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Liquid crystals are considered as gases of long barlike molecules. Variables describing
the position and orientation of individual molecules are introduced. These are used to arrive
at a microscopic definition of the order in liquid crystals in terms of a symmetric traceless
tensor. The Frank and Leslie-Erickson directors are shown to be equivalent to the unit eigen-
vector associated with the largest eigenvalue of this symmetric traceless tensor. Attention is
then restricted to nematics. It is shown that the Frank free energy gives a valid description of
equilibrium properties of nematics to order p'H /pkTm, where y' is the anisotropic magnetic
susceptibility, H the external magnetic field, p the mass density, T the temperature, k the
Boltzmann constant, and m the molecular mass. Microscopic justification is given for the
linearized Leslie-Ericksen hydrodynamic theory for nematics. A microscopic response- func-
tion description of nematics is then presented, and contact is made between the general fre-
quency- and wave-number-dependent response functions and those calculated from the phenome-
nological hydrodynamic theory. Applications to light scattering and nuclear magnetic reso-
nance are considered. 1/T~ calculated here differs from that calculated from the Pincus theory

by a factor of S, where S is the parameter measuring the degree of nematic ordex.

I. INTRODUCTION

The liquid-crystalline state of matter is a state
intermediate between a solid crystal and a liquid. '
This state of matter has been the subject of much
research since its discovery by the Austrianbotanist
Reinitzer at the end of the last century. Early ex-
periments showed that certain organic crystals when

melted produced a liquid of turbid appearance which

upon further heating underwent another transition to
an isotropic transparent liquid. This turbid- appear-
ing state was soon shown to have anisotropic optical,
electrical, and magnetic properties and was named
the liquid-crystalline state by Lehman. This state,
though anisotropic, still flowed like a liquid. Fur-
thermore, x-ray experiments indicated a random
arrangement of the centers of mass of the molecules
in the liquid. " Later, experiments were able to
link the observed anisotropies with alignment along
a certain direction of the long molecules which com-
pose the liquid crystal. In 1922 Friedel distin-
guished the following subclasses of the liquid-crys-
talline state according to the properties of single-
crystal samples:

Nematic state. The centers of mass of the elon-
gated molecules are randomly oriented but their long
axes are oriented along a specific direction. There
is rotational invariance about the direction of align-

ment [Fig. 1(a)].
Smectic state. The centers of mass of the molecules

are arranged in parallel equidistant planes. Motion
of the centers of mass in each plane is allowed. The
long axes of the molecules are aligned along a spe-
cific direction [Fig. 1(b)].

Cholesteric state. A subclass of the nematic state
in which the direction of orientation rotates in a
screwlike motion [Fig. 1(c)].

In order to describe deformations in liquid crys-
tals, Frank and later Ericksen following an idea
of Oseen introduced at each, point in space a phe:-
nomenological unit vector n&(r) describing the orien-
tation of the molecules at that point. Frank then
discussed the possible functional dependence of the
free energy on n, (r) and its first spatial derivative
subject to the condition that n&(r) and —n&(r) be equiv-
alent configurations. He found that the free energy
in a nematic could be expressed as

I" = 2 f d r/K»(V n) +ffz3[n. (Vx n)] +K~s[nx(Vx n)]

—(K~p+K,4)[(V n) —V,n~V, n, p, (1.1)

where K$g +gp K33 and K&4 are elastic constants.
The first term in this equation, in the language of
Frank, gives the energy associated with splay [Fig.
2(a) ], the second that associated with torsion, and

the third that associated with flexion [Fig. 2(c)].
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FIG. 1. (a) Schematic arrangement of molecules in
a nematic liquid crystal. (b) Schematic arrangement of
molecules in a smectic liquid crystal. (c) Schematic
arrangement of molecules in a cholesteric liquid crystal.

The fourth term does not contribute to the volume
free energy and is usually neglected. It will,
nevertheless, be important for us to bear in mind
that this term exists. The Frank free energy has
been used successfully to explain many equilibrium
properties of nematics. ' The elastic constants
K», K», and K33 have been experimentally deter-
mined to be to the order of 10 dyn with K33 ~K»
&K». 11

A dynamical continuum theory for a,nisotropic liq-
uids was first introduced by Ericksen' and later
elaborated upon and applied to the specific case of
liquid crystals by Leslie. ' The Leslie-Ericksen
theory assumes that in a liquid crystal there exists
at each point in space a time-dependent director
n, (rt), which in the static limit reduces to the Frank
director n, (&). In addition, there are the velocity,
temperature, and pressure fields that appear in the
hydrodynamic theory of an isotropic fluid. Starting
from the standard conservation laws for energy,
mass, and momentum and a balance law for the di-
rector, Leslie introduced constitutive relations be-
tween the various currents and the spatiallyand tem-
porally varying thermodynamic variables, including
n, (rt) and its time derivative. In particular, he in-
troduced viscosities coupling velocity gradients and
the director. The resulting hydrodynamic theory
can be used to explain various flow configurations

in liquid crystals. ' It was also used by the Orsay
Liquid Crystal Group" to derive the fluctuation spec-
trum associated with local variation in direction of
the director.

The Frank and Leslie-Ericksen theories have been
very successful in explaining many of the properties
of nematic and cholesteric liquid crystals. However,
they suffer from a lack of a concise microscopic
definition of the director n, (rt). As has beenpointed
out by de Gennes, ' the natural way to describe the
macroscopic order in a liquid crystal is via a sym-
metric traceless tensor rather than by a vector. [A
vector cannot be used to describe a system in which
the directions n, (r) and -n;(r) are equivalent. ] In
this paper, we will introduce a microscopic defini-
tion of a symmetric traceless tensor which varies
in space and time and which in equilibrium reduces
to the tensor describing the macroscopic liquid-
crystal order. We will then show how a theory us-
ing this tensor yields the Frank and Leslie-Erick-
sen theories under almost all conditions realized in
nematics. We will always consider single-crystal
samples.

Section II introduces a microscopic model of a
liquid crystal and defines the symmetric traceless
tensor characterizing liquid- crystal order. Section
III considers in detail the equilibrium theory for a
nematic and shows how the Frank theory depending
only on the two independent variables of a unit di-
rector can be obtained from a theory in which the
five independent components of a symmetric trace-
less tensor are allowed to vary. Section IV discus-
es transport and nonequilibrium behavior of a ne-
matic and presents a microscopic justification of the
Leslie-Ericksen theory when there is no component
of angular momentum parallel to the director. Sec-
tion V presents a microscopic response-function
description of liquid crystals. Contact is made be-
tween the phenomenological response functions de-
rived from the Leslie-Ericksen theory and the gen-
eral frequency- and wave-number-dependent re-
sponse functions. Finally, Sec. VI discusses applica-
tion of the theory developed in the previous sections
to light scattering and nuclear magnetic resonance.
In particular, it shows that the Pincus formula" for
the inverse nuclear relaxation time should be mul-
tiplied by the square of the parameter describing
the degree of liquid-crystal order.

II. INTRODUCTION OF MODEL FOR A LIQUID CRYSTAL

We will consider a., liquid crystal to be a classical
gas of long thin cylindrical bars. In reality, of
course, the molecules of a typical liquid crystal are
more like flat plates with a length of no more than
four or five times their width [paraazoxyanisol (PAA)
is approximately 17x7 A]. In addition, the mole-
cules can have complicated internal degrees of free-
dom such as twisting of the plate about a given di-
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[X, , P„]= 6«.6,t ., (2. 1)

where [A, B] is the Poisson bracket of A and B.
The Hamiltonian is

where m is the mass of the molecule, I is its mo-
ment of inertia, and V(/X;}) is the potential energy,
which does not depend on the momenta. I is ~mlo,
where lc is the length of the molecule. To the ex-
tent that the molecules are not really long thin bars,
the factor ~in the above expression may change.
Nevertheless, (I/m)' s is always a length of molec-
ular dimension. Given any function A of X, and I' f,
its time rate of change in the absence of time-vary-
ing external fields can be calculated by

(2. 3)

In principle, Eqs. (2. 4)-(2. 3) with a specification
of the potential V are all we need to describe the dy-
namics of a gas of long bars. We, of course, will
not attempt any such description, but me will use the
fact that such a Hamiltonian formulation of the prob-
lem exists.

rection, stretching, or electronic excitations. How-

ever, the interesting collective phenomena unique
to liquid crystals can be described quite mell in
terms of long thin molecules. In the treatment to
be presented, additional internal degrees of free-
dom can be included as they become necessary to
explain observed phenomena. '

The Hamiltonian and Poisson-bracket descrip-
tion of classical mechanics is the one best suited to
the discussion of dynamic-response functions and

is the one which we will use. Each molecule n can
be described in terms of its c.m. coordinates r&

and the angles 6) and y, which give the orientation
of the bar in the c.m. frame. Hence, for each mole-
cule there are five generalized coordinates )(g (&

=1, ~ ~ ~, 5) where y,'=x; for (f =1, 2, 3), )(4=8", and

y,
' = y™,and five conjugate momenta P,' = (P;, Ps,

P;) satisfying

For our purposes, it is convenient to introduce a
unit vector v& designating the instantaneous orienta-
tion of molecule a:

v (f) = cos8 e, +sin8'(cosy e„+siny'e, ),
(2. 4)

where e„, e„and e, are unit vectors pointing along
the x, y, and z axes. We may associate with each

vf, a "momentum" II™,=fev,'/ef, which satisfies a
Poisson-bracket relation with v& .

