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The triple-collision integrals which determine the first density correction to the transport
coefficients are derived for a gas of hard spheres using the binary-collision expansion. This
expansion provides a convenient technique for classifying the contributions in terms of se-
quences of successive binary collisions between three molecules. Such sequences contain
both interacting and noninteracting collisions. It is demonstrated that for three hard spheres
aQ sequences terminate after four successive cooisions, independent of the. interacting or
noninteracting nature of the collisions. As a consequence, the collision integrals are related
to a limited number of sequences with three and four collisions only. It is shown that equiv-
alent results are obtained from the surface-integral form of the triple-collision operator,
derived earlier by Green and Sengers.

I. INTRODUCTION

Nonequilibrium statistical mechanics predicts
that the first density correction to the transport
coefficients of a gas can be represented by a term
linear in the density n. That is, the thermal con-
ductivity X and the shear viscosity g ean be written
as"

X —Xo+ Xy f/+ ~

90+Ol ++' '

As is well known, the transport coefficients X~ and

go in the low-density 1imit are determined by the
solution of the linearized Boltzmann equation. The
Boltzmann equation takes into account only uneor-
related binary collisions. The transport coefficients

Xo and go can be expressed in terms of collision
integrals which involve the velocities of two mole-
eules before and after a binary eoBision.

In the past decade many investigators have derived
the integral equation for the coefficients ~, and q, of
the first density correction. For a discussion and

a bibliography we refer to a recent revie~ article by
Ernst, Haines, and Dorfman. ' This integral equation
leads to collision integrals for the coefficients X,
and g, that involve the effects of collisions between
three molecules. For a gas of hard spheres it was
shown by Green and Sengers that the triple-colli-
sion integrals can be reduced to a surface-integxal
form, analogous to the binary-collision integrals
determining Xo and q~. That is, the integrals could
be expressed in terms of the initial and final veloc-
ities of three particles in specified sequences of
successive correlated collisions. Thus, the prob-
lem was completely reduced to a study of the dy-
namics of three spheres.

In the earlier formulation, ' the dynamics of the
molecules was described with the aid of a time-
displacement or streaming operator S., (l, . . . , i).
The operator 8,(l, . . . , /) is a substitution operator
which replaces the phase variables of l particles
at a given time by their values at a time t earlier.
As an alternative approach several investigators
have proposed to describe the dynamics using a
binary-collision expansion. '

Here we reconsider the reduction of the triple-
collision integrals for a gas of hard spheres from
the point of view of the binary-collision expansion.
This expansion enables us to decompose the triple-
collision integrals into a series of terms consisting
of increasing numbers of successive binary colli-
sions. The decomposition, thus obtained, differs
in appearance from the decomposition derived
earlier by the surface-integral method. Neverthe-
less, we shaB show in Sec. V that the two decom-
positions are completely equivalent. One of the
advantages of the binary-collision expansion is that
certain properties of the triple-collision operator,
such as its symmetry, ean be readily demonstrated.
More importantly, we shall use the binary-collision
expansion formalism to eliminate those collision
sequences that cannot occur according to the laws
of mechanics.

The generalization of the Boltzmann equation to
include the effect of three-particle collisions is
obtained from a cluster expansion of the Liouville
operator. As a consequence, the eoBision sequences
involve not only interacting collisons, but also non-
interaeting collisions. In the latter type of collision
the particles pass through one another instead of
exchanging their momenta. %e shall prove that all
sequences of binary collisions between three hard
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spheres terminate after four successive collisions.
Several sequences of three and four successive
collisions can also be ruled out as being physically
impossible. Thus the triple-collision integrals will
be decomposed into a limited number of sequences
with three and four collisions only.

II. TRIPLE-COLLISION OPERATOR

A formal solution of the integral equation which
describes the effect of triple collisions yields for
the coefficients X, and 'Q1 '

X = (1/3kT ) fdp A(p ) I A(p ),
7/, = (1/10k T)f dp, B (p, ):I, B (p, ).

The functions A(p, ) and B (p, ) which are functions
of the momentum p, only, represent the solutions of
the linearized Boltzmann equations

duced by Zwanzig. ' This method uses resolvent
operators G(1, . . . , /) which are the Laplace trans-
forms of the streaming operators

G(l, . . . , /) = f dt e "S~(1,. . . , /)

(2. 8)

where X(1, . . . , /) is the Liouville operator for the
l particles

(2. 8)

and

(2. 10)

We also need the resolvent operator G0(1, . . . , /)

which generates the free streaming of the particles

I~A(pi) = —Q (1) — kT— G,(1, . . ., /) = [e +X,(1, . . . , /)] ' . (2. 11)
(2. 2)

The mass of a molecule is denoted by m and Q(i) is
the normalized Maxwell distribution function

(2..3)

The equivalence of the two methods to describe
the first density correction was demonstrated for
hard spheres by Ernst, Haines, and Dorfman. '

