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The osmotic pressure of Hes-He4 mixtures has been measured at temperatures 0.027-0. 65 K,
for concentrations up to 10-mole % He, and for hydrostatic pressures of 0.26, 10, and 20 atm.
The osmotic pressure was measured directly with a sensitive specially designed diaphragm pres-
sure gauge. The temperatureand concentrationdependenceof the osmotic pressure is in fair
agreement with the effective, interactiontheoryproposed by Bardeen, Baym, and Pines (BBP).
It also agrees with a simple empirical model whichavoids the complicated calculations involved
in obtaining the thermodynamic properties at finite tempexatures from the BBP theory. The
model fits the temperature dependence of other thermodynamic properties of solutions. The
osmotic pressure at absolute zero at 10 and 20 atm is used to determine the Hes effective mass
and somewhat speculative values of the BBP quasiparticle interaction V(k) underpressure.
The interaction under pressure is found to have a minimum at a nonzero value of k, and it
may give rise to a "supermobile" transition at comparatively high temperatures.

I. INTRODUCTION

Measurements of the osmotic pressure of dilute
He -He mixtures are useful in understanding the
thermodynamic properties of this quantum liquid
in the fully degenerate' and semiclassical re-
gions. The present measurements cover the tem-
perature range 0. 027-0. 65 K spanning a wide degree
of degeneracy. In addition, the measurements have
been made under pressures of 0. 26, 10, and 20
atm, allowing examination of the pressure depen-
dence of the mixture properties. In an earlier brief
paper' we discussed the osmotic pressure at 0 K
and zero pressure and some results on the maxi-
mum solubility of He . The present paper is mainly
concerned with the experimental method, a com-
plete presentation of the experimental results, and
a comparison with theory at finite temperatures and
pressures.

At temperatures below -0. 6 K the density of pho-
nons and rotons in liquid helium becomes negligibly
small and the He atoms act only as a superfluid
background for the He atoms. In the model of
Landau and Pomeranchuk in this temperature re-
gion, the excited states of the mixture are due en-
tirely to He quasiparticles (of number equal to the
He atoms) with the energy-momentum relation

E,/ke =2. 785+0. Oll K at P=0. The collective
behavior of the quasiparticles is that of a Fermi
gas with degeneracy temperature T~ given by

ks Tr = fi'O'I/2m *= (8'/2m *) (Sw'n, )"', (2)

where n3 is the He number density. The gas of
quasiparticles exerts a pressure corresponding to
the average rate of momentum transfer per unit
area. This pressure is approximately the osmotic
pressure of the He in solution. The thermody-
namic definition of the osmotic pressure can be ob-
tained by considering two chambers maintained at
a temperature T below the helium X point. The
chambers are connected by an ideal superleak
(completely permeable to superfluid He and im-
permeable to He ). One chamber is completely
filled with pure He, the other with a He -He mix-
ture at pressure P and mole fraction X. Vfe define
tile osnlotlc pl'essul'e II(P, T, X), so tllat ill eall
librium, the pressure in the pure He is I' —m.

Since the He chemical potential is the same in
both chambers, ' we obtain

p, 4(P, T, X) = p, 4(P —m, T, 0) .
Expanding the right-hand side of Eq. (3) as a Taylor
series about the point (P, T, 0) gives

il, (P, T, X) = II4(P, T, 0) —Il(P, T, X)e4

Here E3 is the binding energy of a single He atom
in He and m* is the effective mass of a quasiparticle.
Specific-heat and second-sound data ' indicate
that m* is approximately 2. 4 times the bare He
mass (m, ) in mixtures where the He' mole fraction
X is small. Measurements under pressure show
that m*/m3 increases with P. The binding energy
has been deduced from heat of mixing data" to be

54K4+e i ~,

(P T) )l4(P, T, 0)
4
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are the molar volume and isothermal compres-
sibility of pure He . For the range of the present
data, the third term in Eq. (4) is negligible com-
pared to the second, and succeeding terms in the
series are smaller yet. We therefore adopt as a
working definition of the osmotic pressure

v(P, T, X)v4(P, T) = V, 4(P, T, 0) —V.4(P, T, X) . (5)
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v(P) T, X)v4= eXUp(T, T~)+ pe+ v4etv4 . (6)

Since the first two terms can be calculated to within
the uncertainty of m*, measurements of the osmotic
pressure give values of m„t which can be compared
with values calculated from V(k). Such a compari-
son (for P= 0) in the high-temperature (T & Te) re-
gion previously gave unsatisfactory agreement,
while at T = 0 the agreement is within 10-20%%uo in

V(k). In this paper we make a new comparison
with theory over the whole temperature range. An

alternative approach is to use the empirical values
of v„, to obtain a potential V(k). In this way the
present data are used to deduce V(k) at pressures
other than zero.

II. APPARATUS

The apparatus is shown schematically in Fig. 1.
The experimental cell, made of Epibond 100 A,

'
contained two chambers, each with a filling capil-
lary: one for the He -He mixture and one for pure

In the simple Landau-Pomeranchuk model of
mixtures where X«1, the osmotic pressure m is
just the pressure of an ideal Fermi gas wv4 3XU~,
where U„(T, Tr) is the ideal-gas internal energy.
Including the empirical result that the molar vol-
ume of a solution depends on the concentration ac-
cording to the equation

v (P, T, X) = v [41+Xa(P, T, X)j
requires the addition of a small correction term
p. to 3XU„.

