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A simple theory of neutron scattering from liquid He 11 at zero temperature for large mo-
mentum transfers is described. The theory is based on a generalized mean-field approxi-
mation involving the polarization potential and the screened response function. The latter,
instead of having a free-particle form, is assumed to be a sum of Gaussian functions,
weighted by the momentum distribution function appropriate for liquid helium. The zero and
third moments of the scattering law determine the polarization potential and the width of the
Gaussians. Numerical calculations have been made for the dynamical structure function
S(g, w) for different values of the condensate fraction. Both the width and the peak position

of S(g, w) in the range of momentum transfers 2.5-9

A-t are in fair agreement with experi-

ment for a 6% condensate fraction. Calculations have also been done for g values as large
as 20 A1 for three different values of the condensate fraction, including 0. For a condensate
fraction of 6% or larger, the contribution of the condensate to S(g, w) becomes separated
from that of the noncondensed particles at these large-g values. The separation is distinct
enough that it should be experimentally observable.

I. INTRODUCTION

The microscopic basis for the unusual properties
of liquid helium is generally believed to be the oc-
cupation of the zero-momentum quantum state by
a macroscopic number of particles. The original
proposal of this idea, by London, ! was based on
analogy with the Bose-Einstein condensation which
occurs for the free Bose gas. Onsager and Pen-
rose? gave the proper mathematical formulation of
this concept for a system of interacting particles,
and made the first estimate of the fraction of par-
ticles which are in the condensed state.

The experimental evidence for this so-called
condensate is mainly of an indirect nature. It has
been recognized for some time that neutron scat-
tering experiments could provide more direct ex-
perimental evidence concerning the existence of the
condensate.® A proposal for an experiment specif-
ically designed to probe this problem was made by
Hohenberg and Platzman.* They suggested that if
neutrons were scattered from liquid helium at suf-
ficiently high momentum and energy transfers the
response of the helium atoms could be treated in a
nearly free-particle approximation. The existence
of a condensate could then show up in the distribu-
tion of scattered neutrons as a more or less sharp
peak centered at the free-particle recoil energy,
because the condensate provides a large number of

2

particles in the zero-momentum state.

Cowley and Woods® performed an experiment to
test these ideas using momentum transfers in the
range 2.5-9 A™! (X7). The scattering law obtained
by them, as a function of energy transfer for fixed
momentum transfer, has a single smoothly shaped
peak in it, and it can be characterized by the po-
sition of the maximum and the width at half-maxi-
mum. The sharp peak expected from Hohenberg
and Platzman’s argument does not seem to be pres-
ent. Thus, the experiment does not provide the di-
rect verification of the existence of a condensate that
was hoped for, but it is not inconsistent with there
being a condensate.

There are two interesting features of the results
obtained by Cowley and Woods. First, the position
of the maximum in the cross section is not quite at
the free-particle recoil energy but isshifted tolower
energies. Second, the width of the peak has definite
oscillations as a function of the momentum transfer.

In this paper we propose a simple theory to ac-
count for Cowley and Woods’s experimental results.
Our theory is based on a mean-field approach to
calculating the cross section and the requirement
that the low-order sum rules for the cross section
be exactly satisfied. We find both a shift in the
maximum of the cross section and structure in the
width, and our results are in fair agreement with
the experimental results. These features of the
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cross section result from structure in both the stat-
ic structure factor and the third frequency moment
of the cross section. The fraction of particles in
the condensed state is the one parameter in our
theory, and the value we obtain for that is consis-
tent with other recent estimates. ®

In addition to comparing our calculations with the
results of Cowley and Woods’s experiment, we pre-
sent calculations for values of momentum transfer
which are considerably larger than those used in
their experiment. We find that for sufficiently large
momentum transfer the cross section takes on the
qualitative shape proposed by Hohenberg and Platz-
man, namely, a distinct peak due to the condensate
sitting on a broad background due to the rest of the
particles.

The outline of this paper is as follows. Section
IT contains the formal discussion of the scattering
law, the sum rules, and the details of our model.
The numerical results are presented in Sec. III,
and the conclusions are summarized in Sec. IV,
Some computational details are discussed in the
Appendix.

II. FORMULATION
A. Generalities

The function which is important in the theory is
the density response function x(¢,w). The general
properties of this function have been discussed in
the literature, ” so the description here is very
brief.

If an infinitesimal external disturbance which
couples to the density is imposed on the system,
the Fourier components of the induced density
change are related to the Fourier components of
the external disturbance by

5(p(@ ©))=x(q, @) Vet (§, w).

From standard linear response theory, ® the den-
sity response function in space and time variables
is

(2.1)

X&, t) = (-i/m) 6) ( [p(X, ), p(O,0)]),

where

(2.2)

N
p(X, t)=?31 8(x - X,(2)),

is the density operator, and 6(¢) is the unit step
function, being 0 for <0 and 1 for ¢ >0.