IIJ] =(~&& —v& vg) (2. 5)

In other words, [v&', liq] is the projection operator
onto directions perpendicular to v&.

The two ends of our long-bar molecules are phy-
sically indistinguishable. ' Hence external fields
will not couple to v& itself but to bilinear forms built
from v& . The most interesting of these forms is the
symmetric traceless tensor

e e e
Q)g = v) vy —35)). (2. 6)

In particular, we can express single-particle mag-
netic and electric polarizabilities in terms of 5&& and

Q))'.

P;„(f)=x's6), +&sQgg,

Pso(t) = Ks6o+ KxQo

(2. 7a)

(2. 7b)

n, (Q„)n, =(cos'8 ) ——,
' =-,'S, (2. 9)

where we have used the summation convention over

where wH and ~& are the isotropic parts, and Ic~ and

~& are the anisotropic parts of the magnetic and elec-
tric polarizabilities of a single molecule. In the iso-
tropic phase, the average value of Q„ is rigorously
zero:

(Q;~) -=TrpQ»; =0. (2. 6)

In this expression, p is the density matrix, and Tr
implies an integration over all generalized coordi-
nates and momenta. In homogeneous nematics, in
the ordered phase, (Q,&) is simply related to the or-
der parameter S. Let n; be the unit vector defining
the preferred direction of molecular orientation,
then

FIG. 2. (a) Splay deforma-
tion in a nematic. (b) Torsion
in a nematic. Note the simi-
larity between the arrangement
of molecules in a nematic un-
dergoing torsion and in a cho-
lesteric [Fig. 1(c)]. (c} Flex-
ion in a nematic.

(c)
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repeated Latin subscripts. [Note that the averages
in Eqs. (2. 8) and (2. 9) are independent of the par-
ticle index n. ] In order to generalize the concept
of an order parameter to cholesteric, smectic, and

inhomogeneous nematic liquid crystals, it is con-
venient to introduce the density

Ro(rt) =Z Q;q(t)3 [r —r'(t)],

(R&&(rt)) = [(p(rt))/m]Q&&(rt)

(2. 10a)

(2. 10b)

Q~&(rf) =S(n;n& —35&&). (2. 11)

In the smectic mesophase, Q&;(r) is periodic in
space along the direction perpendicular to the or-
dered lamina. In cholesterics, Q,&(r) has basically
the form of Eq. (2. 11), except that the preferred
direction n, rotates in a helical pattern along a spe-
cific direction.

Q&z(r) given by Eq. (2. 11) is uniaxial; i. e. , in

the coordinate system defined by n„ it has the form

The bracket () signifies an average over any ensem-
ble, including nonequilibrium ensembles. (p(rt)) is
the mass density of the fluid at the point r, and m

is the mass of a molecule. Eq. (2. 10b) constitutes
a definition of the liquid-crystal order, Q,~(rt ), when

it can vary in space and time. In all equilibrium
ensembles, (R&&(rt)), (p(rt)), and Q&&(rt) are of
course independent of time. Q,~(rt) is zero in all
isotropic phases. In the homogeneous nematic
mesophase, it is given by

Leslie- Ericksen theories.

III. EQUILIBRIUM PROPERTIES

In this section we consider the equilibrium theory
for a nematic liquid crystal in which the order pa-.

rameter Q;&(r) is allowed to vary from point to point
in space. In particular, we show how Frank's free
energy, which depends on the two independent vari-
ables associated with a unit vector, can be obtained
from a free energy which in general depends on the
five independent variables of a symmetric traceless
tensor.

To clarify our ideas on Q, &(r), let us note that it
can, in general, be written in the form

Q, &(r) = S(r) [n, (r)n&(r) ——,'5,&]+$ (r)(n, (r)n&(r)

—[n(r) xn'(r)], [n(r) xn '(r)]~],

where n;(r) is the direction corresponding to the
maximum eigenvalue —,'S(r) of Q;&(r), and n;(r) the
direction corresponding to the second-largest eigen-
value —

& S(r)+ $(r). In the orthogonal coordinate
system defined at each point in space by n&(r) and

n, (r), Q;&(r) has the canonical form expressed in
Eq. (2. 12). For a homogeneous nematic configura-
tion [Q,J(r) independent of r], the biaxial term $ is
zero. When Q, &(r) is allowed to vary, the possibil-
ity of a nonvanishing biaxial component has to be
admitted even in nematics.

The free energy of a liquid crystal can be ex-
pressed as a sum of three parts:

2
Q]~

——, 0 —2S

0 0

(2. 12)
E =Eo+E)+E~

= f d r 3(r) = f d r [S'0(r)+t, (r)+S«(r)]. (3. 2)

It is useful to keep in mind that Q,&(r) can, in gen-
eral, be biaxial. In other words, in the appropriate
coordinate system, it can assume the form

('0 0 0

Q&y=l 0 -sS+$ 0 (2. iS)

where $ is a measure of the degree of biaxiality of

Qo(r) Note th. at it takes only three independent
variables to specify completely an uniaxial symmet-
ric traceless tensor (the magnitude of the maximum
eigenvalue and the polar angles of the associated
unit eigenvector), and five independent variables
to specify a biaxial symmetric traceless tensor
(the magnitude of the second largest eigenvalue and

one angle giving the direction of its eigenvector in
addition to the three variables for an uniaxial ten-
sor).

Q;J(rt) [Eq. (2. 10b)] is the quantity describing the
liquid- crystal order. It will be used extensively
in the following sections in deriving the Frank and

where

F„=—,' f d'r X',—J(r)H,(r)H, (r), (3. 3)

gg(r) = «'„(R;J(r)) -=X'Qiy(r),

X' = «'s(p) lm

(3.4a)

(3. 4b)

In stable equilibrium, the free energy must be a
minimum with respect to variation of all five inde-
pendent components of Q,J(r) In homo. geneous sys-
tems, E, is zero by definition. In nematics, the
minimization of Eo+E~ then yields $ =0, S = const,
and n; parallel to the homogeneous external field

9'(r) is thetotalfree-energydensity, and 9,(r), S,(r),
and F„(r)are the free-energy densities associated
with Fo, F„and F„. Fo(r) isalocalfunctionof Q, ,(r)
at the point r. It is, therefore, a function only
of S(r) and $(r), and not of n;(r) and n, (r) 5,(r) .is
a function of Q&&(r) at different points in space; al-
ternatively, if variations in space are small, it can
be viewed as a functional of the spatial derivatives of

Q&(r) at the point r F« is .the free energy associ-
ated with an external magnetic field":
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H&. If the state of stable equilibrium is inhomogen-
eous, a more complete analysis is necessary. We
will restrict ourselves to systems in which either
the existence of boundaries can be ighored (infinite
systems) or in which the value of Q&&(r) at anybound-
aries is rigidly fixed. In this case, the condition
for stable equilibrium is that F be a minimum with
respect to variations of Q&&(r) at each point in the
interior of the sample. In other words,

5F 5F 6F
5F = d r 5S(r)+ - 5$(r)+ - 5n&(r)

5S(r 5$(r 5n, (r

(3. 5)

FIG. 3. Diagram showing the
relation between the magnetic
field H and the directors n and
n'.

(3. 10a)

5S(r) +A,5$(r) +f (r, V) 5S(r)

—4 X' [(n H) ——,
' H ]= 0,

where the variations in n, (r) and n& (r) are under-
stood to conform to the constraints that n, (r) and

n& (r) be orthogonal unit vectors. Hence the equi-
librium state is determined by the equations

A«5$(r)+A&~5$(r)+f&(r, V)5$(r) —2)('(n ~ H) = 0,

(3. 10b)
where

6F
5S(r)

(3.6a)

6F
5&(r)

5F
, ,—X,n, (r)- X, n, (r) = 0,

(3.6b)

(3.6c)

5F
5n

& (r) —X4n
&
(r) —X4n

& (r) = 0. (3.6d)

The Lagrange multipliers X„X4, Q, and &4 are
determined by the conditions thatn&n, =1, n, n, =1,
andn&n;=0. Consider first Eq. (3.6d). Using Eqs.
(3. 2) and (3. 3), this can be written as

5n, (r j
, —j( j (r) [[n"&r) H]n,

—[n (n xH)](n x.H)&j —X4n& —X4n'& =0. (3. 7)

From this it follows that

n'(r) [n(r) &&H(r)] = 0, (3.6)

which completely determines n(r) if we require n,
n and nxn to form a right-handed coordinate sys-
tem (Fig. 3). Equation (3. 8) holds regardless of

the form of F,.
The equations determining S(r) and $(r) are

5S(-' + 5S(-' ——,
' y' ([n (r) H(r) ]'- 4ff (r )] = 0,

(3.9a)

4 ——,'li'[n'(r) I-I(r)]'= 0. (3. 9b)

If we restrict ourselves to slow variations in space,
F, can be taken as some quadratic function of V'&Q».