Using their notation, one finds

(2. 12)
6-0

The tensor p, p, is the traceless tensor associated with

with the dyadic p,p, . The operators I2 and I3 are
linearized binary- and triple-collision integral
operators. In the cluster expansion method devel-
oped by Green and Cohen, these operators can be
related to the streaming operators S „

I,=lim~B, (~),
6 0

where"

tB~(e) = f dx28, ~G(12) W(12) Go' (l2)

x4(1)4 (2)Z P„,

(2. 13)

(2. 14)
2

I, = f dx, 8„$(12)Q (1)P (2)Z P„, (2. 4)

+&(12))%(1)P(2)P(3)Z P„(2 5)

with
l

&(1, . . . , /) = lim S, (1, . . . , /) Q S„(t). (2. 6)

I = f dx dx 8, (&(123)—&(12) S(13)—$(12) S(23)

eB3(e) =f dxadx3(8~2G(12) (Hqs+ Hqs) G(123) W(123)

+ 8i2G(12) g(12; 3)

—Hi~G(12) W(12) Hi~G(13) W(13)

—8iqG(12) W(12) 8~qG(23) W(23)j
3

xGO (123)$(1)$(2)$(3)ZPg( . (2. 15)

We use the notation dx; to indicate an integration
over the momentum p; and the position r, of particle
i. The permutation operator I'&; interchanges the
indices 1 and i. The operator ~;& is a differential
operator

The statistical factors W(1, . . . , /),

W(1, . . . , /) = g (1 +f,q),
1&4&/ &l

are related to the Mayer functions fo,

f e-Uo /kT
v

(2. 16)

BU]~ B BU]~

Bl; Bp; Br& Bp~
(2. 7) The function g(12; 3) is given by

where U, &
is the pair potential of particles i and j.

Equation (2. 5) was the starting point of the pre-
vious reduction of the triple-collision operator. '~

However, for the binary-collision expansion it is
more convenient to use the E method, first intro-

g(12; 3) = W(12)f,sf (2. 18)

It is understood that the limit & - 0 is taken after
all other operations have been performed.

The self-diffusion coefficient can be expressed
in terms of the same operators, provided one de-
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letes the permutation operators P„.
The first term of B2(E) can be simplified using

the relation

812G(12) (812+ 822) G(123)

= 8,2 G(123) —8,2G(12). (2. 1O}

x P(1)P(2) P(3)& P„ (2. 20)

with

T(123, c)

= f(8„+8„+8„)G(123) W(123) —Q H, G(n) W(n)

We find it convenient to symmetrize the operator
B2(E) so that all three particles play the same role.
For this purpose we interchange. the integration
variables 2 and 3. Furthermore, we add the cor-
responding term starting with 0», since they van-
ish upon integration over p~ and p3. Thus we obtain

&B2(&)= —2J dx2 Ch2 T(123, E)

sphere molecules.

III. BINARY-COLLISION EXPANSION

= [G2+ G2+T G(1, . . . , f)] W(l, . . . , l), (3.1)

W(1, . . . , /) G(1, . . . , l)

=W(1, . . ., l) [G2+G(1, . . . , l)Z~ T GII]. (3.2)

While G(1, . . . , l) and W(1, . . . , l) do commute, the
binary-collision operators to be used depend on
whether the overlap exclusion is written to the left
or to the right.

The binary-collision operators T and T contain
an interacting and a noninteracting term'

A detailed study of the binary-collision expansion
for the case of hard spheres was recently presented
by Ernst, Dorfman, Hoegy, and Van Leeuwen. '
The resolvent operators G(l, . . . , l) can be related
to binary-collision operators by

G(1, . . . , f) W(1, ~ ~ . , l)

—Z E H, G(&1) W(&1)
0'1l'e2

T =T'+T",

T. =T'. +T". .
(3. 3)

(3.4)

x [f +8 G(n2) W(o.2)] jG,'(123) . (2. 21)

The summations are to be taken over the three pairs
12, 13, and 23.

We express the 8,&
operators in terms of resol-

vent operators

812+ 812+ 822 ——GII1(123) —G 1(123), (2. 22)

812 = GII (12) —G (12)= GII (123) —G (12), (2. 23)

so that

To describe the effect of the binary-collision oper-
ators we consider the parameters that specify a
collision between two hard spheres 1 and 2 with
diameter o (see Fig. 1). An impact vector b, 2

is defined by

»=r 2
—rig'812Vlp (3. 5)

~ ~ ~ ~where r» =r, —r~ is the relative position, vi2 =v,
—v~ the relative velocity, and &» the unit vector
in the direction of v». For b» & o, we define a
perihelion vector

T(123, E) = {GII (G(123) —G2) W(123)

-Z G.'(G(~) —G,) W(~)

ok b12 + V12 (o 512)
2 1/2 (3.6)

-Z+ G2'(G(o'1) —G2) W(o'1)

x [f., G.'(G( .) -G.) W(,)]]G.'.
(2. 24)

From now on we omit the arguments of the free
streaming operator t"~.