Since (X, ¢) is a retarded response function,
x(g, w) is analytic in the upper half of the complex
w plane, and its real and imaginary parts, denoted
by x'(g, w) and x’’(g, w), respectively, are related
by the Kramers-Kronig relations. ® x’’(¢g, w) is an
odd function of w and wX’’(g, w)=<0. Furthermore,
x'’(g, w) is the spectral function for x(g, w), i.e.,

xlg, @)=@1/m) [* dw'[x"(q, w)/(0' - w)]  (2.3)
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for w in the upper-half plane.
From the spectral representation Eq. (2. 3) the
large-w expansion of x(g, w) is obtained as

X(g, @)=~ (1/70%) [~ dw’ w'y"(q, ")

- (1/7w%) f_: dw'w"(q, wNe.. . (2.4)

The coefficients in the asymptotic expansion of

x(g, @) are the odd frequency moments of x'’(q, w).
The experimentally measured function is the scat-

tering law or dynamical structure function® S(g, ).

The Fourier transform of (27)S (g, w) is the density

correlation function

GE, 1) =n"(p(x,1)p (0,0)), (2.5)

where 7 is the average density. The fluctuation-
dissipation theorem!! relates x’’(g, ) to S (g, w) as

S(g, w) == (F/mn) (1—-e®"*)1x" (g, w), (2.6)

where B is the inverse temperature.

The low-order moment relations or sum rules
for S (g, w) are well known. > The integral of S (g, )
is the static structure factor S(g), and the first
frequency moment is the f sum rule. The third
frequency moment has been derived by Puff, !
These sum rules can be stated in terms of x"’(g, ),
using Eq. (2.6), as

- (1/m [ dwx''(g, w) coth 3 BTw = (2n/7) S(q),

(2.7)
- (/m [* dwwy"(q, w)=(n/M)g%  (2.8)
-(/m [T dww’y(g, w)
=(n/M®)q*[2(KE)/N +?q*/4M +n(1/q?)
X [ dkxg)(1-cosq-X)Q- V)’V(X)].  (2.9)

Here (KE)/N denotes the average kinetic energy
per particle, g(x) is the static pair correlation
function, which is related to S(g) by

nlglx) - 1]=(2m) [ die'T¥[S(q) - 1],

and V(x) is the interparticle potential.

Equations (2. 8) and (2. 9) express the coefficients
in the asymptotic expansion of y(g, w) in terms of
the interparticle potential and the static pair corre-
lation function.

The results in Eqs. (2. 7)-(2.9) are obtained from
the coefficients in the short-time expansion of
x(%,#). Thus these sum rules give information on
the motion of the particles over short-time inter-
vals only. For example, the first-moment sum
rule can be interpreted as saying that over a suf-.
ficiently short-time interval, the particles move
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as free particles. The effects of the interparticle
potential on the dynamics first enter in the third
frequency moment. The high momentum and energy
transfer experiment of Cowley and Woods probes
the motion of the particles over short distances and
over short-time intervals. Therefore, satisfaction
of these low-order moment relations is probably a
minimal requirement on any approximate theory of
this experiment.

The rest of the paper is concerned only with the
zero-temperature limit of the preceding expres-
In that limit Eq. (2. 6) reduces to

sions.
s(q,w)={‘ (r/ank" (g, @), w>0 (2. 10)
: 0 , w<O0
and Eq. (2.7) becomes
~(1/m) [Tdwx"(q, ©)=(n/1)S(). (2.11)

B. Model Form for X(q,w)

The model form for (g, w) is introduced here and
related to the general statements in Sec. II A. This
particular model form has been discussed before
for liquid helium by Pines'® and for classical liquids
by Singwi, Sk6ld, and Tosi'® and by Nelkin. !’

In Sec. II A the density response function was in-
troduced as the proportionality factor relating a
weak external potential V. (q, w) to the induced den-
sity disturbance 6 {p(J, w)). Due to the interparticle
interaction, this density disturbance produces a po-
larization potential V,,,(q, @), which can be written

V1@, @) =9(q)8 (p(@, w)) . (2.12)

Equation (2. 12) defines ¥(g), with the additional as-
sumption that it has no frequency dependence. This
assumption can be equivalently stated that there is
a local relation in time between the polarization po-
tential and the density disturbance.

The screened density response function y, .(q, w)
is defined to give the response of the density to the
sum of the external potential and the polarization
potential, i.e.,

6 (P(a, w) ) =Xac(q; w) [Voxt(aa w) +.Vpol(a3 w)]
Combining Eqs. (2.1), (2.12), and (2. 13) gives

(2.13)

x(@, @) = Xec(@, w)/[1 = P(@)Xaolq, w)]. (2.14)

So far we have just introduced two new functions,
and we need additional physical assumptions to pro-
ceed. We obtain these by the following arguments.

In a neutron scattering event where the momen-
tum and energy transferred to the system are large,
we can consider that the neutron interacts with es-
sentially a single helium atom and that atom re-
coils like a nearly free particle. If the scattering
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system were a free Bose gas, the imaginary part
of the response function would be!®

Xfreeld, @) =TI 2oy g00e®)[6(w — w3, g+ w5)

- d(w+ W — w3)]. (2.15)
Here 74.,,(p) is the momentum distribution function
for the free Bose gas'® [at zero temperature 7.,,(p)
=nb6;35], and Zwg=7%?/2M is the free-particle en-
ergy-momentum relation. X';.(7, w) is obtained
from the Kramers-Kronig transform of Eq. (2. 15).