If we further assume that deviations of S(r) and $(r)
from their values in homogeneous equilibrium are
small, we can linearize Eq. (3. 9):

Q,J(r) = S [n, (r)n&(r) —&5,&]. (3. 11)

We nov; consider in more detail the form of Pf to
lowest order in the derivatives of the order param-
eter. Since the only spatial variation in Q,&(r) is in

n, (r), any quadratic form in V,Q»(r) can be expressed
as some function of S multiplied by the independent
combinations of n, (r) and V&n4(r) quadratic in V, .
There are four such combinations which can be ex-
pressed in terms of the four independent contribu-
tions to the Frank free energy [Eq. (3. 1)]. Hence,
F, as a function of Q;&(r) is equivalent to Frank' s
free energy to order y'H /pkTm '. The elastic con-
stants are now, of course, functions of S. It is in-
teresting to note that there are only three indepen-
dent combinations of V&Q» which are quadratic in

and f4(r, V) and f&(r, V) are second-order differential
operators operating on 5S(r) and 5$(r). All of the
A's have units of energy over volume and are of or-
der pf4T/444. (p/444 =N/V, where N is the total num-

ber of particles and V is the volume of the system. )

After Fourier transformation, Eq. (3. 10) becomes
an algebraic equation which can be solved by stan-
dard techniques. The determinant of this equation
is positive definite. If we assume that there is no

tendency for the systems in question to undergo a
phase transition to a biaxial state, we can assume
that the determinant is of order (pkT/m)2. Hence,
5S(r) and 5$(r) are of order X'H /pf4Tm ' which at
100'C in a fieldof 10 kG is of order 10 forX'=10
This is certainly small and justifies the lineariza-
tion of Eq. (3.9). ' Hence, 5S(r) and $(r) are al-
ways small relative to S itself, which in the ordered
state is never less than 0. 3. We can, therefore,
take Q&(r) to be a uniaxial tensor with a homogeneous
eigenvalue but with principal axes which can vary
in space:
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both V
&

and Q;„:

C~= V,Q&~V&Q»=S [(V,n&) +(n& Vn~)(n&V&n, )j,
(3. 12a)

(3 ~ 12b)C& ——
V&Q&&V&Q&& = 2S v& n&v&n»

2

On the other hand, it is possible to express C» C2,
and C3 in terms of (V.n), [n (Vxn)], [nx(Vxn)],
and (V n) —(V;nq)(V)n;):

C, =S {(V n)'+[nx(Vxn)]']', (3. 14a)

Cs= V&Q»V&Q;~=S [(V;n&)(V&n;)+(n;V;n~)(n&V&n„)].

(3. 12c)

Hence (V n)', [n (Vxn)]', and [nx(Vxn)] cannot be
exy res sed in terms of C» C ~, and C,. To obtain
the fourth independent term, it is necessary to go
to third order in Q;& and consider terms like

Q;&V;Q~, V&Q» =S [3 (n&V&n~)(n&V&n~) —, (V—;n&)(V&n,)]
(3. 13)

introduced the notation H, &(r) =H, (r)H&(r) and L (T)
= X'S. In the case where all of the elastic constants
are equal, Eq. (3. 17) assumes a particularly sim-
ple form:

=KV n, (r)+y, (T)nz(r)H&(r). (3. 18)

These equations can be used to determine n, (r) in
systems subject to a variety of external fields and

rigid boundary conditions. ' Of particular interest
to us is the change in n;(r) produced by an infinites-
imal spatially varying external field H, &(r) in sys-
tems where n, (r) is homogeneous and parallel to
any nonspatially varying field H& ~ In these systems,
if we take n = e, parallel to H when H&&(r) is zero,
then n„(r) and n„(r) must be proportional to Ho(r)
for infinitesimal H;&(r) and n, = 1 —(n„+n,)= 1+0(H&&) ~

To lowest order, Eqs. (3. 15) and (3. 18) give, after
Fourier transf ormation,

Kq n „(q) = y, (T)H„,(q) + O(H'), (3. 18a)

C~= 2$3{(V n)2+ [n ~ (V xn)] —[(V n) —V;n&V&n;),

(3. 14b)

Kq n, (q) = y,(T)H„(q) +O(H )

Hence we have

(3. 19b)

(6;&
—n

& n;)[5F/5n
& (r) ]= 0,

BP 8$
5n;(r) sn, '&(v, n;)

'

(3. 15)

(3. 16)

Equation (3. 16) for the functional derivative of F is
valid because we have restricted our attention to
variations in the bulk of the sample. The Orsay
Liquid Crystal Group" has calculated this de riv a-
tive from the Frank free energy:

C~=S {(V n)3+[nx(Vxn)] —[(V n) —V, n&V,.n&]).

(3. 14c)
Hence C» Cz, and C3 together contain all of the
terms which contribute to the Frank free energy.
It is perhaps more than coincidental that Kyy Kpp,
and E» of Frank' s theory are experimentally deter-
mined to be proportional to S as a function of tem-
perature, "while the simplest expression for the
free energy in terms of V'&Q;„ is also proportional
to S ~ Of course, in general, there can always be
an essentially arbitrary function of S multiplying
each term quad rati c in the space derivatives.

Now that we have established that Frank's equi-
librium theory for a nematic is rigorous in the long-
wavelength limit to order g'H /pkTm, let us re-
view some of its consequences. n, (r) is determined
by

Bn„(q) &n, (q) &n„(q) sn, (q) y, (T)
„,(q) sH„(q) st,„(q) sH„(q) Kq

All other derivatives of n„(q), n, (q), or n, (q) with
respect to H;&(q) are of higher order in H&J(q) or q .
The derivatives in Eq. (3. 20) are thermodynamic
derivatives. They diverge at q= 0 because n&(r) will
align along any homogeneous external field.

In closing this section, we should perhaps stress
that the n, (r)'s encountered in a static theory are
properties of the system in equilibrium in the pres-
ence of a static external field. As such, they are
not quantities which fluctuate. The individual parti-
cle directors v &(&) do fluctuate in equilibrium, and
one can discuss their equilibrium fluctuation spec .-.

trum. Hence, when we speak of order parameter
fluctuations, we mean fluctuations in R;&(rt) which
are usually expressed in terms of the equilibrium
average (R;&(rt)R»(r f )). n, (r), on the other hand,
is expressed in terms of the equilibrium average
(R,&(rt)) and does not fluctuate.

IV. TRANSPORT IN A LIQUID CRYSTAL

The transport properties of any system are deter-
mined by its differential conservation laws. A liq-
uid crystal is characterized by the laws governing
the conservation of mass, momentum, energy, and
angular momentum:

5F
=K» V&(V n ) —K22{C(Vxn), + [Vx(Cn)]&]5n;(r

sp(rf)
+V,j, (rt) =0, (4. 1a)

+K33 {[DX (V Xn) j;+ [ V X (n X D) ]& ]

+ g.(T)s,(r)H „(r), (3. 17)

&j,(rt)
+ V,o„(rt) = 0, (4. lb)

where C=n (Vx n), D=nx(Vxn), and where we have
so(rf)

+V,j,'-(rt) =0, (4. 1c)
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SL,(rt) SM, (rt)
+ +V)r(J rt =0.

p(rt) is the mass density

p(rt) =Q,m5[r- r (t)],

(4. Id)

(4 2)

dependent of space and time. Since we are consider-
ing a rigid rotation, that part of 0& perperpendicular
to n& must be given identically by

Q„=[nxn(t)]„ (4. 7)

and j, (r t) is the momentum density of c.m. motion:

j,(rt) =K,p f5[r —r'(t)]. (4. 3)

e(rt) is the energy density, o„(rt) the stress tensor,
and j'(rt) the energy current. L;(rt) is the angular
momentum density due to c.m. motion, and M&(rt)
is the angular momentum density due to rotational
motion of the barlike molecules:

L&(rt) =Z (r xp')&6[r -'r (t)]=[rxj(rt)]„(4.4a)

M, (rt) = Z„I[v x I (t)],5[r —r'(t)], (4. 4b)

where

p'(t) =
&t

In an isotropic fluid (even one composed of long
molecules), one can always define p(rt) and j,(rt)
so that L,(rt) = [r x](rt)],. In this case, the angular-
momentum-conservation equation imposes the con-
dition that &o(rt) be symmetric. Hence, in discus-
sions of isotropic fluids, one usually quotes only
the first three conservation laws of Eq. (4. 1) and
assumes that o&& is symmetric. In liquid crystals,
angular momentum conservation plays a more im-
portant role and, in particular, determines the anti-
symmetric part of 0&&.