Bardeen, Baym, and Pines (BBP)"extended the
Landau-Pomeranchuk model to finite concentrations
by including an effective interaction between the
quasiparticles. The Fourier transform of the in-
teraction V(k) describing the scattering of two He'

quasiparticles with momentum transfer 0 has been
determined up to k =0.6 A"' from the low-tempera-
ture transport properties. ' The original V(k) of
BBP and a later version proposed by Baym and
Ebner" both suffered f rom the use of approximate
solutions to the Boltzmann equation for the trans-
port coefficients. Ebner recently' gave an "opti-
mum" V(k) based upon exact solutions to the Boltz-
mann equation. He also ' used high-temperature
spin-diffusion data to extend V(k) up to k = 1.5 A '.
When the interaction between quasiparticles is in-
cluded, the osmotic pressure is increased by an-
other term mg t so that
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FIG. 1. Schematic drawing of osmotic pressure
apparatus.

He . The mixture chamber contained a cerium
magnesium nitrate (CMN) thermometer and com-
municated with the pure-He chamber through a
Vycor glass superleak. ' The differential pressure
across the superleak, the osmotic pressure m, was
measured with a specially designed diaphragm pres-
sure transducer, which transformed a change in
m into a change of capacitance. The capacitance
was measured with a General Radio 1615-A bridge.
This system, which we described in another paper, 2'

resolved changes of 10 Torr in the differential
pressure.

The experimental chambers were pressurized
through the He filling capillary with He from an
external high-pressure gas source. The pressure
in the cell could thus be varied without changing
the He number density. External pressure gauges
were used to measure the ambient pressure in the
cell.

The mixture of He and He was cooled by abrush
of 10000 850 copper wires which were hard soldered
to a thermal connector on a dilution refrigerator.
The mixture chamber of the cell contained an elec-
tric heater. Electrical leads for the heater and
the transducer, as well as the filling capillaries,
were sealed through the cell walls by means of
Epibond 121.

The magnetic susceptibility of the cylinder (dia-
meter equal to height) of 5 g of powdered CMN was
used as a primary thermometer. The magnetic
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temperature, calculated from the Curie law, is
known to be insignificantly different from the ab-
solute temperature above 0. 01 K. The suscep-
tibility was determined by measuring the change
in mutual inductance of two coils which were lo-
cated on the outside of the refrigerator vacuum
jacket. At the beginning of each experiment the
CMN was calibrated against the vapor pressure of
the He bath between 1 K and the X point.

Since the experiments were performed at known
pressures with measured amounts of He, it was
only necessary to determine the volume of the
mixture chamber of the cell in order to obtain the
mixture concentration. An external standard vol-
ume and a manometer were used to measure the
amount of He gas needed to completely fill the
chamber with liquid helium at a temperature above
the X point. The same system was also used to
add measured quantities of He throughout the ex-
periment.

At the beginning of each experiment the trans-
ducer was calibrated against the absolute osmotic
pressure measurements of Wilson et al. at 0. 65 K. '

The calibration was done at the standard tempera-
ture and external pressure T, = 0. 65 K, P, = 0. 26
atm. The He concentration was increased from
zero in approximately 0. 35%%uz steps (corresponding
to approximately 5-Torr increments in w) toX= 2%
(m =30 Torr). The capacitance at each concentra-
tion was changed not only by the deflection of the
transducer diaphragm due to m, but also by the
changing dielectric constant of the mixture. Also,
because measurements were made at T(T, and
P & P„ it was important to identify a calibration
function which was a function of w only and which
eliminated the effects of temperature and ambient
pressure. This was done with the aid of a physical
model of the capacitor consisting of a m-dependent
capacitor in parallel with a w-independent fringe
capacitance. ' On the assumption that the fraction
of space in each capacitor filled with helium mix-

ture (filling factor y) is the same (this assumption
introduces negligible error), it follows that the
desired calibration function is

C 1+5
1+y5 F T, P 1+y5

Here C = C(m, P, T, X) is the measured capacitance
and C, =C(O, P„T„O). The denominator under
C reduces it to standard conditions, since 6 is
defined so that the dielectric constant of the mix-
ture is e = e, (1+5). The weak temperature and
pressure dependence of the construction materials
(Mylar and Epibond) is represented by the dimen-
sionless function F(T, P). By measuring C at 2 K
and P=P, with the capacitor both empty and filled
with He, we found y to be 0. 685. The function F
was represented by

F(T, P) = 1+ED(T) +Fq(P),

with E,(T,) —=Ez(P,) =-0. The corrections introduced
by 5 and F(T, P) were quite small. The maximum
values of these quantities encountered in the ex-
periments were 5 =0.01, F,(T) =10, and Fa(P)
= 2&10" . Careful analysis demonstrated that to
a very good approximation hC depended only on m.