It is our purpose to decompose this operator into
a sum of operators each of which transforms the
initial momenta of the particles to the momenta
after a specific sequence of collisions. The equa-
tions quoted in this section apply to molecules in-
teracting with any spherical symmetric short-range
repulsive pair potential. The remainder of this
paper is specifically concerned with a gas of hard-
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FIG. 1. Geometry of a collision between two hard
spheres.



2464 W. R. HOEGY AND J. V. SENGERS

and two contact times

r12 %12 o12 + (o' —~i~)"']fo12 .
The operators T» and T» are defined by'

T|a = 8(o' —pic) 8(via) 4typ,

T"„=-8(o-I„)8(r„),
T"„=—8(o —b„)8(r,',),

(3. 7)

(3.3)

(3. 9)

(s. io) f~T~ = 0, T~f~ = 0 (s. i2)

operator product transforms the velocities of the
particles at the top of the diagram to the initial
velocities at the bottom of the diagram. A minus
sign is associated with each noninteracting colli-
sion.

We mention some relationships between the T
operators and the Mayer functions,

where 8(x) =1 for x) 0, 8(x) =0 for x&0, and 5(r) is
the Dirac 5 function. The operator S» transforms
the velocities v, and v2 into the velocities v,' and

v2 before the collision"

I
@12V1—V1 —V1 V12 kk

p

~I
12V2 —V2 —V2 + V12 kk

(s. ii)

A product of T and Gp operators can be interpreted
in terms of a collision sequence when read from left
to right. For example, Fig. 2 shows the collision
sequences associated with the four terms of T»GpT13.
Since we consider backward streaming, the dia-
grams are to be read from top to bottom. The op-
erators T» and T» are only different from zero
when the particles 1 and 2 are in contact at the top
of the diagram. The terms in T,2GpT, 3 require
that the conditions for two successive collisions be
satisfied, such that r, z & 7',~. (Note that T»GOT],
and T12GpT13 may include situations where 1 and 3
are colliding while particles 1 and 2 are still over-
lapping. ) For T",~ and T"„the time ordering refers
to the contact time 7'» and 7'1» respectively. The

Tufa =f8 Tn Tufa =&I (3. 13)

We shall also need the commutation relation

Gof„-f~Go = Go(T~ —T )Go-- Go(T" —T")Go. (3. 14)

For a proof of these relations we refer to Ernst
et al. '

The binary-collision expansion is generated by
successive iteration of Eqs. (3. 1) and (3. 2).
For the two-particle resolvent operator, this pro-
cedure terminates after one iteration,

G(u) W(u) = Go+ GOT~GO,

W(u) G(u) = Go+ Go T~GO,

since'

(3. iS)

(3.16)

T God =0, TeGpTe=0, TNGpTe =0 (s. Iv)

Substitution of (2. 23) and (3. 15) into the expression
(2. 14) for eB3(e) yields

2

«&g(«) =f dx~ T,zg(1)p(2)Z P;q, (3. 18)

T12 Go Tl'3

12 0 13

3 2

3 1

T12 Go T1"3

n n
T12 G0 T13

I

I

I

12
I

I

--r13 I

I

——r1'3 I

T

+ I

12
I

13 '

I

—- V)3I

T

which reduces to the familiar form of the Boltzmann
collision operator.

Similarly, we substitute Eq. (3.1) for l = 3 and Eq.
(3. 15) into the expression (2. 24) for the triple-
collision operator

T(123, E) =[K T~ G(123) W(123) —Z T Go

5~ZT Go(f —+T Go)]GO . (3. 19)
elAM2

As mentioned earlier, for a dynamical interpreta-
tion we read the terms from left to right. There-
fore, we prefer to bring the overlap conditions
W(123) and f to the left Using t. he commutator

2.
(3. 14) we obtain

T(123, «) = [Z T~W(123)G(123) -+~ T Go

—EZ T (f~ GO+ GOT GO)] Go'.

(s. 2o)

FTG. 2. The four collision sequences associated with
the four terms of T&&GOT13. The lines represent particle
trajectories and the shaded areas indicate regions where
two particles overlap. Diagrams are to be read from
top to bottom.

In order to express T(123, «) as a sum of terms that
are convergent individually, we iterate (3. 2) twice,

W(123)G(123) = W(123) [GO++ GOT„GO + G(123)



THRE E —PARTIC LE COL LISIONS IN A GAS ~ ~ ~ 2465

QZ T„GOT Go],ega 1 o 2
1 2

(3. 21)

etc.
Q e Q e o (3. 27)

so that

T(123, e)= Z f~f„T + QQ AT GOT
e e1~e2(e If:gtyle ) (e APAe )a1 e2

T W(123) GOT„= (I +f~) T GOT~

(o.i &P«)2
we obtain

(3.23)

T(123, e) =5~ T~'~ (123, e ),
s=3

(3.24)

with

T~ ~(123, &)= Q fqf„T + ZZ AT~ GOT~
e1AÃ2

(eAgA+e ) (a 18gle 2)