If variations in space and time are slow, the sys-
tem can be treated as if it were in thermodynamic
equilibrium locally. The equilibrium state of a liq-
uid crystal is characterized by the eight conserved
variables: particle number, momentum, energy,
and total angular momentum, and by the order pa-
rameter Q, &(rt) We expec.t local equilibrium to be
described by densities of the conserved quanties
and &R,&(rt)& or alternatively by associated spatially
and temporally varying intensive quantities. For
nematics, a convenient choice of intensive variables
is pressure, temperature, order parameter S(rt),
director n, (rt), local velocity v, (rt), and frequency
Q&(rt) defined by

&j,(rt) & =& p(rt)& v, (rt),

(M, (rt)) = [&p(rt)&/m]I, ~(rt)Q~(rt),

where

(4. 5a)

(4. 5b)

(p(rt)&I, ~(rt) =I&+,(5&& —v, v&)5 [r —r (t)])

=(p(rt)) (I/m)( —',
5&&

—S(rt) [n&(rt)n&(rt) ——,'6&&]].

(4. &)
Consider now a rigid rotation of the liquid crys-

tal with a constant angular frequency. In this case,
M, (rt) is given by Eq. (4. 5b) with Q& a constant in-

J —[nxh(rt) ]&
—e,»o»(rt) + VJrfg(rt) = 0, (4. 8)

where we have used Eqs. (4. 4a) and (4.1b) to ex-
press SL,(rt)/St in terms of o'»(rt):

r,'g(rt) = Try(rt) —e»rrao u(rt), (4. 10)

where e,» is the Levi-Civita symbol, and J from
Eq. (4. &) is (pI/m) (-;+-',S)."

Instead of writing an equation for [nx n (r t)], one
could equally as well write, as Leslie has chosen
to do, 3 an equation for n(r t),

s'n, (r t)
Bg

+g, (r t) + Vq II,~ (r t) = 0 (4. 11)

(Since we are considering only linear deviations
from equilibrium, we need not distinguish between
material and spatial time derivatives. ) Equation
(4. 11) must of course be compatible with Eq. (4. 8).
Hence, we have

~&» (nba Ha) ny, ~) ~ &ya oga

V& (a, »n~ II+) = V&

where

(4. 12a)

(4. 12b)

where n, (t) = Bn,/St. Hence, for rigid rotations the
intensive variable Q~, (rt) can be replaced by n&(rt).

If we now consider nonrigid rotations, Eq. (4. I)
is no longer compatible with the definition of Q&(rt)

given by Eq. (4. 5b). However, for variations [of
Q&(rt)] which are slow in space and time, the error
made in replacing Q„(rt) by [n(rt) x n(rt)], is of or-
der &, where 7 is a characteristic molecular decay
time and &d is the frequency characterizing the time
variation of Q&(rt). This follows because although

each molecule is not necessarily instantaneously
aligned with n, (rt) its component perpendicular to
n&(rt) averages to zero over several decay times.
Hence, fo order &v one can assume that the mole-
cules at each point in space are parallel to the di-
rector at that point. Therefore, if we restrict our-
selves to states in which the component of 0& paral-
lel to n; is zero, we can write

&M, (rt)) = (pI/m)(-,'+ —,
' S)(n xK), —=J(rt) [n(rt) xn(rt)], .

(4. 8)
(We drop here the notational distinction between the
operator p and its average value (p&. ) We may fur-
ther suppose that the complete equilibrium system
is at rest and consider only linear deviations from
that state. Then J(rt) can be considered as a con-
stant independent of space and time. The angular-
momentum- conservation equation now reads
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nj, r
= Vr n&

In Appendix 8, we rederive Ericksen's' expres-
sion for 0,&

in equilibrium,

85'
P~$g+ rI fPan, , (4. 13)

where P is the pressure, and F is the Frank free-
energy density [Eqs. (3. 1) and (3. 3)]. From this
and Eq. (4. 11) one can easily see that at equilibrium

eF
gg = +ytEg —Pgs) gen]

8
rr„= — + Pgn~

~n ~, y

(4. 14a)

(4. 14b)

where y and p& are undetermined constants. They
indicate the indeterminacy of the specification of
g& and II&& by Eq. (4. 12); they do not, however, af-
fect Eq. (4. 9), which contains the physics of the
problem. The form of g, and II,

&
in Eq. (4. 14) is

just that given by Leslie. Plugging Eq. (4. 14) into
Eq. (4. 9), one obtains

8 . 8F eF
Z—(nxn) = —e;„n, —v,

en&
(4. 15)

A, ~
--, (V, v~+ V~ v,),

en) —(&o xn),

(g~ = 2 (Vxv)~

(4. 17a)

(4. 17b)

(4. 17c)

The coefficients n all have dimensions of a viscos-
ity. Taking into account the remarks of Parodi'4
regarding the Onsager relations, there are only
five independent viscosities with @2+8'3 Qe +5.
e4 is the only viscosity which remains in the iso-
tropic phase. In the nematic phase, n2 and n3 rep-
resent a direct coupling between the velocity and
the time rate of change of the director. n„a5, and

a~ represent the dissipation due to velocity gra-

But B5'/Bn„—V, BP/Bn~, is just the functional deri-
vation BF/Bn~(r) of the free energy E with respect
to n~(r). In equilibrium, the cross product of this
with n, is zero, so that Eq. (4. 15) says that h is
zero in equilibrium as it should be.

To discuss transport in systems slightly away
from total equilibrium but in equilibrium locally,
it is necessary to introduce constitutive relations
between the currents of Eq. (4. I) and (4. 11) and
variations in the spatially varying intensive quanti-
ties characterizing the local equilibrium state.
This is discussed in detail in Leslie's papers. ' In
particular, he finds that the dissipative part of the
stress tensor can be written as

I
+1 nA nl +rIr nf ng Q2 Nf ny —A3 ns N~

—o'4A~& —&& n& n„AI,&

—uzn& n~A», (4. 16)

where

t&0
t&0 (4. 20)

where & is an infinitesimal.
For H,

&
(r) slowly varying in space, the field

(4. 18) will induce a. director at t =0 of the form

Bn, (q)
5n, (q) =

~) 5 H„(q)
BH~q q

where Bn; (q)/B H»(q) is a thermodynamic deriva-
tive. Or, using Eq. (4. 20), we have

(4. 21)

n„(q) = [)I, (T)/Zq'] H„, (q)

n (q) =[)t, (T)/Kq ]H„(q)

s, (q) = 1+O((5n)')

(4. 22a)

(4. 221 )

(4. 22c)

For t&0, we can now use Leslie's equations to de-
termine n,, (qt) subject to the condition that at t= 0
it reduces to Eq. (4. 22).

Following closely the procedure and notation of
Ref. 15, one can easily show that

1 C;Q; 1~((q~)= . — * *'

. n, (qt=o),—ico+u&, y& P& —ico+u, z

1=X~ P (4. 23)

where n& (q&u) = fo" e'"
n& (qt) (&u is understood to have

a small positive imaginary part).
The directions g and y correspond to directions

1 and 2 of Ref. 15, i. e. , y is parallel to n&q, and
x is parallel to (n xq) x no where no is the direction of
preferred orientation in complete equilibrium. Sim-

dients in different directions relative to n;(r).
If we now use Eqs. (4. 9) and (4. 12a) (bearing in

mind that they are only valid for ~v « I), we ob-
tain zero for the dissipative part of II&& and

e,»n~g,'= —c,»o»=+a, »n~(y, N„+y, A»n, ) (4. 18)

for the dissipative part of g„where y, = a3 —n2 and

y2= ne —a5. Hence, for linear deviations from
equilibrium in the hydrodynamic regime, the equa-
tion determining the director is

2~en AJ nx = — nX —-y n&&N —y nxAn
gt2 g~ 1 2

(4. 19)
where (An); =A;, nj. This is the equation used by
the Orsay Liquid Crystal Group to determine the
fluctuation spectrum of the director in a nematic. "
We will now quickly outline the derivation of this
fluctuation spectrum in a way that guarantees the
existence of local equilibrium at all times so that
the hydrodynamic equations of Leslie are always
applicable. To do this, we create at time t = 0 a
local equilibrium state with a spatially varying or-
der parameter by the adiabatic application of an
external magnetic field from time equals minus in-
finity to time zero":
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n, (qt) =( —i(u+u„) 'n, (qt=o) (4. as)

Even if one lets all the elastic constants be equal,
the exact expressions for u„are complicated [cf.
Eq. (4. 25) of Ref. 15 ].

Fortunately, for most purposes the schematic
representation suggested in Ref. 15 is sufficient:

u„,-u„,-Kq'/q (4. as)

Here, p is a viscosity averaged over angles. It,
however, is proportional to y, or y2 and thus van-
ishes in the isotropic phase. Using Eqs. (4. 21),
(4. 22), and (4. 26), we can now write

sn„(q&u) X, (T) 1 sn„(qv)
6H„, (q) Kq' —i(u+ (Kq'/q) SH„, (q)

'

(4. av)

All other derivatives are zero to the order in ques-
tion. This is the formula. which we will use for
comparison with a general response-function treat-
ment in Sec. V.