The largest source of error in the data is the
i%% systematic uncertainty which we accept by cal-
ibrating against the osmotic pressure measure-
ments of Wilson et al. ' In addition, there is a
0. 7%%uz systematic uncertainty in the measurement
of the He concentration and a 0. 4%%ug random un-
certainty in the measurement of m. As we explain
in Sec. III, the present data were fitted to a simple
thermodynamic model which can be used to com-
pute the osmotic pressure at any temperature and
concentration. The osmotic pressure at 0. 32 K
was calculated in this way and compared with the
data of Wilson et al. ' at the same temperature.
The calculated results fell about 2%%ua below the
Wilson et al. values. We believe this is the re-
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FIG. 2. Osmotic pressure
as a function of temperature

'

at various concentrations and
pressures. Circles and
squares represent data taken
on two distinct runs and are
given in Table I. Solid lines
are the empirical fit to data
discussed in Sec. III B.
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TABLE I.

X=4.47%X=4.06%X= 2.73%X=1.449% X=6.28%

The osmotic pressure of single-phase He -He solutions at pressures of 0.26, 10, and 20 atm, and at
various temperatures and concentrations. These data are also shown in Fig. 2.

P=0.26 atm

0.027
0.032
0.044
p. 052
0.069
p. 086
0.103
0.145
0.179
0.180
p. 208
0.255
0.279
0.314
0.321
0.354
p. 354
Q. 355
0.388
0.388
P.422
0.422
Q. 459
0.526
0.591
0.591
0.649
0.652

1.98
2.08
2.34
2.52
2.98
3.44
3.95
5.21
6.30
6.29
7.17
g. 65
9.43

10.52
10.75
11.81
11.82
11.83
12.90
12.90
13.98
13.98
15.13
17.21
19.32
19.26
20.99
21.23

0.030
p, 033
0.044
Q. 055
0.066
0.079
Q. 085
0.087
0.092
0.094
p. 117
0.154
0.192
p. 238
0.266
0.295
0.336
0.363
0.398
0.398
0.433

5.02
5.08
5.41
5.83
6.27
6.88
7.13
V. 25
7.50
7.57
8.71

10.69
12.76
15.36
16.91
18.50
20. 88
22. 46
24. 47
24. 47
26. 61

0.031
0.036
0.051
0.051
0.064
0.075
0.085
0.094
Q. 104
0.112
Q. 131
0.168
0.201
0.202
0.240
0.273
Q. 276
0.281
0. 281

8.86
9.04
9.62
9.64

10.32
10.91
ll. 56
12.15
12.84
13.37
14.75
17.58
20. 25
20. 23
23. 20
25. 98
26. 15
26. 67
26.72

p p44
0.060
0.060
0.086
0.Q98

Q. 110

10.63
11.46
11.44
13.01
13.86
14.69

Q. 034
0.041
0.050
Q. 058
0.084
0.090
0.095
p. 108
0.126
Q. 142
0.159
0.177
0.194
0.209
P. 225

16.28
16.56
17.01
17.46
19.39
20.06
20.38
21.49
23. 20
24. 93
26. 76
28. 84
30.85
32.56
34.47

X=
0.027
0.032
0.041
0.062
0.079
0.097
Q. 131
0.167
0.203
0. 243
0.276
0.307
0.361
0.434
0.509
0.652

1.322%
1.89
1.98
2.18
2.73
3.22
3.77
4.80
5.94
7.08
8.36
9.40

10.42
12.13
14.47
16.84
21.39

0.031
0.033
0.044
0.055
0.069
0.079
0.092
Q. 117
0.155
0.193
0.240
0.290
0.342
0.398

X= 2.49%
4.75
4.80
5.15
5.67
6.26
6.73
7.39
8.61

10.75
12.85
15.51
18.33
21.34
24. 63

0.028
Q. 034
0.042
0.047
P.054
0.066
0.080
P.090
Q. 101
0.116
0.135
0.155
0.167
0.167
0.190
0.202
0.212

P=lp atm

X=5.71
15.30
15.52
15.92
16.17
16.61
17.45
18.61
19.52
20. 54
21.99
24. Ol

26. 29
27. 72
27.71
30.32
31.80
33.07

0.034
0.036
0.045
0.056
0.067
0.071
0.085
0.097
0.109

X=9.36%
29.99
30.12
30.64
31.44
32.40
32.88
34.37
35.81
37.40

X=l. 254% X= 2.34%

P=20 atm

X=5.04% X=7.44%

0.031
0.031
0.031
0.041
0.062
0.079

l.90
1.90
1.91
2.13
2.70
3 22

0.028
0.033
0.044
0.044
0.055
0.066

4.42
4.55
4.93
4.92
5.40
5.90

0.032
0.037
0.042
0.048
0.057
0.063

13.37
13.58
13.84
14.26
14.85
15.32

0.031
0.037
0.042
0.049
0.057
0.070

22. 44
22. Vl
23.04
23.53
24. 21
25. 51
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TABLE I. (Continued)