+Z Z Z (I +f~) T~ GOT GOT~
e18e20e3

(a18@a2) (s. 25)

T~ ~(123, e) =5 Z Z Z (1+f~) T~ GOTI
e 1ga2fa 34e4

(a14gle 2)

x GQTa GQTaa4 (s. 26)

+ ZZZ T~ W(123)G(123)T GOT
e18e20e 3

(3. 22)

In Equation (3.22) we have indicated explicitly that
the indices in two successive T operators refer to
different pairs of particles. However, this condi-
tion is also satisfied automatically as a result of
(3. 17). Each term in (3.22) involves at least three
conditions on the phases of the particles. In the
first term f~f„T„ two pairs of particles overlap;
we refer to this term as the double overlap term.
The double overlap term is the contribution accord-
ing to the theory of Enskog": It is the Boltzmann
collision operator associated with one pair of par-
ticles multiplied with the excluded volume of the
third particle. 4 The second sum in (3. 22) is a col-
lection of terms that contain a single overlap con-
dition. However, it should be remarked that the
products of three T operators also include single
overlap configurations implicitly. '8

The triple-collision operator can be expanded into
sequences with increasing numbers of successive
correlated collisions by further iteration of (3.21).
Noting that

In the derivation of (3. 24) we have not used explicit-
ly the fact that the operator T(123, e) operates on a
function of the momenta alone. We shall show in
Sec. V that with the latter restriction, Tt ' (123, e)
can also be written in the more compact form

T (123, e) = Z Z Z(1+fq) T GOT GOT
e Aa Wa1 2 3

(e 1~&a 2) (s. 23)

Each term T"' (123, «) in the expansion (3.24) cor-
responds to sequences of s correlated binary colli-
sions between the three particles.

IV. REDUCTION OF TRIPLEXOLLISION OPERATOR

A decision as to when the expansion (3.24) ter-
minates requires a study of the dynamics of three
particles. We first mention some rules that are
immediate consequences of the definition of the T
operators

T GT~GT =0,
T GT~GT =0.

(4. 1)

These equations express the fact that a pair of
particles cannot recollide after a collision, unless
the trajectory of at least one of the two particles is
deflected by an interacting collision with the third
particle:

(4 2)

The reason for (4. 2) is that in the given sequence
none of the pairs is aimed to collide after the first
three collisions.

We list a number of lemmas, each of which ex-
presses the impossibility of a specific collision se-
quence for three hard spheres.

Lemma 1: T G~T' GOT' GOT„' GOT~ =0 . (4. 3)

The lemma that three hard spheres of equal mass
and diameter cannot undergo more than four suc-
cessive collisions was stated by Sandri et al."and
proved in detail by Murphy and Cohen. ' ' How-
ever, in the original formulation of the lemma, no
distinction was made between real collisions and
interacting collisions. A real collision is a colli-
sion with the condition that it is not preceded by a
noninteracting collision. Strictly speaking, in or-
der for three spheres not to undergo more than four
collisions, it would be necessary to prove

T~ ~(123, e) =Q p Q p Q (I +f~) T~ GOT
a,~a 2~a,~e4~a,

(a 18gfe 2)

T (I +GOT8 )GOT' (1+ GOTg )GOT~(1+GOT~ )

x GOT' (I+G~Tq )GOT =0 . (4 4)
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The factors 1+GpT& ensure that the succeeding in-
teracting collision is considered only when it is
real. Equation (4. 3) implies (4. 4), but not vice
versa. The reason is that according to (4. 4) the
conditions for five successive interacting collisions
conceivably could be met, in which case the se-
quence would be rendered hypothetical as a result
of the interference of a noninteracting collision.
An examination of Murphy's proof shows that the
latter argument is never used and that the conditions
for five successive interacting collisions indeed
cannot be satisfied regardless of whether the colli-
sions are real or hypothetical. Thus Murphy's
proof justifies the stronger conclusion (4. 3). '

In the formulation of the subsequent lemmas, we
denote the three pairs of particles by a, P, and y.
Thus we shRll always use the convention Q + p + p
+ Qy

LemmR 2' T GoTg GpT GpTB = 0,
Lemma 3: T GoT~GpT„'GoT =0 .

(4. 5)

(4. 6)

Lemma, 4: T GoTg GoT,"GpT = 0

T GoT~ GpTyGpT0f 0

L 5: T GT"„GT'GT =0,

T G,T",G,T,'G,T =0,

(4. V)

(4. 6)

(4. 9)

TABLE I. Terms in Tt5) {].23, &).