Before closing this section, it might be useful to
make some general comments about the Leslie the-
ory and transport in liquid crystals. The intensive
parameter n, (rt) is defined to be a unit vector at
all points in space and time. It specifies the pre-
ferred orientation of the molecules at the point x
and time t. Alternatively, it specifies the direction
of the maximum eigenvalue of Q, &(rt). One cannot
speak of fluctuations in n, (rt) without contradicting
the assumption that n, (rf) is a unit vector. One

can, however, speak of fluctuations in the total or-
der parameter Q, &

(rt). Physically, fluctuations in

Q~& (rf) are fluctuations in the direction of the indi-
vidual molecules about their preferred directions.
One can calculate the fluctuation in Q, &

via the fluc-
tuation dissipation theorem and the response func-
tions calculated in this section. We will do this in
Sec. V. Since n, (rt) is a unit vector defined in
terms of a symmetric traceless tensor (rather than

simply a symmetric tensor), it is doubtful that the
Leslie theory for a director of variable magnitude
is applicable to liquid crystals. It is also worth
noting again that the Leslie theory is incapable of

ilarly y, is identical to y, , andy, is identicaltoy2. In

arriving at Eq. (4. 23), we used the standard approx-
imation that Kp/q «1, where q is a characteristic
viscosity. u&, and u;~ are, respectively, the fre-
quencies of the slow and fast modes. u, gu&z is of
order Kp/q'. The general expressions for C„Q„
and P, are relatively complicated. They, however,
have the general form

&~(q)-nq', C~(q)-Q~(q)-nq . (4. 24)

The contribution of the second term of Eq. (4. 23)
to the total power spectrum is of order Kp/g rel-
ative to the first and can, in general, be neglected.
Hence Eq. (4. 23) obtains the simple form

giving any information about the transport proper-
ties of liquid crystals in which there is a non-neg-
ligible biaxial term or component of angular mo-
mentum parallel to n. This does not constitute a
restriction on the first-order theory which we are
considering as long as the initial states contain no
biaxial component or component of angular momen-
tum parallel to n. However, in higher order, there
may be spontaneous creation of biaxial terms and
parallel angular momentum components. Hence
the Leslie theory is probably only valid for first-
order deviations from complete equilibrium.

V. RESPONSE-FUNCTION DESCRIPTION

As is well known, the linear change in the ex-
pectation value of any observable due to the pres-
ence of an external field is conveniently described
in terms of linearized response functions. In Ap-
pendix B, we review the pertinent definitions and

properties of response functions in classical sys-
tems. For our present purpose, we need only know

that the change in the average value of (R,~(rt)) due

to a time-varying external magnetic field is

6(R,& (rt)) = —aiw„'f d'r f )t,'&» (rr'ff') SH„,(r'f'),

(s. 1)

where X',&'~, (rr'tt') is —, times the equilibrium average
of the Poisson bracket of R,~(rt) with R»(r'f'):

)fIya, (rr'&f')= —,'([R,&(r&), R»(r'f')]) . (S.2)

If we choose an external magnetic field with time
dependence of the form of Eq. (4. 19), we obtain

tl

4

where S (R,&(g)) is the Laplace transform in time
(P is a complex frequency variable in the upper
half-plane) and the Fourier transform in space of

S(R,&(rt)). X',&»(q~') is the Fourier transform of
X',&»(rr'tt'), aud 6HU(q) is the external magnetic
field at t = 0 just prior to being shut off. Hence we
have

S (R $J(q~)) ( H/ill)[X~»i(q&) -Xi~» (q)1 SH~~(q)

(s.4)
where X&»&(qL) is the familiar dynamic response
function and )t,», (q) the static susceptibility. This
equation is valid for all frequencies and wave num-
bers, provided the external field is small enough
that the linear approximation is valid. However,
as it stands, it is not very interesting since the
form of li,», ((qf) can be a,lmost arbitrary. Fortu-
nately, we can use the results of the previous sec-
tions to give us the form of X,», (qk) in the hydro-
dynamic limit (i.e. , for &ur «1, where r is the
longest characteristic molecular time of the sys-
tem). For the moment, let us restrict ourselves
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to a consideration of changes in (H„,(qt)) due to an
external field H„,(q). From Eq. (4.22), the linear
change in (H„,(qt)) is

dependent elastic constant K(q) and a frequency-
and wave-number -dependent quantity (K/g)(qP)
such that

5 (R„,(qt) ) = (p/m) 5Q„,(qt) = (pS/m) 5(n„(qt) n, (qt))

= (ps/m) 5~(qf) . (5.5)
K(q)q' i+i(K/n)(C)q' (5.11)

We have ignored changes in p and S because they
appear only in second order. A similar equation
holds for static changes in(R„,(q)):

5(H„,(q))= P S "~, 5H„,(q),m 8&„,q)
(5.6)

where as before Sn„(q)/SH„, (q) is a thermodynamic
derivative. For classical systems, thermody-
namic derivatives are always equal to the static
response functions (cf. Appendix B), so that we
can deduce from Eq. (5.6) that

for all q and f F. or small q, K(q) reduces to the
elastic constant; and for small q and 0, (K/g)((g)
reduces to the constant value K/q. i(K/q )(qL) has
a spectral representation similar to that of XL(qf):

. K d&o &'(q&o)
i —qf =

'q „7f (d —f (5.12)

At high frequencies, X(&g) behaves like

X„(qg) = —(I/g') m, —(I/g') M, + ~ ~ ~, (5.13)

where the high-frequency moments are defined as
X. ,(q) = (p/~)'(S'/Kq') . (5.7)

Using Eqs. (5.4), (5.5), and (5.7), it follows that

K—S5H" (-) =,.
~

[X--(q&) -X-..(q)] (5.6)

Using the schematic form of 5n„(qP)/5H„, (q) of Eq.
(4. 13), this gives immediately

1 ) ) p S
[Xxsxs q ) Xemote q ]=

K a
g (K/ )

a

(5. 9a)

p S iKq /q
m Kq g+iKq /q

(5.9b)

The imaginary part of this expression is X„'~, (q&u):

(o
"" ' m Kq' (o'+[(K/q)q']'

This function is plotted in Fig. 4(a). In a similar
way, one can obtain the expression for X„~,(q f)
[which in the approximation of Eq. (4. 27) is the
same as X„,„,(q&)].

By Eq. (3.20), the derivation of the Frank free
energy, and the form of 5(R;&(qf)), one can easily
see that ~ahab~ ~aaron& ~aayw andy„„, for a, b=x, y, z
are zero in the hydrodynamic limit. In other words,
they are at least of order qX « I, where A. is the
characteristic length determining the domain of
validity of hydrodynamics. There remain only the
components g«„g»», g»» g„«, g»«, and g„„,.
These all involve variations in the order param-
eter S and in the density p. The Frank-Leslie
theories cannot give us any information about these
response functions even in the hydrodynamic limit.

To avoid complicated notation, let us now assume
that the schematic hydrodynamic limit of Eq. (5.9)
is valid and set ~(qf) = X„~,= X„„. &uXL" (q&u) is
positive definite. Hence, according to standard
procedure, ' one can introduce a wave-number-

Using Eq. (5. 11) this gives

, K 1i —(q&) = ——, a'(q(o) + ~ ~ ~

m

1 Mq
2' X, (q)q'

'"' ' (5.15)

Xta, &)
it

q'Xj'(q, u)

FIG. 4. (a) q g ~' (q~)/~ in the ordered nematic phase.
Note that it is a delta function in cu at q= 0 and is a
Lorentzian with width proportional to q for q& 0. (b)
Schematic plot of g"(q&)/cu in the isotropic phase of a
nematic. Note that it has a finite width at q= 0 and that
for q A. » I', its width is proportional to q .

The high-frequency moments can easily be evaluated
in terms of equal-time Poisson brackets of Ao(A)
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and its time derivatives. In particular,

x,",„(q )= ', [2&v;, e".& 2&v»e"„&

x, (q)q' I+(~7.)'

At u&=0, this reduces toK/q, so

Mq

x„(q)q' K

K
10

Kp

halo

(5.17)

(5.18)

Hence, the hydrodynamic form of the response
function breaks down more rapidly as a function of

q than as a function of m.
The response function introduced in Eq. (5 ~ 1) is,

of course, not restricted to the ordered phase; it
is equally well defined in the isotropic and other
phases. A few words about X in the disordered
phase might be of interest. »X(rqfr) can be written
as

Xrrrrr(q&)= axo(q&)(5rr, 5rr+5rr+5» —35rr5rr)+Xr'r'r'r(q&)

(5. 18)

where the zero f, zero q limit of Xo(qg) is the static
response function Xo, and the zero q limit of XI&~rr(q K)

is zero for all
The nematic liquid-crystal phase transition is a

first-order phase transition characterized by a

~(5J l (err rk) + 5rr, (@rr) + 5»(@rl) + 5r 1 &@Jr&)

—9 (5rr 5«r+5rr, 5rr)]

(p/m) (q /m) &C&rrrr, r& ~ (5 ~ 16)

Notice that the second term in this expression is
negligible compared to the first unless q

' is of
the order of a molecular dimension. This is merely
a reflection of the fact that the only natural length
in the liquid crystal is the length of the molecules.
Mr. can be obtained from Eq. (5 ~ 16) by taking its
xzxz component.