X=1.254% X=2. 34%

P=20 atm
X=5.04% X=7.44%

0.095
0.130
0.169
0.204
0.239
0.274
0.304
0.365
0.438
0.502
0.651

3.71
4. 78
6.00
7.14
8. 29
9.39

10.39
12.33
14.68
16.72
21.56

0.079
0.087
0.117
0.155
0.193
0.238
0.292
0.348
0.415

6.55
6.98
8.51

10.65
12.84
15.40
18.52
21.83
25. 81

0.074
0.085
0.097
0.111
0.129
0.144
0. 161
0.176
0.190
0.203

16.21
17.17
18.38
19.64
21.45
23.00
24. 88
26.48
28.04
29.48

0.082
0.094
0.103
0.103
0.113
0.127
0.141

26. 85
28. 23
29.36
29. 36
30.75
32.73
34.84

suit of a systematic error in the earlier measure-
ments, specifically a temperature-dependent sen-
sitivity of the strain-gauge pressure transducer
(which could not be checked in that experiment).
Reanalysis of the earlier data suggests that the
values of m at 0. 65 and 0. 32 K should be reduced
by 1% and 3%, respectively. This correction re-
sults in a substantial improvement in the agree-
ment between theory and experiment at high tem-
peratures. It also makes the present data at 0. 32 K
in excellent agreement with the (corrected) earlier
data. We have chosen, therefore, to calibrate our
transducer against the data of Wilson et al. ' at
0. 65 K, reduced by a, correction of 1/o. This cor-
rection was not applied in our earlier paper. '

III. RESULTS

The results of our measurements of the osmotic
pressure for single-phase He -He solutions at
pressures of 0. 26, 10, and 20 atm are shown in

22

Fig. 2 and listed in Table I. The solid curves
through the data are based on a thermodynamic
model and will be discussed in Sec. IIIB. The
data points come from two distinct runs, each with

independent temperature and transducer calibra-
tions; circles correspond to the first run, squares
to the second. One of the remarkable features of
these data is the linearity which appears when m is
plotted against U~, the internal energy of an ideal
Fermi gas (which is given as a function of T/Tz
by Stoner ). In Fig. 3 some of the data atP= 0. 26

atm are plotted against &U~ defined as

AUr = [Ur(T/T~) —U„(0)], (6)

where Tz is the Fermi temperature [Eq. (2)]. The
osmotic pressure at 0 K, vp(P, X), was thus easily
obtained by extrapolating to &U~= 0. Our values
for vo(P, X) are given in Table II. Values given in
parentheses are for concentrations greater than
the limiting solubility at that pressure. They were
obtained by extrapolating through the two-phase
region.

Normally, He -He solutions of concentration
greater than Xo(P), the solubility at absolute zero,
will separate into two phases once the solution
passes below its characteristic phase-separation
temperature T, . The upper phase is almost pure

20

I
— I8

l6

TABLE II. Zero-temperature limit of the single-phase
osmotic pressure ~p(X, P) for several concentrations
and pressures.

14 P=0.26atm P= 10 atm P= 20 atm

l2 X(%) &p (Torr) X( % ) 7t'p (Torr) X(%) 7I
p (Torr)

IO

8 I I I I

0 .05 .IO .I 5 .20 .25
fUF(T/TF) -UF (0)j/ R ('K)

FIG. 3. Some of the osmotic pressure data at 0.26 atm
plotted against 4' defined in Eq. (8).

1.45
2.73
4.06
4.47
6.28
7.14

1.72
4.58
8.35
9.60

15.5
(18.7)

1.32
2.49
5.71
9.36
9.82

1.59 1.25
4. 24 2. 34

14.7 5.04
29.1 7.44

(30.7) 8.99

1.51
3.93

12.6
21.6

(27. 2)
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4C TABLE IV. &Ov4/8 (mK) as a function of pressure at
constant X.

36

32

[0

~28

24

P(atm)

0.26
5

10
15
20

2. 38

2. 34

2. 28

X(%)
5

5.07

4.99

4.79

8.10

7.95

7.84

11.4
11.2
11.1
11.0

20

2 4 6 S IO

~O-~ T~(0K~)

FIG. 4. Osmotic pressure of the lower phase of a
phase-separated solution as a function of T .

TABLE III. Zero-temperature limit of the osmotic
pressure of the phase-separated solution ~() and the sol-
ubility of He in the lower phase Xo.

S (atm) ~(~)(Torr) xo(%)

0.26
0.52
5
10
15
20

17.7
18.6
26.9
29.6
29.0
26. 8

6.83
7.08
8.96
9.52
9.25
8.85

He at temperatures below 0. 2 K, while the con-
centration of the lower phase decreases gradually
with temperature to Xp(P). Our experimental ar-
rangement measures the osmotic pressure of the
lower phase v'(P, T) in a phase-separated mixture.
We found that v'(P, T) at constant pressure is pro-
portional to T (Fig. 4) in agreement with the ob-
servations of London, Phillips, and Thomas. '
Extrapolation to zero temperature gives n'p(P)

which, when plotted on our single-phase graphs
of vp(P) versus X, specifies the value of Xp(P).
Table III lists our values for mp and Xp for the
pressures studied; these results have been dis-
cussed in a previous paper. '