At the energy and momentum transfers of interest
here, we believe that we can treat the response of
the particles as nearly free, and we expect the in-
terparticle interactions to have the following three
effects. First, the momentum distribution function
which enters should be that appropriate for real li-
quid helium, and not the free particle-distribution
function. Second, the mean field acting on the par-
ticles should tend to organize their behavior into
collective oscillations. This collective behavior is
described by the denominator in Eq. (2. 14); if there
are well-defined collective modes, the denominator
vanishes at the collective-mode frequencies. At the
q values of interest here, we do not expect to find
good collective modes, so the denominator should
not have a large effect. Third, the remaining resid-
ual interactions damp the nearly free-particle re-
coil of the helium atoms. Since X4 (g, @) in the nu-
merator of Eq. (2.14) should describe essentially
the single-particle aspects of the motion, we expect
that x5, (¢, w) will be similar to xji, (¢, @) in Eq.
(2.15), except that the 6 functions will be broadened.

On the basis of these arguments, we assume the
following form for yie(g, w):

Xai (g, w) == 1k 25 n(p) [nT(q)] V2

X (g=@=wpe g + w32 @

(2.16)

_emwrug, g mup?r @),

Here n(p) is the momentum distribution function of
liquid helium and the 6 functions of Eq. (2. 15) have
been replaced by Gaussians with a width function
I'(g). We choose Gaussians rather than Lorentzians
because we want to make use of the frequency mo-
ments, which do not exist for a Lorentzian. In the
limit that T'(g) - 0* and n(p) ~n4.,,(p), Eq. (2.16) goes
over to Eq. (2.15).

In a more complete treatment the broadening of
the 6 functions would be dependent not only on the
magnitude of ¢ but also would have frequency de-
pendence. The assumption that there is only g de-
pendence is necessary here to make the problem
tractable, and it implies some kind of average over
the frequency dependence.

The momentum distribution function n(p) appear-
ing in Eq. (2. 16) has the form
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n(p)=ny635+Ap). (2.17)

The singular term comes from the Bose- Einstein
condensation in the system, and it is at this point
that the existence of a condensate enters into the
theory. The strength of the singular term #n, which
is the density of particles in the condensed state is
the one adjustable parameter in our theory. The
smooth part #(p) has been calculated by McMillan, 2°
and we use his results. In Sec.(IID) we briefly de-
scribe the properties of 7 (p).

Xsclq, w) is obtained from the Kramers-Kronig
transform of Eq. (2.16). The transform of the
Gaussians can be explicitly carried out in terms of
the error function of purely imaginary argument.

Equations (2. 14) and (2. 16) complete the descrip-
tion of our model form for the density response
function. The resulting expression contains two
unknown functions ¥(g) and I'(g) whose determina-
tion is described next. 2!

C. Imposition of the Moment Relations

The model form for y(g, w) described in Sec.
IIB gives expressions for the low-order frequency
moments of x’’(¢g, w) in terms of the unknown func-
tions ¥(q) and T'(g). Requiring that these moments
agree with the exact expressions in Egs. (2. 8),
(2.9), and (2.11) determines these functions.

The moments of x’’(g, w) are the coefficients
in the asymptotic expansion of x(g, w), according
to Eq. (2.4). These coefficients can be determined
from Eq. (2.14) if the asymptotic expansion of
Xseld, w) is known. The asymptotic expansion of
Xscl@, W) is determined by the frequency moments
of x2(g, w), in exact analogy with the expansion of
x(g, w) in Eq. (2.4). The moments of x5(q, w) can
be calculated from the specific form assumed for
Xs. (g, w) in Eq. (2.186).

Thus, we have

» B Xee (g, ®)
X" @ ) = g, O F r @ i, OF
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- (/1) [ dowxig, w)=/M)q?, (2.18)

- (1/m) [Zdw o®xig, ©) = (0/M*)q* [2(KE) /N

+7%%/aM +(3M/2) T'(q)/q?). (2.19)

The true kinetic energy per particle appears here
because the true n(p) function is used in y%, (g, w).

Using these results in the asymptotic expansion
of Eq. (2. 14) gives

—/m S dwwy” (g, ) = 0/M)q? (2. 20)

- (1/n) [Zdw «*x"(q, w) = (0/MP)q* [2(KE) /N

(2.21)

+71%%/aM +(3M/2)T(q)/q® +ny(q)).

Comparing Egs. (2. 20) and (2. 21) with the exact
expressions in Egs. (2. 8) and (2. 9) shows that the
first moment is automatically satisfied and that the
third moment is satisfied if

(8M/2)T(q)/q® +nip(q) =n Py(q), (2.22)
where
Py(q)=(1/¢?) [ dXg(x) (1- cosq: %) (G- V)2 V(x)
(2.23)

is the potential part of the third moment.

P4(g) can be calculated using known values of the
pair correlation function g(x) and the interparticle
potential V(x). This calculation is discussed in
the Appendix.

From Eq. (2.14), X" @, w) can be expressed in
terms of Xg(q, @), Xa(q, ®), and ¥(q) as

(2. 24)

The explicit expressions for x's(q, ®) and x%.(g, @) using Eq. (2.16), the Kramers-Kronig transform of Eq.