The hydrodynamic form for Xr(qL) [Eq. (5.9)]
becomes invalid when either q or ~ becomes too
large. [We are speaking somewhat loosely here
since the frequency of the pole of Xr( qrd+ie) is de-
termined once q is given. ] The frequency that de-
termines the breakdown at large q is ~, K/r)X
& K (2rr)~/rll~~, where X is again the length determining
the validity of hydrodynamics, and lo is a molecular
length. With K 10 dyn, rl 10 ' P and lo- 20 A,
this gives co, & 10 ~ One can arrive at an estimate
of the frequency determining the validity of the hy-
drodynamic (i.e. , constant) form of K/r) at small

q by introducing a phenomenological form for
(K/ri)(q, u&+i@) which satisfies the first high-fre-
quency sum rule (5. 16):

transition temperature T, . However, the behavior
of the susceptibility and other quantities for T & T,
is similar to that of a system with a second-order
phase transition characterized by a temperature
T * & T, with (T, —T*)/T, «1. In particular, for
T & T„ the static susceptibility Xo(00) measured by
magnetic birefringence appears to diverge at a
temperature of the order of 1 less than the
transition temperature. The dynamical suscepti-
bility also exhibits such critical behavior. To a
good approximation, we have

(5. 20)

This function is plotted in Fig. 4(b). The width I'is
observed to be proportional to (T —T*)', where y
seems to be 1 (corresponding to a mean field theory)
for PAA and - for P -methoxy benzylidene-p -nbutyl-
aniline (MBBA). At higher values of q, there is evi-
dence that X,

"
(q u&)/rd obtains the same form as Xr'(q&o)/~

in the ordered phase. This is analogous to the ap-
pearance of "sloppy spin-wave" peaks for q greater
than an inverse coherence length in the response func-
tions of magnetic and antiferromagnetic systems above

The width I' is observed to be proportional to
(T —T*)~, where y seems to be 1 (corresponding to
a mean field theory) for PAA'0 and —,

' for p-methoxy
benzylidene-p-nbutylaniline (MBBA)." At higher
values of q, there is evidence that Xo'(q&d)/rd ob-
tains the same form as X", (qrd)/rd in the ordered
phase. ' This is analogous to the appearance of
"sloppy spin-wave" peaks for q greater than an
inverse coherence length in the response functions
of magnetic and antiferromagnetic systems above

One can argue that these result from the
existence of a short-range order above T, giving
rise to ordered domains whose size is determined
by the above coherence length and within which the
modes of the ordered phase propagate freely.

We close this section with a note about the strik-
ing resemblance between the response functions
for liquid crystals and those for magnetic systems.
In a ferromagnet, the perpendicular static response
function in the ordered phase is

x (q) = y &M &/ pq' (5. 21)

where p, is a stiffness constant, and p.q is the mag-
non energy. (M) is, of course, the magnetic or-
der parameter. (M) plays the same role as (p/m)S
and p, the same role as K in liquid crystals. Equa-
tion (5.21) is to be compared with Eq. (5.6) for
x„,„,(q). Perhaps a more interesting comparison
is with the correlation function for the staggered
magnetization in antiferromagnetic systems

S„„(q)=f d'~e "
([B„(r)-(B„(r))][B„(r')-(B„(r'))])
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(5. 22)= (4v(B ) /q )s .
B,(r) is the staggered magnetization and (B,) is the
order parameter. a is a coherence length. The
analogous quantity for a liquid crystal is

Using Eq. (2.7), the differential cross section can
be written as

d 0'
e, eI.et, e [(mXz) 54;5»S„(j&u)

VdQ dvy 2A.

VI. APPLICATIONS

A. Light Scattering

In this section, we will consider the application
of the formalism developed in the preceding sec-
tions to two specific problems: light scattering and
NMR linewidths. Each molecule in a liquid crystal
has an anisotropic electric polarizability of the
form of Eq. (2.7b) from which we can define a
polarizability density

P„(rt) =Z P"„(t)5(r -r'(f)) (6.1)

Using classical scattering theory and ignoring mul-
tiple scattering effects one arrives at the well-
known formula"y ' for the differential scattering
cross section per unit scattering volume per unit
solid angle of the outgoing beam (dQ) per unit angu-
lar frequency d~:

der I p I I p
2

,4 e4 eyeae4 (6. 2)

where X is the vacuum wavelength of the incident
beam, 8& is the incident polarization vector, and
e4 is the outgoing polarization vector. Sp4»»(q&u)
is the fluctuation in P4&(rt),

S „,(q&o)= f d~r f dte '4 '' ""([P,&(rt)-&P,&)]

x [P„(OO) -&P„)1& . (6. 3)

S«(q)=kT —,= —S —,, (5. 23)
m gq2 m q2 '

where a =kT/K. Equations (5. 22) and (5. 23) have
exactly the same form: an order parameter squared
times a coherence length divided by q . Further-
more, neither R;z(rt) nor B,(rt) are conserved
quantities, so that in the disordered phase, the
power spectra of these quantities have finite width
at q = 0. The analogy between magnetic and liquid-
crystal systems cannot be pressed too far, how-
ever. The hydrodynamic modes associated with
long-range order are propagating modes in both
antiferromagnets and ferromagnets; in liquid crys-
tals, they are diffusive modes. Furthermore, the
existence of zero-energy modes at q = 0 in the mag-
netic system is associated with a rotationally invariant
Hamiltonian. Introduction of nonrotationally in-
variant interactions (such as dipolar interactions)
changes the nature of the modes at low q. At the
moment, one cannot associate the existence of hy-
drodynamic modes in ordered liquid crystals with
a similar rotationally invariant Hamiltonian.

+ (Xg)'So„.o„(q~)
+ (mX'Xzo) 5,~S,o (q(o)

+ (mXEXE)5al S oo, (q~)] (6.4)

The first term represents the familiar density
fluctuations which appear in Newtonian fluids. The
second term represents fluctuations in the liquid-
crystal order. The third and fourth represent
interference between density and order fluctuations.
Note that if the outgoing polarization is perpendic-
ular to the incoming polarization, the only term
that contributes to the cross section is the second.
So4~o»(q~) can be related to X,"~»(q~) by the clas-
sical fluctuation dissipation theorem (Appendix B)

@o,~o„4 (q~) = (P&) X var (q~) (6.5)

where P =1/kT. The wavelengths accessible to
light scattering experiments are quite long so that
one is in the hydrodynamic regime. Hence, choos-
ing the incident beam to be polarized parallel to
n, (z axis), one can measure X„",(q~) and X,",„,(q&o)

by observing the scattered beam in the two polar-
izations perpendicular to np (see Fig. 5). Using
the schematic form of X„",„,(q&o), the cross section
in this configuration is

d o vkT [a'(T)] Kq /q
VdQ d&o 2X Kq &u + (Kq /7i)

where we have repla, ced Xz(p/m)S by e'(T), the
bulk anisotropic dielectric constant (at the frequen-
cy of the light source). This formula is valid at
all temperatures where the liquid-crystal order
exists and does not require the molecules to be
perfectly aligned (i. e. , S does not have to be
nearly 1). The total area under the power spec-
trum curve (6.6) is proportional to [e'(T)] /Kq .
«'(T) is proportional to S and, as already stated,
K is proportional to S'; so as a function of temper-

FlG. 5. Experimental con-
figuration for measurement of
(1/co) y„~„~(q~) by light scattering.
The incident beam k has polar-
ization P~ parallel to the equilib-
rium liquid-crystal director n.

i The scattered beam k' can be po-
larized along Po, which is per-
pendicular to n and k', or along
P 0, which is perpendicular to k'
and I'0. Polarizers then pick the
component of Po perpendicular to
n.
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0 pi//8d SF& 0 I

FIG. 6. Experimental con-
figuration for measurement
of (&j~)X,'„'~~(qu) by light scat-
tering. The incident polar-
ization PI is perpendicular to
n. The outgoing polarization
Pp is al so pe rpendicular to
n. Polarizers pick the com-
ponent perpendicular to n of
the other possible outgoing
polarization P 0.

We consider here the model for NMR in liquid
crystals proposed by Pincus. " Each molecule in
the liquid crystal is assumed to have two identical
nuclear spins located on the axis and separated by
a distance a. Interactions between spins on neigh-
boring molecules are neglected. Following Pincus
and Abragam, '

y
"the longitudinal decay time due

to a dipolar interaction between nuclear spins on
the same molecule for the case with external mag-
netic field H parallel to the liquid-crystal order
no is given by

(T&)=2y tt [1(1+1)/a ][J )(&()0)+J& )((()0)] . (6.7

y is the nuclear gyromagnetic ratio, I is the nuclear
spin, and vo is the nuclear resonance frequency
yJI:

J'"((u,) = f e-'"d (F'"(t)P"'*(0))dt,
m OO

J&2)( ) = f e-("0((P&»(t)F&» (0)) dt
~ 00

where

'(t) = sin8' cos8'e '" = Q,„—iQ',

(6.8a)

(6. 8b)

(6. Qa)

F&»(t) = sin 8' e " = (Q'„„—Q») —t(Q„", +Q",„) ~

ature, the area under the power curve should not
be strongly dependent on T (at least to the extent
that K really is proportional to S ).