A. Concentration Dependence of &0

Using Eq. (5), the values of vp(P, X) deduced
from the present data (Table II), and the values of

v4(P, 0) given by Watson, we can obtain

p, 4(P, 0, 0) —g4(P, 0, X) = vp(P, X)v4(P, 0) . (9)

Table IV lists values of vp(P, X)v4(P, 0), which
quantity is seen to be an extremely weak function
of pressure for the concentx'ations studied. This
means that vp at zero pressure is only 0. 8%% less
than at 0. 26 atm. (Note that the values of vp given
in a previous paper' should be reduced by I%%up in
view of the calibration adopted in Sec. II. )

The variation of vp(P, X)v4(P, 0) with pressure
is related to the variation of the "BBPparameter"
&p(P, X) with concentration. At T = 0, the molar
volume of the solution is

v(X, P) = v 4(P, 0) [1+ap(X, P)X], (10)

and the partial volume of the He in solution is

,*(X,P)= (X, P)

Expanding np(X, P) in powers of X:

o'p(X, P) = 4(3Pp)+ ~p(P) X+ ~ ~ ~ (12)

and combining Eqs. (10)-(12), gives

v 4 (X, P) = v (P, 0) [1—np(P) X ] .
But v4(X, P) is related to i44(X, P) as

4 (X P)
s P,4(X, P)

4

so that

Eq. (9) then gives

,(p) i

[vp(P, X)v4(P, 0)]
Xpv4(P, O) ~ SP

Using the results in Table IV, we find &p(P)
= —(1.1 +0. 5) x10 independent of pressure and con-
centration. This result is in striking agreement
with the data at I' = 0 of Edwards, Ifft, and Sarwin-
ski as shown in Fig. 5, where Eq. (12) has been
plotted using o.'p(0) =0. 284 and np= —I x10 3.

Abraham et al. gave an approximate theoretical
expression for the concentration dependence of &p

based on the BBP result for the He chemical po-
tential. At T =0 we have

p3 — E3+ks Tr+np V(0) (1 + 3F)

where V(0) is the k =0 value of V(k), and F is the
exchange part of the interaction which depends on
np and the form of V(k). Making the approximation
F = —1, corresponding to V(k) = V(0), and assuming
V(0) is given by the Baym expression
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0.29-

0.28-

8 12
x(r.j

16 20

FIG. 5. The "BBPparameter" at 0 K, &0, at I'=0,
versus He3 concentration. Open circles are from Ref.
27. Solid line is Eq. (12) using &o(0) =0.284, with n'0

determined from the osmotic pressure data. Dashed
line is Eq. (15) with &0(0) =0.287.

V(0) = —o'p(P) m4s'/n4P,

we obtain

Qp(X P) Qp(P)

(14)

2 k T 3&lnm*
+ 3 1

5 m4s 2 ~lnn4

X 3 ~ lns &ln+o——o', (P)' +
2 ~ inn & inn

where m4 is the mass of a He atom and s and n4
4 0

are the speed of first sound and number density of
pure He at T =0, respectively. Equation (15) has
been evalua, ted at P = 0 using 8 lnm*/8 lnn4 from
Ref. 27, 8 Ins/8 lnn4 and s lnop/8 lnn4 from Ref. 26,
and up(P) =0. 287. The results are shown as a
dashed line in Fig. 5. Once again, the agreement
is very good.

B. Temperature Dependence of the Osmotic Pressure

One feature of the present data is the wide range
of temperatures studied. A single concentration
is measured from the fully degenerate to the semi-
classical regime. It is thus possible to compare
in detail the predictions of theory with experiment
over a wider range of degeneracy than has previ-
ous y een1 been possible. Unfortunately, this compari-

b 1vp18son can only be made at P = 0, where Ebner
gave an interaction V(k) suitable for the semiclas-
sical (T & Tr) regime The da. ta from P = 0. 26 atm
are reduced to P= 0 using the empirical fact that
mv4 is very nearly independent of pressure at con-
stant X and T (Sec. III A). The data are further
reduced to give the interaction part of v [Eq. (6)]as

w„tv4= w(X, T) v4 —,'XUs(T, Tsp) —p— ,16,

where T~ is the Fermi temperature [Eq. (2)] cal-
culated with the X- 0 value of the effective mass,
mg. Analysis of the T=0 data (Sec. IIIC) gives

*=2 23m at zero pressure. The internal energymp —, m3
24U~(T, Tz) is given by Stoner and has the limits

XRT, T/Tpp » 1
(17)2SX~P =

2XgT T T 0

b Eb IThe small volume correction p, is given by Ebner
the high- and low-temperature limits as

4X RT~(1 p Q) T/Typ = 0
(18)

X—RT(l —o'), T/Tsp» 1

and interpolation between these limits was done
graphically. The empirical values of m„tv4 are
shown in Fig. 6 for X= 1.45 and 2. 78%. Data for
larger values of X are not shown since they are
restricted to temperatures less than T~p.