(2.16), and Eq. (2. 17) are

1/2n0

» ___T (0= w2 [TQ) _ w4+ w2/ , M f” [
x:c(q, w)= ﬁ[r‘( ] (e e a )+m o dPPﬁ(P) erf\

q)

[w=w, — (7ipq/M)
[r(q) ]1/2 )

(2.25)

w = w, +(7pg/M) w + w, + (pq /M) w+w, - (Fipg/M)
- erf(‘ T@]” )* e“( B )“ S W 7Y ]

and
12

X;c(q’ w) =;;[1]_L(q)r§0 [e-(w - wq)zll"(q) Im erf(_[r(_q)]r,g

1 ® 1 6t = 2
rgmtear . arne J, oo O 1 et

i(w—wp)

) @+ 0¥ T@ erﬁ(%%‘%fiofz))}

(i(w = w, - (Hpg /M )u))
[T@)]7?
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i(w+w, + (pg/M)p)

Ino

2
— e "lw+ wg+ Mpd/MHRI®T) [y opf (

(T

Equation (2. 22) gives one relation between the two
functions ¥(g) and I'(g). We use this relation to
eliminate I'(g) from our expressions. Then, for each
g, we integrate Eq. (2.24) over w (numerically) with
different values of ¥(q) and then choose #(g) so that
Eq. (2.11) is satisfied. This then completes the
determination of ¥(g) and I'(g).

From Eq. (2.10) we obtain S(g, @) and from that
we determine the position of the maximum and the
width at half-maximum for comparison with the
experiments of Cowley and Woods. The results are
given in Sec. III.

D. Momentum Distribution Function

The exact momentum distribution function » (p)
appears in our expression for the imaginary part of
the screened response function in Eq. (2.16). Some
properties of n (p) are discussed here.

The form of % (p) for liquid helium which results
because of the Bose-Einstein condensation has been
given in Eq. (2.17). The value of #, is not precisely
known, but there have been several calculations or
estimates of it.6:20:22=2¢ Cglculations of 7(p) have
been made by McMillan, ® and more recently by
Francis, Chester, and Reatto.?* We have used
McMillan’s results here.

In this calculation we choose 7, to be our one pa-
rameter, which we adjust to fit the experimental
results of Cowley and Woods. In particular, when
q becomes as large as 9 A™, y(g) is practically 0,
so we choose 7, to fit the experimental width of S
(g, w) at g=9 A", with (g=9 A"')=0. Then we use
that value of 7, to do the calculations described in
Sec. IIC for smaller values of g.

There is a normalization relation between n, and
7(p) which is

n0+;2 Aip)=mn.

P#0

(2.27)

When we vary n, we also vary 7 (p), by scaling it
uniformly for all values of p, so that the total den-
sity always has the correct value.

It is known from perturbation theory® and from
analysis of approximate ground- state wave functions?®
that for small values of p, 7(p) varies as

7Ap) =noM,/2nitp.

for zero temperature. Here ¢ is the velocity of
sound. The numerical calculations of 7%(p) by
McMillan,?® which we use, do not have thisbehavior,
for reasons which are discussed by him and also by
Chester and Reatto.?® However, in Fig. 9 of his
paper, McMillan®® has given a prescription for modi-
fying his numbers to agree with Eq. (2.28), and we

6

(2. 28)

]|

(2. 26)

have done that in our calculations. This particular
modification has very little effect on our numerical
results.

E. Relation to Other Theories

In their original paper, Cowley and Woods® used
a theoretical model to interpret their data, and re-
cently Puff and Tenn® (PT) have given a detailed theo-
retical analysis of the experiment done by Harling, 21
which was performed at much larger momentum and
energy transfers. It is useful to compare these
theories and the theory presented here.

The relation between our approach and that used
by Cowley and Woods® has been pointed out earlier
in Ref. 21, where it was noted that their model could
be obtained from ours by setting the polarization
potential §(g) and the width function I'(g) to 0.

The experiments by Harling, 2" which Puff and
Tenn® analyze, were done for values of ¢ extending
up to 20 A"l These are much larger than the val-
ues of g obtained in the experiment by Cowley and
Woods.® Puff and Tenn are also more concerned
with analyzing the temperature dependence of the
shape of the cross section, both above and below
the superfluid transition temperature. Such an an-
alysis cannot be carried out numerically with the
theory presented here, since nothing is known about
the temperature dependence of 7%(p). Therefore,
we restrict ourselves to a formal comparison of the
two theories.

In order to relate our theory to that of Puff and
Tenn it is necessary to establish the asymptotic
behavior of §(q) for large values of ¢. It is difficult
to do this rigorously, and the following analysis can
only be considered suggestive.

It seems physically reasonable that 3(g) should
vanish for g -, This means that the response of
the system to very-short wavelength disturbances
is independent of the collective properties of the
system.

It is evident from Eq. (2. 23) that, for large ¢,

Py(q) = const/q% (2. 29)

From this result and from the assumption that y(q)
approaches 0, we can conclude from Eq. (2.22)
that for large g, I'(g) can possibly be increasing,
but it must increase less rapidly than ¢%. In par-
ticular, it will always increase less rapidly than
w,. It then follows from Eq. (2.16) that the inte-
gral of (=7/mn) x!! (g, w) over positive w approaches
unity as g becomes large. Since S(q) approaches
unity as ¢ becomes large, it seems plausible from
Eq. (2.11) and from the expansion of Eq. (2.24)

in powers of ¥(g) that y(¢g) must approach 0 at the
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same rate that [S(g) —~1] does. Thus, starting from

the assumption that (q) approaches 0 at large g,
we have been able to make an estimate -of how rapid
that approach is.