Colli8lon SeqUence

T~QOTI) GOTNGOTI) GOT~
—0i

ToGo TP Go T~GO Tq GO Tg
——0

TnGOTBGOTv GOT+GOTH= o

T~GOTg'GOT~~ GOTg GOT~ = 0

T~GOTg'GOT~GOT~GOT~ = 0

T~Go TBGOTT GO Ty G.OT~ ——0

T~QOTg GOT~GOT~ GoTg= 0

TIGOTSGOTyGOTeGoTy=0

T~GOTg GOTq G(,T' GOT~ ——0

TeGOTSGOTr GOTeGOTy=0

T~Q
O Tt) GO T~ GO TgG oTo = 0

TOGO' GOT~GOTO~GOT, = 0

Q TffG T$ G Tt?G

T~GOTP"GOT~ GOTg"GOT~ ——0

2, 4

I emmas 2 and 3 express the fact that these particu-
lar four collision sequences cannot occur. '7'9 Again
we use the stronger interpretation for four succes-
sive interacting collisions, independent of whether
they are real or hypothetical, justified on the basis
of Murphy's proof;

Lemma 6: f,T GpT~GpT =0,
fyT~GOTqGOT~ 0

Lemma 7: f„T,GOTBGOT„= 0, (4. 13)

T~GpTqG pT„GpTqGpT

vanishes according to lemma 2, since T~ can be
replaced with —T&GoT&.

As a next step we investigate the terms of
T' ' (123, «). The various combinations of four T
operators are listed in Table II. Again we con-
clude that several sequences are impossible. Thus
(3. 26) reduces to

Z'" (123, «) = & &~ (1+f„)ttT G,T,'G,T G,T„

+ T~GOT~G0T„'GOTg] . (4. 16)

f~T GpT~GpT„=0 .
Lemmas 4-V are new. They are various represen-
tations of a theorem which says that once the condi-
tions for a recollision T GoT~GpT are satisfied,
pair y cannot be in contact during the entire recol-
lision process. A proof of the lemmas 4-V is
given in the Appendix.

The lemmas presented above are to be supple-
mented with the following rules. First, the lemmas
are valid when the left- and right-most T operators
a.re either interacting or noninteracting. Second,
since a noninteracting collision does not change
any of the velocities, the lemmas remain valid
upon addition of any number of noninteracting colli-
sions.

From these lemmas, we deduce the following
theorem:

T"'(123,«) =0, for s & 5 .
Proof: First we note that in each term ofT"(123, «), for s & 5, the subgroup of five left-
most operators is equal to a term in T~" (123, «).
Thus, it is sufficient to prove that each individual
term of T~" (123, «) vamshes.

For this purpose we consider all possible com-
binations of five T operators. From lemma 1 we
conclude that at lea,st one of the intermediate col-
lisions must be noninteracting. Equation (4. 1) says
that such a noninteracting colbsion cannot be in-
serted between two T operators with the same in-
dex. Equation (4. 2) rules out the possibility that
two successive intermediate collisions are both
noninteracting. The remaining combinations are
listed in Table I. Upon inspection, we conclude
that all terms vanish since each contains a sub-
group of four collisions that are ruled out by the
lemmas. The appropriate lemmas for the indi-
vidual terms are listed in the second column of
Table I. The term



THRE E - PARTIC LE COL LISIONS IN A GAS ~ ~ »

TABLE II. Terms in T 4' (123, c).
Collision sequence Lemma

TeG pT~gG pT~ G pTg ——0 2

TeGpTs~GpTe~G pT& & 0

T„Go To Go TQ~ oT~ = 0 3

TeGpTg GpT~~GpTg & 0

TeGpTg GpTe GpT~ & 0

TeGpTg~ GpTqGpTe = 0

TeGpTg"GpT~~GpTe = 0 5

TeGpT~GpT,'GpT~ ~ 0

Furthermore, the terms with f„can be deleted as a
result of lemmas 6 and V. In the terms of
T"' (123, e) containing three T operators, we can
delete the overlap exclusion for the same reason.
Summarizing our results we find

T(123, &) = T o (123, z) + T (123, a), (4. 1V)

with

T"'(123,o)= 5 /of„T + H&~ f T„G,T
e eyle2

(eQ+Ae )
(eg%Aep)

+ & 8 (T.,G,T'.,G,T„,
eyi e2

(ey+ges)

f, = ', -f dx, dx, &~ H 0(7.,)
e ge3

x &~ T„(o.„a,) P(1)g(2) P(3)HP„,

where the summation over p, represents a summa-
tion over the six diagrams of Fig. 3, indicated by
R1, R2, C1, C2, H1, and H2. Just as in Fig. 2,
the diagrams should be read from top to bottom.
For convenience, we have retained the 5 function
to indicate that the integrand is evaluated at the time

=0 of the first collision. The successive colli-
sions are time ordered according to the contact
times v . Although not indicated explicitly, the
trajectories in R1 and C1 should be continued until
no further interacting collisions are encountered.
The 6ffect of the operator associated with each dia-
gram is to transform the velocities at the top of
the diagram into the velocities at the bottom. In

this convention each diagram of Fig. 3 represents
actually two diagrams: one in which the third col-
lision is interacting and another in which the third
collision is noninteracting. The operator has a
minus sign when the number of noninteracting col-
lisions is odd. For a derivation of this surface-in-
tegral form of the triple-collision operator we refer
to the earlier publications. ' '

Rl

+ T,coT,coTo) (4. ie)

T'"(123,~)= HH (T,coT' GoT GoTo
eS~ea

(e ~+Aea)

+T, GoT, GoTocoT, ) . (4. 19)

S((23)-S(I2)S(I3) S(IB) S(l2)+S(I&)

Thus the dynamics is restricted to a limited number
of collision sequences with at most four successive
collisions.