Theoretical values for m„, v4 have been computeuted
from the equation given by Ebner of rT&0 6T
These are plotted as solid lines in Fig. The
squares plotted at T =0 in Fig. 6 are calculated
from the "optimum" V(k) (Sec. III C) and they de-
termine mo. The agreement of the data and theory
is probably as good as one can expect in view of
the approximations which have been made. For
instance, second-sound experiments indica e
the quasiparticle interaction is a nonlocal potential
as proposed by McMillan. This could reduce the
theoretical values of v„, by -20%. The second-
sound experiments also indicate that a term pro-
portional to P should be included in the quasipar-
ticle dispersion relation [Eq. (1)]; this effect
( h'ch is small) has also been neglected.w 1c

lsAt the present time, existing theoretical mode s
do not provide a convenient method for calculating
or fitting the temperature dependence of equilib-
rium properties of solutions, particularly for
T = T~. In view of this, we have used an empirical
thermodynamic model for solutions which is in good

I I I
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-0.4-
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-0.7—

-0.8-
X =2.73%

-0.9-

—1.00
I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 6. Contribution to the osmotic pressure atat& =0
due to the He -He effective potential. Circles are empir-
ical values defined by Eqs. (16)-(18), while curves are
theoretical results from Ref. 16. Squares are theoretical
results at T=0 using mo =2.23m3 with the "optimum"
potential of Ref. 16.



T EMP E RAT URE, P RESSURE, AND CONC ENT RATION 247g

agreement with the osmotic pressure at all concen-
trations, temperatures, and pressures, as well as
with other equilibrium data. The assumption of the
model is that the molar entropy of the mixture is
given by

s=xs (r/r„)+(I-x)s (19)

p, 4 =G —X (2o)

From Eq. (19) and from the fact that Sz is a func-
tion of T/Tz only, we obtain

(21)

where C~ is the molar specific heat of an ideal
Fermi gas with mass m*(X, P). Integration of
Eq. (21) and the definition of v from Eq. (5) give
the temperature dependence of the osmotic pres-
sure as

v(X, r, P) v4 ——vo(X, P) v4+ fX(1+eX) AU+, (22)

where AU+ is defined in Eq. (8) and

where Sr(T/Tr) is the molar entropy of an ideal
Fermi gas with an effective mass m*(X, P) and S4
is the molar entropy of pure He . The thermo-
dynamic properties of the system are then described
in terms of a single empirically determined function
m*(X, P), the specific-heat effective mass. This
effective mass should be regarded strictly as an
empirical quantity with little or no relation to the
inertial effective mass in Eqs. (1) or (16), although
as X 0, m*(X, P) should approach mo(P). The
proposed model is identical with the assumptions
used by Anderson et al. in fitting m*(X, P=0) from
heat-capacity data at X= l. 3 and 5%. The same
model was used by Edwards, Ifft, and Sarwinski
to explain the thermal expansion of mixtures. The
osmotic pressure is obtained from this model by
writing the He chemical potential, at constant T
and P, in terms of the Gibbs function per mole of
solution G,

TABLE V. Values of parameters used in the empirical
thermodynamic fit to the temperature dependence of the
osmotic pressure.
P(atm) fl' Range A, A2

r & 0.6 2. 57 + 0.02 —0.37 + 0.08 —1.13+ 0.29
r&0, 2 2.46+0.03 0.87+0.29 4.69+0 ~ 73

10

20

r & c.8 3.06 + 0.03 —0.12 + 0.12 —2.46 + 0.39
r 0.2 3.03+0.04 0.04*0.27 —2.97+0.75

r & ().6 3.29 + 0.03 0. 28 + 0.12 —2, 90 + 0.39
0.176 r & 0.2 3.26 + 0.04 —0.32 + 0.25 —2. 69 + 0.68

n3 X
n4 1+ &X (24)

and n4 is the number density of pure He at the same
pressure. The concentration dependence of m* is
expressed specifically as

m*(X)/ms=8/(I+A~$+Az$ ~
) . (25)

[This has the same form as the BBP expression
for the T- 0 specific-heat mass using a simple
parabolic form for V(k). ] With these definitions,
the expression for m becomes

2 $ em*
7I'(X r P) v4 = vo(X P) v4+ $ ~ S

'

&Urm* s)
(26)

A computer was used to perform a weighted least-
squares fit of Eqs. (25) and (26) to the data, as-
suming a standard deviation of 0. 4% in v, and al-
lowing mz, B, A1, and A3 to be adjustable param-
eters. The values of m0 were obtained from the
BBP theory using the formulas and constants de-
scribed in Sec. III C. The fitted values of m0 are
discussed in Sec. III C. The weak temperature
and concentration dependence of & was neglected;
the values of n used in the fit are given in Table V.
The fitted values of B, A, and A2 are listed in
Table V. The values of m*(X) from Eq. (25) are
plotted in Fig. 7 for P = 0. 26, 10, and 20 atm,
which indicates that m* is a very weak function of

3 ~ lnm*
(23)

5.5—
I

I

20 atm

This expression for w [Eq. (22)] is similar to one
proposed by Varoquaux ' based upon a specific em-
pirical form for the He chemical potential. Since
both expressions are phenomenological, with pa-
rameters chosen to fit the data, there is little rea-
son to choose between them. Our expression has
the advantage that no integrals over Fermi functions
must-be evaluated. It should be emphasized that
values of m*(X, P) deduced from data on the basis
of these two models will differ.