Since the pair correlation function g(#) is not
singular at =0, [S(g) - 1] and hence ¥(g) must
approach 0 more rapidly than g2, Thus we have
that in the region of g values of interest to Puff and
Tenn, it is a good approximation to take

d@)=0 (g29 A™). (2.30)
We then have from Egs. (2.22) and (2. 29) that

lim I'(g) = const > 0. (2. 31)

-
That is, I'(g) actually does not increase but ap -
proaches a constant value at large ¢, if the above
argument is correct. The behavior of ¥(q) and
I'(g) given in Eqgs. (2. 30) and (2. 31) is in agree-
ment with our numerical results in Sec. III, but
again that is only suggestive and not conclusive.
Equation (2. 30) is the first step in relating our
theory to Puff and Tenn. The next step is to note,
following them, that for this range of ¢ values
Ps(q) is quite small compared to the other terms in
the third moment Eq. (2.9). Therefore, they re-
quire satisfaction of the approximate third moment

Py(g)=0 (2. 32)

in Eq. (2.9). If we make this approximation in our
theory, it then follows that the “constant” in Egs.
(2.29) and Eq. (2.31) is 0 and therefore

I'(g)=0. (2. 33)

From Egs. (2.14), (2.16), (2.30), and (2. 33) it

is then seen that x’/(gq, w) has been reduced back to
the free-particle form except that the exact #(p)
function appears in it. This is then essentially the
form used by Cowley and Woods® to analyze their
data at the smaller-q values.

The next assumption that must be made to obtain
the Puff and Tenn result is that #(p) has a Gaussian
shape, i.e.,

7(p) = Ae=™",
The two parameters A and a can be expressed in
terms of the density of noncondensed particles
n —ny and the kinetic energy per particle (KE)/N.
With this simple form for #(p), the result for
x"'(q, w) is

(2. 34)

X""(g, @)= =ng(n/M[6(w = w,) = 6(w+w,)]
- (n - no) (’ﬂ'/;i) [ﬂrz(q)] -l/2
X [e -(w—wq)zl Tole) _ e -(w*wq)zll"g(q) ],
(2. 35)
with

1 8 (KE)
FZ(q)=1 —(no/n) ﬁ N wq.

The expression in Eq. (2.35) satisfies the mo-
ment relations in the same approximation used by
Puff and Tenn. That is, Eq. (2.8) is satisified,
Eq. (2.9) is satisfied except for the absence of the
last term on the right-hand side, which is small,
and the value of the integral in Eq. (2.11) corres-
ponds to S(g) equal to unity, which is appropriate
for the large-q values of interest to Puff and Tenn.

Equations (2. 35) and (2. 36) arenot quite the same
as the form for the cross section assumed by Puff
and Tenn (PT). In order to obtain their form, we
must broaden the 6 functions in the first term of
Eq. (2.35) into Gaussians with a width function
I'TT(q), so that

X" (g, @)= =ng(n/M[xTT ()] */*
x{exp[- (w - w)?/TT"(g)]
—exp[- (w+w)?/TTT(g)]}
- =ng)(w/m) 7 TET(q)] 2
x{exp[= (w = w,)%/T3 ()]
—exp[—(w+w)?/T; % (g)]} .

(2.36)

(2.37)

In order for Eq. (2. 37) to satisfy the same third
moment relation that Eq. (2. 35) satisfies, it is-
necessary that the width function in the second
term I'} T(q) be reduced below the value of I'y(q)
given in Eq. (2.36). The amount of reduction
necessary is determined by what is chosen for
I'tT(q), which must be determined from a separate
argument not depending on the moment relations.
Puff and Tenn choose

2
T (g) = s (o)

Sz M Yo (2. 38)

where ¢ is the cross section for scattering of two
helium atoms. This form was suggested by Hohen-
berg and Platzman® and is derived from the finite
lifetime of a single-particle state due to binary
collisions with other atoms. With this expression
for T'T7(g), the other width function is

1 8 KE) ny_1 (no)?
1= (ny/n) (3% N —nOZInZ M ) Wq -
(2.39)

;%) =

Equations (2. 37)-(2. 39) are the ones used by Puff
and Tenn.

We conclude that the form for the density response
function assumed by Puff and Tenn can almost be
obtained from our theory if we approximate the
third moment in the same way that they do, and
assume that 7(p) is a Gaussian function. The one
feature of their theory which cannot be obtained
from ours is the width function I'}T(¢) given in Eq.
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(2. 38), which must be introduced from other con-
siderations.

In our theory we have not made the assumption
that P;(q) is 0 and, therefore, we obtain the be-
havior of I'(g) given in Eq. (2. 31) rather than that
of Eq. (2.33).