There is another geometry in which only order
parameter fluctuations are seen. That is the one
in which the polarization vectors of the incoming
and outgoing beams are perpendicular to each
other and both are perpendicular to no (Fig. 6).
This configuration measures X„",~ (q&()), which is
zero in the hydrodynamic limit. The other pos-
sible experimental configurations have the polar-
ization vectors of the incoming and outgoing beams
parallel to each other. They measure fluctuations
:in p and S. In principle, it should be possible
by using all possible polarizations to disentangle
the fluctuations in S from those in p. Experi-
mentally it may be less feasible.

B. NMR

= (p/m)'(Q(g(t)Qa((0)) (6 1o)

When the centers of mass of the particles are al-
lowed to move, relation (6.10) becomes more com-
plicated. 5[r -r (t)]5[r' -r (t')] would be propor-
tional to 5 if r —r' were always equal to r (t)- r' (t'). If t =t', this condition is satisfied if
r =r'. If t &t', it is not possible to choose r and
r' so that r -r'= r (t) -r (t') for all a and a'.
Nevertheless, an approximate average statement
can be made. If a particle is at position r at time
t, the probability that it will be at position r' at
time t' is given by the familiar diffusion function

P(rr'tt')= (4((D~t-t'-~) "' -" ' ' '
(6 11)

where D is the diffusion constant. In a liquid crys-
tal, D should be direction dependent. However, to
prevent a proliferation of confusing algebra, we
will assume for the moment that it is isotropic.
In some average sense, 5[r —r'(t)] 5[r' —r (t')]
multiplied by P(rr'tt') and integrated over r' is
proportional to 5 . Hence

f d x'P(rr'tt')(R„(rt)R„, (r't'))

= (p/m)'(Q"„(t)Q„((0)) . (6.12)

Using Eq. (6. 12), the fluctuation dissipation theo-
rem, and ]t („((qv) from Eq. (5. 10), one obtains

&& )( ) g ( d' q k() T (K/(l + D)q'
(2)))3 Kq' (o', +[(K/7]+D)q']' '

(6. iS)

If we neglect Z"'(2v, ) and plug Eq. (6. 13) into Eq.
(6. 7), we obtain the Pincus formula for l /T, with
a factor of S rather than S:

Note that 1/T, is expressed in terms of individual-
particle correlation functions and not in terms of
correlation functions of the density R(((rt).

However, an individual particle at the point r
should on the average be aligned parallel to the
liquid-crystal order at that point. Stated differently,
the individual-particle correlation function

(Q(( (t)Q»(0)) should be expressible in terms of the
density correlation function ( R(&(rt) R„((r't')). If
the position of the center of mass of each particle
is fixed, the relation between (Q;((t) Q(,((0)) and
(R „(rt)R»(r't')) is relatively straightforward. In
this case, 5[r -r (t)] 5[r -r (t')j is zero unless
n = n'. Hence

(R(q(rt)R(, ((ro)) = Z Q(((t) Q„', (0)
Not

x 5(r -r'(t)]5[r —r (0)])

(6.9b) I/T& —(()() t(, q (6. i4)
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where &u~ is a dipolar frequency, and

kaT Sa
f& [~,(D+IC/g)]'" ' (6. 15)

TABLE I. Wavelength of excitations produced by ex-
ternal magnetic fields of different frequencies Mp

=2m'nx106 H~ ~c=27('/&lc~ and (D+X/i~pc =0

0.1 1 - 10 50 100 10' 10'
A few words regarding the neglect of J'(2&do) and
the use of Eq. (6. 13) for J"'(&~0) are now in order.
First, the hydrodynamic form for y„,„,(q sr) is valid
only for qX& 1. Hence, from a rigorous point of
view, one cannot use the hydrodynamic form for
(Pv) 'y„,„,(q&d) throughout the entire region of inte-
gration. However, if q, defined by (K/q+D)q, =&so

is such that q,X «1, one can break up the integra-
tion in Eq. (6. 13) into two parts. The first part
would extend from q=0 to q=1/X. This gives a
contribution to 1/T, of the same form as Eq. (6. 14)
with a f, the same as that in Eq. (6. 15), but multi-
plied by a slowly varying (logarithmic) function of
&~0 which can be set equal to l. In addition, there
will be a contribution to the integral of Eq. (6. 13)
for «& & I/X. It is difficult to say exactly what form
this term will have except that it will probably be
a slowly varying function of +0 and, in particular,
not have the &oo'~ dependence of Eq. (6. 15). An
analysis of J '(2&@0) similar to that of J'"(&u ) shows

(2) ~ ~

0
that J' '(2&d, ) is related to an integral over q of
(pv) ')(„'„'„„(q+)and (p&d) 'y„,„,(qur). The first term
contains fluctuations in the magnitude of the order
parameter S, and the second vanishes in the hydro-
dynamic regime. In neither of these is there an
important accumulation of low-frequency modes
necessary to give the characteristic ~0' depen-
dence of Eq. (6. 15). Hence, 1/T„ taking into ac-
count J' '(vo) and large q contributions to J"'(&uo),
can be written as

Ac(A~ 200 710 250 110 11 25 7.7

the ordered phase is proportional to vo over at
least two decades in frequency. However, the tem-
perature dependence predicted by the Pincus theory
is not at all in agreement with experiment. The
factor of S ' introduced in this paper changes the
theoretically predicted temperature dependence of
1/T, in the direction of greater agreement with ex-
periment. Given the lack of experimental data on
the diffusion constant D and viscosity q, it is not
possible to say at the moment whether theory and
experiment agree quantitatively. We should stress
that the viscosity that appears in the equation for
1/T, is not the total viscosity but only that related
to the liquid-crystal order. It is zero in the iso-
tropic phase. Hence, its temperature dependence
will be more pronounced than that of the total vis-
cosity.
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I/Tg &dg) f&, + I/Tg ~ (6. 16) AFFENDIX A

where 1/T,' is relatively independent of ufo for small
1/T,' represents fluctuations in the magnitude

of the order parameter S and large &I (short dis-
tance) variations in the direction of preferred or-
der. As such, it should become more and more
important as the clarification temperature is ap-
proached. However, since the liquid-crystal
transition is first order, it could be that through-
out the liquid-crystal phase v&t, dominates at NMR
frequencies.

It is worth noting that for frequencies accessible
to NMR experiments (-0-50 MHz), q, remains in
the hydrodynamic regime. However, for higher
frequencies (accessible to EPR say), q, approaches
molecula, r dimensions (cf. Table I). This suggests
that it may be possible to estimate X (wavelength
determining the hydrodynamic regime) by perform-
ing measurements of 1/T, by NMR and EPR over
several decades of frequency. The frequency at
which there is no longer an apparent &~0' depen-
dence of 1/T, should give a measure of X.

Recent experiments show clearly that T, in

6n, (r ) = 58«n, (r), (Al)

bn; &(r ) = 58„n, ~(r )+ 58~, n;, (r ), (A2)

where 58„ is the antisymmetric tensor character-
izing the infinitesimal rotation. The change in the
free-energy density is therefore

BP 9P'
am= —en,. + ~n, ,i, j

~
~

9p Bp 85'
ns+ ns, ,+ n, s ~g~r ~

i~&

In this appendix, we will derive the Leslie stress
tensor in equilibrium. First, consider the free en-
ergy of a nematic at rest. It is a function of the
temperature T, the volume of the system V, the
order parameter S, the director n;(r), and its first
spatial derivative V&n, (r). It must be invariant
with respect to infinitesimal rigid rotations of the
entire system. Under such rotations the scalars
T, S, and V remain unchanged, whereas n;(r) and

n; &(r ) are changed according to
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85 BF
ng +ng

i i, l

BP
+ nl

~ g
l, i

85 8+ BP
' Bn "'Bn "Bn

But this must be zero, hence

(A4)

8/0 BP 8$ Bjp+ —S+E
Bt ' BV BS 0 Bt

n~ &v~ & (A14)

1 2 ~
~& = —,pn +v ~ jp+&0, (A5)

ji ( 2»'+v j o+ so) v; + ,' v j o;—+v&(v&+j o, , (A6)

where e„jp, and o;J are, respectively, the energy
density, momentum density, energy current, and
stress tensor in the rest system. En addition, there
is the thermodynamic relation for infinitesimal
changes in the energy density &0.'

