g (R),

with the Laplace operator being carried out in the
full space.

There are several alternative ways to rewrite
Eq. (22) as an integral equation. The following one
which is particularly simple to apply may be used
when V is bounded from below:
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q (R o)
—= lim f [ (B + V, + Z ) (E + V, + g )]"

x5(R —R,)dR .
According to Eq. (29),

q (Ro) 4o (Ro)

(3o)

y'(R) = [V (R)+B+Eo] ~, (37)

(33)

then,

(39)

and let y (R) = Y (R) tjI (R);

)f(R)= f y'(R)G, (R, R') r(R')q(R') dR'

V(R)= V, (R) —V (R),

where V, may be chosen as

V, =max(+ V, 0) .

(32)

(33)

Now let 8 be an estimate of —F.o, the total bind-
ing energy of the ground state. Add [V (R)+ B]g(R)
to both sides of Eq. (22):

B '[-V'+V, (R)+B ]g(R)=[V (R)+B+Z ]g(R)/B,
(34)

g (R) =B ' f G~ (R, R') [ V (R') +B +Z ]g (R') dR',
(35)

where now W= [V, (R)+B ]/B &1 (35)

Again, the value of E which makes the iteration of
Eq. (35), or its random-walk equivalent, asymptot-
ically stable is the ground-state energy. In prac-
tice, I3 is adjusted as the calculation proceeds to be
the latest value of E, so B =Z in using Eq. (35) .
At any stage, Monte Carlo integration of both sides
of Eq. (34) gives a numerical estimate of Z.

The operator that appears on the right-hand side
of Eq. (35) is not self-adjoint, so that the develop-
ments of Eqs. (29) and (30) obviously cannot be
used. But Eq. (35) is easily symmetrized as fol-
lows: Go,(R, R') is a symmetric function. ' Multiply
Eq. (35) by

This has the following consequence: Let R be
drawn from a population whose density is $o (R).
Starting from R, let the iteration proceed further.
The asymptotic total population [i.e. , q(R )] is
proportional to go (R ). The joint distribution for
values of q (R,) is thus g, (R ). Various observables
can be recorded in this way. For example, the
pair distribution function is obtained by recording
a histogram of pair distances in the configuration
R weighted by q (R ). More generally, we esti-
mate any expectation by

(E)= f I' (R)g (R) dR/f q (R) dR

=—Z.Z (R.)q (R.)/Z„q (R.) . (31)

Note that the convergence to q is faster than might
at first be supposed, since on integrating over all
8 the contributions of low excited states with odd
reflection symmetries vanish.

A disadvantage of this method is that if Vb is
large, then the convergence is rather slow. This
situation is ameliorated considerably if one sepa-
rates V into "attractive" and "repulsive" parts V

and V„respectively,

Let y, (R) be the eigenfunctions

Xa (R)=&~yX, (R) (4o)

The operator here is symmetric and therefore self-
adjoint; the functions y„are complete. ' Thus,

Zq, (R) q, (R,) = 5 (R R,),- (41)

and lim 'JJ"5 (R Ro) =-go (R) yo (Ro)

= y (Ro) tt'o(Ro)lo(R), (42)

q'(R ) -=lim [1'(R ) ] ' f [oj "5 (R-R,)] dR „(43)
q'(Ro) =No(Ro) . (44)

Thus when Eo is known from the earlier calculation
which provided samples R drawn from Po, it is
possible to carry through the methods outlined
above to get quantum expectations with respect to

2
0 ~

IV. NUMERICAL RESULTS FOR THE
ENERGY OF A 32-BODY SYSTEM

A computer program which embodies the theory
of Secs. II andIIIhas been written and run success-
fully for Lennard- Jones potentials of the form

V (R) = V (x„.. . , x„)=Z ~ ( I x; —x, [ ),
~ (x) = 4e[(o/x)" —(&/x)'] .

(45)

(45)

The particles are confined in a cubical box whose
dimensions are fixed by selecting a density of the
system. As is common in calculations of this
kind, the potential is cut off at a particle separation
of half the length of a side of the cube. For a sys-
tem of 32 particles at the experimental equilibrium
density of 0. 022 atoms per cubic angstrom, this
cutoff occurs at x = 2. 220, a rather small value.
As we shall see below, the large energy correction
to an infinite cutoff can be made unambiguously.

The calculations were started, somewhat unwise-

ly, with particles in a regular (fcc) lattice con-
figuration. Relaxation to the ground state is rather
slow, but it provided the impetus and test of much
of the theoretical advance outlined in Secs. II and
III. In particular, the improvement in convergence
following the use of a few-pair "model" potential
was dramatic.

The calculation is entirely feasible for a system
of 256particles onaCDC 6600, as tests have shown.

To avoid devoting too much time to the prelimi-
nary convergence to the ground state, such calcu-
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lations will use a Jastrow-type wave function with
configurations generated by the molecular-dynamics
method of Schiff and Verlet.

We present here results for a system of 32 par-
ticles withthe following parameters [cf. Etl. (46)]:

a =2. 666 A, ~=10'K, jf'/2m=6. 0166 A'/'K .

Table I shows the results. The energy values
called E, are those given directly without a cor-
rection for the potential cutoff. Corrections w'ere

carried out as follows: In a large set of configu-
rations, the average and mean-square change in
potential which results from doubling the cutoff
range was obtained. In doing this, periodic be-
havior is assumed outside the cell. The values in
the column 6, E show the average decrease in
potential energy. o& gives the rms value of the
change. %e note that this is very small; that is,
the effect of changing the cutoff is nearly indepen-
dent of the coordinates of those configurations
likely to appear in P. Not surprisingly, then, the
effect of the extra potential is simply to add 4j E
to the energy. Additional calculations demon-
strated that a further doubling of the cutoff adds
close to &, E/8, just what is expected from the
integral of a potential falling off as e 6 and a con-

stant g. On this basis the extrapolation to infinite
cutoff is b, sE = b, ,E/7. The energy value with both
corrections is shown in the last column. The sta-
tistical errors given are the estimated standard
deviation.

These results give a minimum energy of

E=(-6.26+0. 06) 'K, a=10.0
at a density of p = 0. 0210 A

This may be compared with the results of
McMillan and of Schiff and Verlet of 5.95'K,
but it should be noted that the potential used in the
work reported here is slightly weaker than that
reported before. Bchiff and Verlet used & = 10.22.
Correction for the difference may be made from
perturbation theory using the estimates of (V) ob-
tained from the Jastrow wave function. It amounts
to —0. 88'K, giving a value of

E = —6. 63 'K, c = 10.22 .
This is substantially larger, and considerably
closer to the experimental value of -7.14, but
this conclusion must be regarded as tentative un-
til results with a larger ensemble of particles are
obtained.

TABLE I. Energy values and corrections for potential truncation for a 32-particle system with periodic boundary
conditions.

Density
(atoms/Ls)

Energy per particle 'K
0') +2@

0.020
0.022
0.024

—4.80 +0.07
—4.50+0.05
—3.66+0.06

1021
—1.47
—1.75

0.013
0.016
0.018

—0.17
—0.22
—0.25

—6.18 +0.07
—6.19+0.05
—5.66 +0.06
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