In this large-q region where Eq. (2. 30) holds,
our result for x’’(¢q, w) in Eq. (2. 24) becomes the
expression in Eq. (2.25). The first term is a
Gaussian with a width determined by I'(g). From
Eq. (2.31) this width approaches a constant value
at large q. From the numerical results presented
in Sec. IIIB, it will be seen that the width of the
second term in Eq. (2.25) continues to increase as
g increases. Thus, at sufficiently large ¢ our
calculated cross section obtains the qualitative
shape originally proposed by Hohenberg and Platz-
man, namely a distinct peak due to scattering from
particles in the condensate sitting on top of a smooth
background due to scattering from the noncondensed
particles. Our calculations indicate that this situa-
tion should be obtained for ¢>20 A™. In contrast,
in the theory of Puff and Tenn both width functions
I'TT(g) and '} T(q) increases proportionally to ¢?
and for that reason they do not get a separation of
the cross section into two observably distinct
terms.

The occurrence of this distinct separation in our
theory is due to our assumption that ¥(g) vanishes
sufficiently rapidly. If this is not the case then
T'(g) will increase with ¢ and the separation will be
less distinct. However, as long as $(g) vanishes,
T'(g) cannot increase as fast as g%, and hence in our
theory the condensate contribution will become vis-
ibly distinct at sufficiently large q. Thus, there is
a definite difference between the predictions of our
theory and that of Puff and Tenn concerning the vis-
ibility of the condensate peak in large momentum
transfer inelastic neutron scattering. Further ex-
periments will help resolve this difference.

Although both our theory and the theory of Puff
and Tenn are phenomenological, we would like to
mention four ways our theory differs from theirs.
First, the resonance form of our assumed response
function, Eq. (2.14), provides a mathematical
mechanism for producing a shift of the maximum
of the cross section away from the free-particle
recoil energy, whereas their theory does not pro-
vide for such a possibility. Second, both theories
take into account effects of the interparticle inter-
actions by broadening the 6 functions which are
characteristic of free-particle response. However,
Puff and Tenn do this by broadening only the 6 func-
tions for the particles in the condensate in Eq.

(2. 15) by their function I'FT(q), whereas we broaden
all the 6 functions in Eq. (2. 15) by our function
T'(g). Physically, they take into account the effect
of the interactions only on the particles which are
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initially in the condensate and are scattered out of
it by the external disturbance, whereas we consider
the effect on all the particles. The main contribu-
tion to their function 'y T(g) comes from having a
distribution of momenta, given by 7%(p), and not
directly from the effects of the interactions. Third,
our theory does not make use of Eq. (2. 38). In the
absence of a first-principles theory, we feel that
the width functions are more reliably determined
using only the moment conditions, which describe
exactly the short-time evolution of the system.
Lastly, it was pointed out that their form for the
cross section resulted from assuming a Gaussian
form for 7#(p). We will indicate in Sec. III A that
our calculated results depend fairly sensitively on
the behavior of #(p), especially for large p, and
that assuming a Gaussian form gives significantly
different results than are obtained using McMillan’s
computed 7(p).

III. RESULTS
A 25 A1 <g<9 4!

In Sec. II it was shown that data for the static
structure factor S(g) and its Fourier transform g(#)
are needed in two different places in this calcula-
tion. The evaluation of Pg4(g) in Eq. (2. 22) requires
g(7), and the satisfaction of Eq. (2.11) requires
comparison with S(g). These details are discussed
in the Appendix. Here it suffices to say that we
present two sets of calculations, one using the ex-
perimental results of Achter and Meyer (AM)? and
the other using the theoretical results of Schiff and
Verlet (SV). % The latter authors calculated g()
and S(g) from an approximate ground-state wave
function of the Jastrow form, using molecular-dy-
namics techniques to evaluate the required inte-
grals. For reasons which we give in the Appendix,
we feel that our calculation using the SV data is the
more accurate one, but we give both sets of results
to show the sensitivity of the calculations to the in-
put values of Ps(g).

Our calculated results for the width at half-max-
imum of S(g, w) as a function of ¢ and for three dif-
ferent values of ny /% are shown in Fig. 1, along with
the experimental results of Cowley and Woods. °

Our calculated results for the width do show some
structure. This structure arises from the combined
effects of the structure in S(g) and P;(q) showing up
in S(q, w) when we require satisfaction of the mo-
ment relations. The magnitude of our calculated
widths generally agrees with the data. In particu-
lar, we obtain a rapid increase in the width between
g=2.5A"and ¢=5 A"!, a minimum at ¢=6 A",
and then a less rapid increase beyond that. The
experimental widths have a rapid increase between
¢=2.5A"and ¢=4 A"!, a minimum at ¢=5 A",
another rapid increase up to 7 ;&'l, and then a slower
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FIG. 1. Width of the cross section at half-maximum.

The value used for #y/n is marked on the curves. The
experimental points are from Ref, 5. The straight line
is the calculated result if ¥(¢g) =T'(9) =0. The curves
labeled SV and AM are the calculated results using the
pair distribution function of Refs. 23 and 27, respec-
tively.

increase beyond that. It is worth mentioning that
the initial rapid rise in the width is due to the pres-
ence of 3(g) in the denominator of Eq. (2.24).

The most pronounced disagreement is the pres-
ence of a definite minimum in the experimental
widths at ¢=5 A™!, where the theoretical widths
have a maximum. There is a shallow minimum in
the calculated widths, but it occurs at ¢=6 A™.