Now, consider a coordinate system moving with
velocity v relative to that in which the nematic is
at rest. By Galilean invariance, the energy density
and energy current in the moving coordinate sys-
tem are

where we have used the facts that in equilibrium,
in the rest frame,

j0=0

8&—=0
BS

(A15)

(A16)

BP 8$'

Bn$ Bni y

=0 (A17)

BP
+ E'0 —Ts =0

p BV
(A16)

Equating &e/St to —V j ', we obtain for the stress
tensor in the rest frame

de =d[(F+TZ)/V)J, (A7)
0 8+

o,) =P~„+ — n. . .Bn, ,
(A19)

8& 8$+-- - — dn- +—dS —T ds,
Bn . . "' BS$tl

(AS)

where s = Z/V= entropy density. To find o;&, we
require that Eqs. (A5) and (A6) satisfy the energy
conservation equation in the moving coordinate
system. For uniform translations,

dn;
Bt

'= —V,(nv) t (AQ)

where Z is the entropy. Using the facts that the
derivative of I' with respect to the total momentum
is —v and d V/V= -dp/p if the number of particles
is held constant, Eq. (A7) reads, for constant tem-
perature and external fields,

dp——+E —Ts ——v ~ dj +o Bn

where

Bpo eP BP0
BV BS BV

This is the stress tensor found by Ericksen and
Leslie for a nematic in equilibrium and the one
used in the text.

APPENDIX B

The purpose of this appendix is to present a re-
view of response--function theory in a classical con-
text. More complete discussions can be found in
Refs. 25 and 26.

A classical system is completely described in
terms of a distribution function f(q" (t), P (t), t).
q" and p" are the generalized coordinates and mo-
menta for the particle c( In equ. ilibrium, f reduces
to the familiar cannonical distribution function

= —V,(n, v, ),

= —V,.(v, S),
BS—= —V(v s)$

Hence we have

(A10)

(A11)

(AI2)

g-& -83.'0 ($@,$+)Jp= e

where

g T -8 o(4 )

3C is the unperturbed Hamiltonian, and P = 1/kT.
(Tr again means to integrate over all variables q
and p'. ) Linear deviations in f can be expressed as

BKp BE 1
+ e o

—Ts —V,(pv;)0 f=fp+5f f~+Z t)tt (t) - . (t) - t)()t))f

Bjp BP—v — V,(n; v, )
Bni and 6f can be rewritten in the following form:

(B2)

or

8+ BP
V,(v, n;, ) ——,(v;S)+ TV, (v, s)

(AIS)

5f Zdt (t )t)-(), +'t)(t' (t'), )=f, '
tp sq~(t sp~(t t 0
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where

-.. eel (t)
ggC

at

relations

d(() XAB(l' 1' ()) )
gz~t', r r m ~

=I'
(B14)

We now assume that the changes in f from f() are
produced by an external disturbance which can be
expressed in terms of an external Hamiltonian X'"'
added to +. Then, by Hamilton's equations,

e~ext g ~ext
eq (t) = «((( )

) ep (t)
ep t Bq t (B4)

ef= J [f (t), x'*'(t')]dt' {B5)

where [f (t), 3t'"'(t')] is the Poisson bracket defined

by

~ ef, (t) erat, '"'(t') ef, (t) ex'"'(t')
eq (t) ep (t') ep (t) eq(t')

(B8)

This equation is valid even if Z'"' includes velocity-
dependent fore'es. Equations (B3) and (B4) combine
to give

d(d XAB(r 1' (())
g~g rr co)=—

For translationally invariant systems X»(r r'g) can
be expressed in terms of a single spatial Fourier
transform

XAB(r r'f) = fd (r —r') e '~ ( ' 'XAB(qf) . (B15)

Using the preceding definitions and properties
of response functions, one can determine the change
in (A(r t)) due to an adiabatically applied external
field such as discussed in Sec. IV of the text:

hre"

e(A(«t))
~

21f dt e fd~1' XAB(rr t —t )h(1' )

~ 2i J dt'e" fd r' XA'B(rr't-t')h(r'),
Now, let

~'*'(t') = —f d'r' a(r't') h (r't').
Hence we have

t)0
(B1V)

XAB (r r't —t') = 2ii)(t t') XA'B (r—r 't —t'),
XA (r r't —t') = (2i) '([A(r t), B(r't')])

(B9)

(B10)

where 1)(t —t') is the Heaviside unit step function.
XA'B(r r't —t') has a real Fourier transform

XAB(rr'&u) = fd(t —t') e'"(' ' )XA'B(rr't —t') . (Bll)

The change in the average value of an operator
A(r t) due to the presence of K'"" is

e(A(r t)) = —fd x' f dt'Tr/A(r t)[f(), B(r't')] h(r't')]

=+ fd'r'
f, dt'( [A(r t), 8(r't')]) h (r't')

(BV)
Letting to —, we can write

e(A(rt)) = f d r' f„dt'X„B(rr'tt')h(r't') . (B8)

Here

d k
(g) ( 1) ) d(() XAB(k(() )

e(A(rt)) = ~

d k
h(~) (lT 1' 8R'XAB(+) (N)t t & 0-

(2v)'
(B18)

Taking the Laplace Fourier transform of this we
obtain the formula quoted in the text [Eq. (5.3)]:

II

)())(ic)) f "'"
=( a—(i.c) ())))))

Fluctuation Dissipation Theorem

Consider any operator A such that ( eA/et) = 0 jn
the equilibrium ensemble. Let

&AA(r r'tt') =( [A (r t) -(A(r't')) ][A(r 't') -(A(r't')) ]).

XAB(rr'f)= e' ""X„B(rr't—t')d(t-t')
wOO

d(u XA'B(r r'(u)
7T

(B12)

As g approaches the real axis (i. e. , g = (d +is),
X„B(rr'f) obtains the form

From Eq. (B9), one can see that XAB(r r't —t') has a
Fourier transform in terms of a complex frequency
f in the upper half-plane:

In equilibrium,

=( [A(r t), R]A(r't'))

eA rt) eX 8A rg a~
q

but

(B20)

(B21)

XAB(r r ~) XAB(r r ~) + iXAB(r r (B13) eq '
p eq ' ep f

p ep (B22)

XAB(r r'(()) and XAB(rr'(d) satisfy the Kramers-Kronig
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BS„„.l BA(rt) Bfs BA(rt) Bfs
A

Bt P Bq Bp" Bp Bq

Integrate by parts

~A.A""= —Trfs[A(rt), A(r't')] =—~„(rr'tt')

After Fourier transformation, this reads

(823)

(824)

X&»r(r r tt ) = Xa&o(r rt t)

X&yar(q~)= Xai&y(

(iii) R,z(r t) is real:

[X)J»(r r'«')]* = Kiv(' "')= X—o»(r "")
[X&ga&(q&)l = Xf&»(q&)

(830a.)

(830b)

(831b)

Xx~( r ~) = 2P& (825)

f=fs+fsP h J d r[A(r) -(A(r))s], (825)

where fs is the distribution function when h = 0 and

(A(r))o = Tr fs A(r). Hence

This is the classical fluctuation dissipation theo-
rem.

The thermodynamic derivative of (A) with re-
spect to the external field that couples to A can be
calculated as follows. The distribution function f
in the presence of an infinitesimal external field h
is

(iv) R&&(rt) is time-reversal invariant [i.e. ,
R,)(rt) = R,q(r —t)]:

X",», (r r'tt') = X~„&(r'rtt') = —X,'», (r r't't), (832a)

X~'g»(q~) = Xai~g( q~—) = Xfy—»(q ~)

Hence Xfz»(qv) is real and odd in v.
Sum rules

For I K I much greater than any characteristic fre-
quency in the system, one can obtain an asymtotic
expansion for X&»,(g) from Eq. (812):

B(A(r)) 9 TrfA(r)
Bh BI3,

=p dy' ArAr' p
— Ar p &r p

1 Nfl
4»l(q~) g8 oB(]»~(q~)

1 cf40
(0 X (q(0)+"' (833)

=P d t' —S~ rr'+AA (827)
where we used the fact that X,z»(qar) is odd in +.
But

Using Eq. (825), we can now identify the thermo-
dynamic derivative (827) with the zero k limit of
the static response function

d(o X„'„(k(o) B(A(r))
Hence we have

X&gkr rr ~ (834)

Symmetry properties

The correlation function of interest in liquid crys-
tals is X~& R, =-X,», . We now list the important
symmetry properties of Xf», (r r'tt') and Xf», (q&o)

(i) R,&(rt) is symmetric and traceless:

d~ „, BR„(rt)
r R»(r t ) Igg )

(d(ding�

(~~f
)

gf( t) R (~f I)

(835a)

Xfgkl Xgikl Xkglk Xgf lk ~

t
kJ

—
X]gkk

—X])gj —v

(ii) X",z»(rr'tt') is a Poisson bracket:

(829a)

(829b)
(835b)

Formula (835a) was used to derive the sum rule
Eq. (5. 15) in the text.
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Molecular dynamics experiments made on a system of 864 particles interacting through a
Lennard-Jones potential for various high-density states are used to study the self-correlation
in classical fluids. The self-diffusion constant is computed and interpreted in terms of a hard-
sphere model. The memory-function formalism is used to give a simple phenomenological
fit for the computed velocity autocorrelation function and for the self-intermediate-scattering
function. A detailed comparison is made with the various existing theories for the latter
quantity.

I. INTRODUCTION
This paper is devoted to the phenomenological

description of the self-motion of atoms in liquids.

We would like to interpret for instance the self-dif-
fusion coefficient and the incoherent scattering of
neutrons in simple liquids. In order to establish