V. COMPARISON WITH SURFACE-INTEGRAL METHOD
S(I23) "S{I2)S(l5} S(l 5) S(23) + S(I3)

The fact that the triple-collision operator can be
decomposed into a sum of operators, each of which

is related to a particular collision sequence, was
demonstrated earlier by one of the authors. That
derivation started fromthe expression (2. 5) for fo in
terms of the streaming operators &(1, . . . , I). This
operator was symmetrized following the same argu-
ments as those used in the derivation of (2. 20).
For the configurational part of the integral we con-
sidered the positions of the three particles along
their free trajectories. A surface integral was
obtained by integrating over v which is the time
relative to the time of the first collision enountered
when streaming backwards. The result was

S(12) S(23}+ S(12) S(23)- I

FIG. 3. The six collision sequences associated with
the surface integral form of the triple-collision operator
(Refs. 4, 6, 23). The lines represent particle trajectories
and the circles indicate collisions between the two par-
ticles whose trajectories are enclosed. The dotted cir-
cles indicate noninteracting collisions.
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It should be noted that the diagrams of Fig. 3 do
not specify the collision sequences completely, but
that in addition some auxiliary conditions have to be
imposed. The first auxiliary condition requires
that the phases of the particles at the surface v,
= 0 should be restricted not only to nonoverlapping
configurations, but also to receding phases. Thus
any collisions that might occur when the trajectories
are extended into the future should be excluded.
The second auxiliary condition says that all colli-
sions up to and including the first noninteracting
collision should be real. Lastly, as mentioned
earlier, the three collisions of R1 and C1 could be
followed by a fourth interacting collision.

On comparing (5. 1) with (2. 20) we see that

lim T(123, e )
C v 0

A. =e(o- b. ) e(~.),
Z. =e(o-b. ) e(- ~:),
N =e(b —o') .

(5. 3)

(5. 4)

(5.5)

Thus A = 1 when pair n is aimed to collide in the
past, Z = 1 when pair n is aimed to collide in the
future, and N~ = 1 when pair n is not aimed to collide
in either direction. These functions were used
previously by one of us in a discussion of the
Lorentz gas. Since f can be written as

should be identified with

T(123)= ~~ &~ 5 (r~ ) 6 T„(n1, n2) . (5. 2)
n1A 2

The six diagrams of Fig. 3 represent a decomposi-
tion of the triple-collision operator which differs
in appearance from the decomposition (4. 17) de-
rived from the binary-collision expansion. It can
be shown that the auxiliary conditions mentioned
above represent a concise formulation of the com-
bined effect of all operators T1'1 (123, e ) in (3. 24)
for s & 3, regardless of the validity of the lemmas
quoted in Sec. IV. For convenience, we shall
demonstrate the equivalence by considering only
those collision sequences that are dynamically
possible. Thus, we first investigate how the lem-
mas simplify the T„(n„n2) operators.

To specify the auxiliary conditions explicitly, we
introduce the following functions:

5(7„)TR, (12; 13)
= (A,3+N, 3) (l423+N23) T12 (1+GpT23) Gp

& T13(1 + GpT23) Gp(T12+ T12G0T23) . (5. S)

The factor (A, +N„) guarantees that the receding
phase condition is satisfied for pair y. The function
5(7', ,) is incorporated in the first T,2 operator.
The factors 1+G0T~3 guarantee that the second and
third collisions are real. The last term T', ~G0TQ3

gives the correction if a fourth collision is en-
countered. Lemma 2 implies that such a collision
can only involve particles 2 and 3. Again it is
understood that the limit &- 0 is taken just as in
the preceding paragraphs. Similarly, the other
T„(12;13) operators can be represented by

5(712) TR2(12 13~) = (A23+N23) %12G0T13GpT1»

5(7; )T,(12; 13)

= (A,3 +N, 3) (A 23 + N23) T12 (1 + GpT23)G0

X T13(1+ GpT12)Gp(T23+ T23GpT13)&

(5. 9)

(5. 10)

5(3'12) Tcp(12; 13)= (A23+N23) T12G0TI3G0T23, (5. 11)

5 (3 12)T„1(12;13)

(A13+N13) (A23+N23) T12GO 13GQT23& (5. 12)

5(T12)TR2(12' 13)= T12GpT13GpT23 (5. 13)

In describing T» and Tc, we have used the fact
that only one particular collision could be added to
the three successive interacting collisions. Lem-
mas 4 and 5 lead to further simplifications in T»
and Tcg.'