To simplify the calculations, we introduce the
variable $, where

fO

E Xo-
X

2.5 =
E

2.0

IO atm

0.26 atm

x (r.)

FIG. 7. Specific-heat effective mass versus concen-
tration at three pressures. Solid lines are the result of
fitting Eqs. (25) and (26) to the data for all temperatures
(T«0.65 K). The dashed lines are for data restricted to
T~O. 2K. The open circles at I'=0. 26 atm result from
a least-squares fit of the heat-capacity data (T«0. 2 K) of
Ref. 6.
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TABLE VI. The specific-heat effective mass from
various sources.

Source

Specific-heat data
(aef. 6)

Data of Hef. 6 refitted
Osmotic pressure

T& 0.65 K
reduced to P=O
Osmotic pressure

T&0.2 K
reduced to P=O

—(1.3%)
m3

2.38 + 0.04

2.42+ 0.04

2.58+0.03

2.46+0.04

—(5%)
m3

2.46 + 0.04

2.47+0.04

2. 62+0.03

2.39 +0.04

C. Pressure Dependence of the Potential V(k)

The results of Sec. IIIB indicate that analysis of
the temperature dependence of w is unlikely to be
helpful in obtaining the He quasiparticle scattering
potential V(k). At T =0, however, the interaction
contribution to r0 is"

concentration. The values of m*(X) for P =0. 26
atm when reduced to P = 0 using S 1nm*/SP = 1.5
x10 atm ' (Ref. 27) disagree with the values
deduced by Anderson et al. from specific-heat
measurements. The values are compared in
Table VI, which includes the results of applying
our least-squares fitting program to recalculate
m* from the specific heats of Anderson et al. ,
assigning a standard deviation of 1% to the data
points. The disagreement is removed if we fit
only the v data for T & 0. 2 K (the same range of
T in which the specific heat was measured) The.
m*(X) which results from this fit is also shown in
Fig. 7. The fact that m*(X) depends on the range
of T indicates that the model is not a perfect fit to
the data, but on the other hand it is very satisfac-
tory as shown by the solid lines in Fig. 2. At all
three pressures, the calculated values of w typi-
cally disagree by less than 1% with the measured
values. The model therefore provides a convenient
framework for computing equilibrium properties
of solutions and examining the consistency of vari-
ous thermodynamic data.

kF = (302n3)t" (28)

so that V(k) may in principle be determined from
the n3 dependence of m„, . Reduction of the data to
obtain mt2t requires [Eq. (16)]values for the X- 0
value of the inertial effective mass mz. With some
loss of precision, it is also possible to determine
mo as well as V(k) from 20.

We first consider the situation at low pressure,
where Ebner' has given an "optimum" V(k) deter-
mined by the low-temperature transport properties
of solutions. He assumed that the potential could
be expanded in powers of k' as

Vo[no+nty +soy +n3y + 4y ] (29)

where y =(k/2ko), the momentum k0=0. 318 A ', and

n40(P= 0) Vo/ktt = —2. 13 K .

The parameters a0, a1, a2, a3, and a4 were then
chosen by fitting the experimental transport data
and requiring that V(k) be only "reasonably rapidly
varying. " The resulting parameters given by
Ebner are shown in Table VII.

Substituting Eq. (29) into (27) gives

vt t 4 4k ( 4 0)[ 0 T tyF To 2yF
1 0 2 0 I 1 3 2

.1 3 1 4a—
g +3gy —

7 +4Py), (30)

where yF- (kF/ko) . Using the Ebner parameters
in Eq. (30) and mo = 2. 34m3, we previously' com-
pared the theoretical m0 with the experimental os-
motic pressure extrapolated to zero temperature
and pressure. The results indicated a 10-2(Pq
disagreement in mf

As described in Sec. III B, we now have an al-
ternative (and better) procedure to compare the
osmotic pressure with theory. In fitting the data
at finite temperatures and 0. 26 atm to Eq. (26),
m0 was determined by the BBP formula with an
adjustable m0 and the Ebner "optimum" potential

2 y'( y2
v„t=—n3 V(0) — '

4 . ~1 — 3- V(k)k'dk,
F . 5 F

0 (27)

where

n', (P) V(0) (+
kg

m*
P(atm) ap a1 a3

m3

0.26 1 —3.389 +6.353 —9.576 +5.402 2. 24
10 0.700 +3.822 —19.89 +24. 90 —9.528 2. 72
20 0.600 +6.314 —30.50 +38.28 —14.69 2.93

ag a4

2 ~ 13
—1.62
—1.49

2. 28+0.03
2.57+ 0.04
2.85 +0.04

—2.05
—1.91
—1.81

TABLE VII. Values of constants in a speculative He quasiparticle potential of the form V(k) = Vp[ap+a&y+a~ + a3y
+a4y ] and of the inertial effective mass mp used to fit the zero-temperature osmotic pressure at various pressures.

m'p/m3 (- n m4s /kp) W'
(Second sound, [Baym formula,

Ref. 10) Eq. (14)]
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FIG. 8. Some He3quasiparticle effective potentials, V(k)
deduced from the T=O osmotic pressure at P=O, 10, and
20 atm. Parameters of the potential [Eq. (29)] and val-
ues of the inertial effective mass mo are given in Table
VII.