It seems reasonably conclusive from Fig. 1,
especially from the larger values of ¢, where the
theory should be most accurate, that ny/n is greater
than 0, and probably less than 0.12. Using the SV
data and the procedure described in Sec. IID we
obtain 0. 06 as the best value of ny/n; the AM data
require a slightly lower value for the best fit. %°
These values are obtained by an “eyeball” fit to the
data; the error bars are sufficiently large that a
more precise fit cannot be made.

In the other calculations shown in this section we
have taken ny/7=0.06. This value is essentially
the same as that obtained by Puff and Tenn® from
their analysis of the data at higher momentum
transfers obtained by Harling. " This value is less
than those obtained in theoretical calculations by
McMillan, # by Schiff and Verlet, ?® and by Francis,
Chester, and Reatto.?* All of these calculations
are based on approximate ground-state wave func-
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tions of the Jastrow type, and they obtain values of
ny/n in the range 0. 08-0.11. Some of this differ-
ence may arise because we are fitting a zero-tem-
perature theory to an experiment done at 1. 1K.

The results for the frequency of the maximum
in S(g, w), wy, relative to the free-particle recoil
energy w,=7iq?/2M are given in Fig. 2. This shift
arises from the denominator of our expression for
S(g, w). Thus, w, is significantly different from
w, when Ip(g)| is large, and w,/w, rapidly ap-
proaches unity as |9(g)| becomes small. The three
values of the experimentally measured shift reported
by Cowley and Woods® are shown in Fig. 2, also.
The agreement is fair.

Figure 3 shows the values for (g) obtained by
satisfying Eqs. (2.9) and (2. 11). For the range of
q values of interest, ¥(¢q) is negative and of such
magnitude that the denominator of Eq. (2.23) shows
no tendency to vanish. Thus there are no well-de-
fined collective density oscillations in this region.
Also ¥(q) practically vanishes for ¢26.5 A", which
is consistent with our procedure of assuming it to be
0 when determining the value of #y/n from the data
atg=9 A,

The width function [I'(g)]"? is also shown in Fig.
3. It is a rapidly varying function of g over the
range where (q) # 0. As was mentioned following
Eq. (2.16), in a more complete theory, I'(g) would
not be a function of ¢ alone, but would have frequen-
cy dependence, which we have averaged out in some
unknown way. The strong dependence of our I'(g) on
q is probably a result of this averaging.

These calculations are fairly sensitive to the
shape of 7(p) and thus could be modified if McMil-
lian’s® calculated 7 (p) is not a good representa-
tion of the momentum distribution function of real
liquid helium. For example, in the early stages of
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FIG. 2. Ratio of the frequency w, of the maximum in

the cross section to the free-particle recoil wq=h’q2/ 2M.
The experimental points are from Ref. 5 and are at T
=1.1 K. The calculated results are for ny/zn=0.06.
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this calculation we fitted McMillan’s 7 (p) with a
Gaussian. This gives a good fit at the smaller-p
values, but does not reproduce the small local max-
imum in McMillan’s (p) around p=2.5 A, Ac-
cording to McMillan, 15% of the atoms are in this
peak. Our calculations are quite sensitive to this
peak, since the quantity that enters is PH#P). We
found that taking this into account increased the
width at the larger-q values by about 30 K.

We want to emphasize that the structure we find
in the width does not depend on having a Bose-Ein-
stein condensate, since this structure arises only
from structure in the moments. Thus it should also
be present if the scattering system were either li-
quid helium in its normal phase or a classical li-
quid. For the latter system this structure has been
found in calculations performed by Pathak and Sing-
wi®® based on the classical limit of the formulas in
this paper. The over-all magnitude of the width is
affected by the presence of a condensate since the
condensate tends to narrow the width at all ¢ values
as shown in Fig. 1. The amount of narrowing de-
pends on the value of the condensate fraction ny/n.

Since the value of the condensate fraction can be
varied experimentally by changing the temperature,
we expect the temperature dependence of the width
to be closely related to the temperature dependence
of ny. In particular, since n, approaches 0 rapidly
as the temperature is raised to the transition tem-
perature, we expect to see a rapid increase in the
width near the transition. This feature is present
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FIG. 3. Results for the width function I'(g) and the po-

larization potential ¥ (¢) obtained by satisfying the moment
relations for ny/n=0.06. The curves labeled SV and AM
are the results using the pair distribution functions of
Refs. 23 and 27, respectively.
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FIG. 4. Results for S(g, w) for ¢ =15 A1 and for three
different values for ny/n, as indicated on the curves.

in the data of Cowley and Woods. To obtain quan-
titative results concerning this feature using our
model requires a knowledge of the temperature de-
pendence of the 7(p) function, which is not known.

B. ¢ =94’

Harling has recently published®” some results of
his neutron scattering experiments for values of g
goingup to 20 A*l. For that reason we give here the
results of some calculations using our theory for
the same range of g values. A detailed comparison
with Harling’s data is not given but is left for a fu-
ture report, since the main purpose of this work is
to compare with the results of Cowley and Woods. °

In Sec. II E it was shown that for sufficiently large
q the S(g, w) function given by this theory takes on
the qualitative shape first proposed by Hohenberg
and Platzman, * with a distinct peak sitting on a
broad background. The numerical results presented
in this section indicate how large ¢ must be for this
situation to be obtained.