5(3' ) T„(12;13)

(A13 +N13) (A23 +N23) T12GpT13Gp(T12 + T13GpT23)»

(5. i4)

5(~„)T„(i2;iS)

= (A 13 +N13) (A 23 +N23) T12Gp[T13G0T23

+ T23GpT13G0T23 + T13GpT12GpT23 + T13GpT23GpT 131

(5. 15)

Note that the term

f. = - e(o —b. ) e(- ~.) e(3-."), (5. 5)
T)~G0T»G0T&3G0TQ3GQT$3

we note

A +2 +N f=l . - (5. 7)

The T„(n„n2) operators can be transcribed in
terms of these functions and the binary-collision
operators used in the previous sections. As an
example we consider T»(12; 13):

in (5. 10) vanishes according to lemma 2, since
T$3 can be replaced with —T»G0T~3.

In contrast to the derivation of (4. 17), the surface
integral (5.2) was derived under the explicit assump-
tion that the operator operates on a function of mo-
menta, as is the case for the triple-collision inte-
grals (2. 1). Therefore, the two decompositions
of the triple-collision operator (4. 17) and (5. 2)
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will only yield identical results in the spatially
homogeneous case. Since

f d d, G 'E( „„,p„p, p )=0 (5. 16)

if I' is a function of the relative positions r» and
r3„we can use a simplified version of the commu-
tator (3.14)

a 1~a 2

(e &Q/e &)

+&6 f, T, G,T, .
e $8ap

(ay+ Ax p)

(5. as)

(T". T".) -G, =f..
Furthermore, we note that

goo+ oo) so
= (I +foo as)

= (1 +f„+T"„G,)T„.

(5. 17)

(5. 18)

Repeating the procedure once more for the last
term, we find

&& f. T.,GpT;
a&aaq

(a,&~a 2)

The replacement of —Z»T» by T»GpT j2 represents
a shift of the surface from 7» = 0 to 723 = 0, which is
again justified in the spatially homogeneous case.
Similarly, A»+N» can be replaced with

A»+N» —1+T»Gp, (5.19)

where the term with f„vanishes due to the presence
of the succeeding T» operator. By substituting
(5. 18) and (5. 19) into the expressions for T (12;13)
and working out the products, we can express
T(123) in terms of products of T operators. o' How-
ever, many terms vanish, again as a result of the
lemmas quoted in Sec. IV. Since the arguments are
precisely the same as those used in the reduction
of T'"(123,e) and T'"(123, z) we do not discuss the
intermediate steps, but simply state the result:

(f~ T GoTo+f f To) .
e2ge2

(5. 24)

T'"(123)=

(e Qf yAe)

fof„T + 5 Pm [T~ GoT' GoT
agley

(e ~+Ae2)

In the double overlap term f,f T~ we can replace
T~ with T~, since both operators reduce to the
Boltzmann operator in the spatially homogeneous
case. Therefore, on comparing these results with
(4. 18) we confirm the identity of the two forms of
the triple-collision operator.

The operator can be transformed into a form
which elucidates more clearly its symmetry upon
time reversal. For this purpose we rearrange the
terms of T'"(123),

T(123)= &~ &~ 6(r„)&~ T„(o.„a,)
e1A 2 l + T (f Go+ GoT Go) To], (5. 25)

with

= T '(123)+T '(123), (5. 20) where from (3. 14)

faoGo+ GoTaoGo = Gofao+GoTn, Go (5.26)

T~ '(123) = P~ P~ (T GoT~ GoT
eyAxg

(e &+0e 2)

+ T GoT GoTo)
1 2

(5. 21)

Using (5. 26) and lemma 7, T' '(123) can be written

T~e(123) = +~ +~ (T GoT' GoT GoTo
e ylap

(a,+~a»
T~ '(123) = H 5 (T GoT' GoT, GoTo

eyAL2

(
+ T GoT GoToGoT„). (5. 27)

+ T GoT GoToGoT~ ). (5.22)

The terms of T' '(123) are precisely the terms
associated with the six diagrams of Fig. 3 if the
auxiliary conditions are disregarded. The terms
of T'+(1 )2w3tnch are identical to those in (4. 19)
represent the effects of the auxiliary conditions.

In order to show that T~ '(123) is identical to
(4. 18) we need to shift the surface from r = 0 toey
7

y
0, when the first co1lision is noninteracting

Using (5. 17) we obtain

The time-reversed operator is obtained by revers-
ing the order of the operators and interchanging T
and T. As mentioned above, the double overlap
term f~ f„T is itself symmetric when operating
on a function of momenta. Thus T'"(123) is sym-
metric upon time reversal according to (5. 25)
and (5.26) and T' '(123) according to (5. 27). This
time symmetry is not sufficient to prove a gen-
eralized H theorem, but it does ensure that the
matrix elements of the triple-collision operator
in a Sonine polynomial representation are sym-
metric.
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T2

the actual trajectories of the three particles in
three-dimensional space. For this purpose we con-
sider a coordinate system with the center of the
action sphere of 1 at the origin 0 for times Tj & T

& v2. The coordinate system is oriented such that
for times 7 & Tj sphere 2 is in the XZ plane, moving
in the positive Z direction (see Fig. 5).