[Eq. (29)]. It is found that a(X, T) can be fitted
within a root-mean-square deviation of 0. 7%%uq with

mo = (2. 24+0. 03)ms, in good agreement with the
results of recent second-sound measurements, '
(2. 27+0. 03)ms. Allowing for the fact that the true
potential is probably nonlocal ' would improve
this agreement. Thus, we have an excellent fit to
the theory at 0 K using Ebner's "optimum" poten-
tial. The values of mo from the fit are within 1%
of the extrapolated values.

Analysis of the data at 10 and 20 atm proceeded
somewhat differently since V(k) was not known at
all at elevated pressures. Baym gave an equation
for the k = 0 value of the potential [Eq. (14)]:

V(0) = —~'m, s'/n, ', (14)

where m4 is the mass of a He atom and s and n4

are the speed of first sound and the number density
in pure He at T =0, respectively. With the same
fitting procedure used to evaluate the potential pa-
rameters from the transport data, Ebner (private
communication) determined V(k) and mo from ao
at 10- and 20-atm pressure. [Note that, including

mo, there are six adjustable parameters to be de-
termined while, under pressure, there are only
four concentrations to be fitted. The fit was made
unique by requiring that the V(k) be "only reason-
ably rapidly varying. "'s] At 10 atm, v„t could be
fitted to -1% and at 20 atm to -5%. The potential
parameters and mo are given in Table VII and the
potentials are plotted in Fig. 8 along with the P = 0
potential.

The values of mo inferred from fitting the os-
motic pressure should be compared with the values
determined from preliminary second-sound re-
sults' also shown in Table VII. The magnitudes
of V(0) at 10 and 20 atm are given in the Table
along with values calculated from the Baym ex-
pression [Eq. (14)]. The agreement is fair. It is
interesting to note that the minimum V(k) no longer

occurs at k =0 at 10 and 20 atm. This implies a
much higher "supermobile" transition temperature
(- 10 K) for solutions under pressure. The pro-
cedure to find V(k) by fitting ao is somewhat arbi-
trary and is rather sensitive to the values of rno.
Given the discrepancy with the second-sound masses,
the neglect of nonlocal effects in the potential, and
of P terms in the dispersion relation, w.e can only
regard the potentials shown in Fig. 8 as highly
speculative. They are presented in this paper only
to show that the "supermobile" transition temperature
may increase with pressure, although V(0) becomes
less attractive, in agreement with Eq. (14).

IV. CONCLUSIONS

The extensive amount of thermodynamic infor-
mation obtained from the osmotic pressure data
has made possible a fairly critical comparison
with theory. In particular, the effects of temper-
ature and pressure can be analyzed in more detail
than was previously possible.

The limiting case of P =0 and T =0 has been the
subject of the majority of earlier work on solutions,
both experimental and theoretical. In this case we
find that the local He quasiparticle potential de-
termined from transport data is in excellent agree-
ment with the osmotic pressure when the effective
inertial mass at X= 0 is taken to be mo = 2. 23m3.
This value of mo is also in fair agreement with the
value deduced from second-sound data.

For elevated pressures at T =0, the osmoticpres-
sure data suggest that the potential may differqual-
itatively from that at P = 0, implying a much higher
"supermobile" transition temperature. The avail-
ability of transport data at elevated pressures would
clearly be useful. Extension of the microscopic
theory to include the higher density systems should
also prove quite interesting.

Comparison with theory for T &0 is rather diffi-
cult and imprecise although, at least for P =0, the
situation appears more hopeful than had beenthought
earlier. Rather than attempt a complicated fitting
of the temperature dependence to some V(k), we
chose to examine the empirical thermodynamic
model used to analyze the specific-heat data. We
find that a specific-heat effective mass m*(X, P)
can be chosen to give an excellent; fit to the osmotic
pressure. The results provide a convenient em-
pirical framework for the calculation of the thermo-
dynamic properties of solutions.
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The normal modes of an incompressible cholesteric liquid crystal are determined from the
hydrodynamical equations. There are two important modes which should be readily observable
by light scattering. The first mode is a twisting and untwisting of the helical structure. The
second mode is a combination viscous-splay mode. Both modes are overdamped. These
modes scatter light most strongly for momentum transfers exactly equal to and exactly one-
half of those leading to Bragg scattering, respectively. Thus the modes should be easily sep-
arated experimentally. The normal modes are also evaluated in the presence of a transverse
magnetic field, and the damping constants turn out to be quite sensitive functions of the mag-
netic field.

I. INTRODUCTION

Cholesteric liquid crystals are composed of op-
tically active molecules which in many cases are
derivatives of cholesterol. ' The long axes of the
molecules tend to be in planes, and in any plane the

ordering is like that in a nematic liquid crystal,
i. e. , the molecular axes tend to be parallel. How-
ever, the structure is probably not a layered one.
In a direction perpendicular to these planes the axes
are rotated from one point to another, and thus She