In Figs. 4 and 5 we give our calculated S(g, w)
for g=15 A and 20 ;\'1, respectively. For each
g results are presented for three different values
of ny/n, namely 0.0, 0.06, 0.12. In Fig. 5 the
dashed curve gives the contribution of just the con-
densate [first term in Eq. (2.25)] to S(g, w) for
no/n = 0. 06.

These numerical results show that for ¢ =15 A’l,
the presence of a condensate produces discernible
shoulders on S(g, ) and that for ¢ =20 A™! these
shoulders are quite pronounced. This is in con-
trast to the situation for ¢ <9 f&'l, where condensate
fractions of this order of magnitude have a quantita-
tive effect on the width of S(g, w) but do not cause
the appearance of two distinct components in
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FIG. 5. Results for S(g, w) for ¢=20 A1 and for three
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dashed curve is the condensate contribution only, for
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S(g, w).

It was pointed out in Sec. II E that this situation
arises because our width function I'(g) approaches
a nonzero constant as ¢ becomes large. Thus, the
width of the condensate contribution to S(g, w) sat-
urates while the width of the noncondensate contri-
bution continues to increase with increasing ¢.

To compare with experiment the curves in Figs.
4 and 5 must be convoluted with an appropriate res-
olution function. It then becomes marginal whether
the shoulders can be seen at g=15 A, However,
we believe that for ¢ 220 A, they will remain vis-
ible. The resolution function will have essentially
no effect on the smooth background part of S(g, w)
and will broaden the condensate part slightly. Thus
the shoulders should be experimentally discernible.

Although Harling?” makes no claim in his paper
to be able to see a separate contribution due to the
condensate in his data, comparison of his published
curve of the intensity of scattered neutrons for g
around 14 A™! with our curves for q=15 A-! encour-
ages belief that the condensate contribution is prob-
ably becoming visible. In any case, experiments
in this range of ¢ values will provide a further test
of this theory.

IV. CONCLUSIONS

This paper has presented a simple theory for the
neutron scattering experiment at large momentum
and energy transfers performed by Cowley and
Woods. By imposing the conditions that the low-
order moment relations be satisfied, we have been
able to obtain semiquantitative agreement for the
shifts and widths obtained experimentally. Although
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we have not conclusively demonstrated that He 11
does possess a Bose-Einstein condensate, we have
obtained strong circumstantial evidence that it is
so and have obtained a value of about 6% for the
condensate fraction. We have also pointed out the
interesting possibility that experiments with ¢ 2 20
ATt might be able to reveal more clearly the con-
densate contribution to the scattered neutron in-
tensity.
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APPENDIX

We discuss here the relative merits of the two
different sets of data for g(») which we have used
for calculating P4;(g¢). The integral expression for
P4(g) in Eq. (2. 22) shows that the integrand is es-
sentially g(») multiplied by derivatives of the inter-
particle potential V(r). We take the Lennard-Jones
form for V(r),

Vir)=4€llo/r)? - (0/7)8), (A1)

with €=10. 22K and 0=2.556 A. The pair correla-
tion function is essentially zero inside the strongly
repulsive part of the potential and increases rapidly
outside that region. The derivatives of V(») are
large in the repulsive region, and then become
small at larger . Thus the main contribution to
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FIG. 6. Calculated values of the integral Py(g) defined
in Eq. (2.23). The curves labeled SV and AM are the

calculated results using the pair distribution function of
Refs. 23 and 27, respectively.
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the integral comes for # values close to »=0. The
value of the integral depends very sensitively on
the values of g(7) in this region.

It is very difficult to obtain accurate values for
£(r) in this region from the experimental data for
S(q), since it requires obtaining accurate data at
large g or large scattering angles. It is justin
this region that the calculations of g(») from ap-
proximate wave functions are better, because the
calculations can be done in T space directly, thus
avoiding the Fourier transform.

From the data for g(») given by Achter and Mey-
er?” we must take g(#)=0 for < 2.2 A. The data
for g(r) given by Schiff and Verlet®® are nonzero
down to »=1,72 A. The results for Py(g) calculated
from these two g(#) functions differ by about 25%;
this difference is totally due to the “core contribu-
tion” from 1,7 A=< 2.2 A. The two results are
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shown in Fig. 6.

Only the part of Fig. 6 for ¢>2.5 A™ is needed
for the calculations of this paper. For these g val-
ues, the magnitude of the differences between the
two sets of numbers is much smaller than at ¢ =0.

For the special case of the Lennard-Jones poten-
tail, the g =0 value P3(0) can be related to the aver-
age total energy per particle E/N and the average
kinetic energy per particle by®!

nP;(0) =18 (KE)/N -4 E/N. (A2)

Using a calculated value®? of (KE)/N =14. 3K and the
experimental value®® of E/N=-17. 14K gives nP,(0)
=203.9K. Using Schiff and Verlet’s data, we find
nP4(0)=210. 2K,. whereas using Achter and Meyer’s
data we find #P3(0) =155. 6 K. On the basis of this
comparison, we feel that our results based on
Schiff and Verlet’s g(r) are the more reliable.
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