The relative separation of pair 21 at time T', is
the vector from 0 to A,

FIG. 4. A recollision sequence T&2GpTggGpTfp.

VI. SUMMARY

Using the binary-collision expansion we have de-
composed the triple-collision operator into a series
of terms related to collision sequences involving
increasing numbers of successive correlated binary
collisions. The expansion turns out to be equiva-
lent with a decomposition of the triple-collision
operator derived previously by a surface-integral
method. We have presented some dynamical lem-
mas which imply that all collision sequences between
three hard spheres terminate after four successive
collisions regardless of whether the collisions a,re
interacting or noninteracting. This is a generali-
zation of a lemma presented by previous authors
which stated that three equal spheres cannot under-
go more than four interacting collisions. The dy-
namical lemmas lead also to some interesting sim-
plifications in the sequences of three and four suc-
cessive collisions.
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OA = r2, (7,') = (ocos8„0, o sin8, ), 0 &8, & v/2. (A2)

The center of sphere 2 is at point A at v = v,'.
For times v & 7, it moves along line AB in the posi-
tive Z direction.

At time v. = v~, the center of sphere 3 lies at
point C on the action sphere of 1,

OC = r,a(7z) = (- o cosQ sin8„a sing, o cosP cos8a),
(A3)

where Q is the angle that OC makes with the XZ
plane and 82 is the angle between the Z axis and
the projection of OC onto the XZ plane.

In a collision between two hard spheres, the
velocity components along the line of centers are
exchanged. Therefore, for times v. & T~ the center
of sphere 1 moves along, the extension of line CO,
i. e. , from 0 toward D and the center of sphere 3
moves in the plarie perpendicular to CO at C.

We exa,mine the conditions on the location of
point C (the center of sphere 3 at time v= ra) such
that pairs 12 and 32 aim to collide at some time
v & vz. Since at time v. = T~ the center of 1 is at 0
and the center of 2 is between A and B, 1 aims to
collide with 2 only when the path of 1 is directed
toward the tangent plane perpendicular to OA at
point A; this requires C to lie in the opposite
hemisphere from A. Now, since at time v = Tz the
center of 3 is at point C and the center of 2 is be-
tween A and 8, and A and C lie in opposite hemi

APPENDIX

Our proof of the new lemmas 4-7 is based on an
analysis of the recollision sequence Ty2GOTy3GOTy2

(see Fig. 4). The contact times of the three colli-
sions are indicated by Tj Ty v2 T3 T3 For con-
venience we follow the motion in the forward time
direction. Lemmas 4-7 are consequences of the
following theorem:

Y3$()& ar, for Tj & 7& 73 (Al) PATH OF 1

In view of the symmetry of the recollision sequence,
it is sufficient to prove x„(7)& o for 7., & 7 & r,'

The theorem is most easily proved by examining
FTG. 5. Geometrical representation of a recollision

showing the particle trajectories.
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spheres, it follows that x~2(rz) &a. Therefore, 3
can aim to collide with 2 only when the plane of the
path of 3 intersects line AB. The above conditions
imply for 8z and Q

8, &8, &v/2, —m/2&P&+v/2. (A4)

Consider the distance from the points on the path
of 2 to the plane of the path of 3. Since the plane
of the path of 3 intersects AB, there are two points
on line AB whose distance to the plane of the path
of 3 is o. We denote as point E the position of 2
at the earlier time v~, when the distance EIl =0.
For all times 7 & r~, r»(7) & o, so that the time
v4 of first contact of pair 32 is greater than or
equal to v~,

7g&7'g . (A6)

On comparing (A6) with (A5) and (A6) we conclude

T4&73 . (Ao)

We examine the distance from point E to the
plane of the Y axis and line OD. This distance
is given by the line EO. Line EO lies in the XZ
plane and is therefore perpendicular to the Y axis;
it is also parallel to CE and hence perpendicular
to line OD. The length of EO is

iEOi =ocos8, /cos8~, (AV)

and thus, according to (A2) and (A4), ZO &o. This
implies AE &AG and hence

74 7g e (A6) An equivalent statement is

73 7g o (A6)

Next we consider the distance from the points on
the path of 2 to the plane through the Y axis and line
OD, Since the distance from point A to the plane
is o' sin(82 —8&) &o, at some time 7'o & 7'~ the center
of 2 is at point G, such that the distance from G to
the plane of OD and the Y axis is equal to o. Thus
the time v3 of the last contact of pair 12 must be
smaller than or equal to 7~,

Spa(7') &o, for 7'2 & T& T3 . (Al 0)

Lemmas 4-6 and Eqs. (4. V)-(4. 12) follow from
(Al) since they involve the recollision sequence
&PE with pair y in contact or overlapping during
the recollision sequence. Lemma 7 also follows
from (A1) since Tz must be an interacting T opera-
tor in Eqs. (4. 13) and (4. 14), which results in the
recollision sequence yPy with contact of pair n
during the sequence.
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