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We study the van der Waals interaction V~~ (R) arising from two-photon exchange between
neutral spinless systems A and B. By using the analytic properties of the two-photon contri-
bution to the scattering amplitude for A+B-A+B and of the full amplitudes for y+A y+A
and y+B y+B, we show that it is possible to express Vpy (R) entirely in terms of measur-
able quantities, the elastic scattering amplitudes for photons of various frequencies co. This
approach includes relativistic corrections, higher multipoles, and retardation effects from
the outset and thus avoids any v/c expansion or any direct reference to the detailed structure
of the systems involved. We obtain a generalized form of the Casimir-Polder potential, which
includes both electric and magnetic effects, and, correspondingly, a generalized asympotic
form Vq„(r) - D/R, whereD= -[23(nsns+nsns) -7( nsnl+ nsns) /)4 sa ndt he n' sdenote static
polarizabilities. In addition, we show that the potential may be written as a single integral
over ~, involving products of the dynamical polarizabilities o.z(~) evaluated at real frequencies,
in contrast to the familiar integral over imaginary frequencies; for the case of interacting
atoms, the domain of applicability of the various formulas is clarified, and the problem of
evaluating V» (R) from present experimental information is discussed. Some simple inter-
polation formulas are presented, which may accurately describe V~»(R) in terms of a few
constants.

I. INTRODUCTION

In this paper we present a theoretical description
of the van der Waals interaction between two neutral
spinless systems. We show that this interaction
may be expressed in terms of measurable quantities

that describe the interaction of the individual sys-
tems with real photons, i.e. , the elastic photon
scattering amplitudes. We are thereby able to
avoid any reference to the detailed structure of the
system, such as is involved in the conventional
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atomic physics approach. ' We also effectively
avoid any expansion of the interparticle interaction
in powers of velocity. Finally, we are able to
treat electric and magnetic effects on an equal
footing, which is essential for obtaining accurate
expressions for the very long-range forces between
systems such as hydrogen atoms, which have large
magnetic polarizabilities.

The essence of our method lies in the recognition
that the van der Waals force, which arises from
the exchange of two virtual photons between the
systems, can be calculated in terms of the ampli-
tude for the emission or absorption of two real
photons by each system; this approach, which is
based on the dispersion theoretic techniques de-
veloped for elementary particle scattering problems,
has been used by us previously ' to discuss the
asymptotic form for very large separations of the
retarded van der Waals force. Here the same
technique is used to discuss the force at any separa-
tion A large enough so that the two atoms do not
overlap appreciably. Previous treatments of this
problem with the inclusion of magnetic and other
relativistic effects have involved expanding the
electron-electron interactions in powers of 1/R
and e/c and extra, cting the presumably dominant
terms. In that approach it appears difficult to de-
cide whether one has really obtained the most im-
portant terms in some given region of 8, and the
fact that the answer can be expressed in terms of
quantities referring to the isolated atoms is ob-
scured.

The results we obtain are similar in some eases
to those obtained by other authors' under substan-
tially more restrictive assumptions than we have
made. We believe that it is much clearer what the
domain of applicability of our results is and what
must be known about the systems of interest in
order to calculate the van der Waals forces.

The main result of our work is an expression for
the long-range part of two-photon exchange potential
between any two systems A and 8 in terms of the
amplitude for elastic photon scattering of each sys-
tem. This amplitude is determined by two complex
invariant form factors Fs(o, f) and E„(o, f) which.
are functions of the square of the invariant energy
o = (P+k) and of the squared four-momentum
transfer t=(k —k')2. Using. the method of effective
interactions, we show that

F (m, 0) = 4»n, F„(m, 0) = 4vn„,

where n~ and n„are the static electric and mag-
netic polarizability of the system. (An alternative
derivation of this is given in Appendix A, using an
S-matrix approach. ) The expression for the po-
tential can be written as

V2„(R) = V»(R)+Vs„(R)+ Vee(R)+ Vee(R), (1.1)

where, for separations 8 large compared to the
size of either system,

(I' 2)V» r (R) = —C» r (R)/R (X, Y = E, M),

C» r(R) =, dk„dks k„ksp»(k„)pr(ks)
4n 0

df e '~sP»r(fR)
X

(~'+k.')(~'+ k.') (1.3)

V2„(R)- (I/4vR )(23nen@+ 23 nenes —7nen@ —7n»ne)

(1.4)

A more direct derivation of this result is given in

Appendix B.
It is well known that C»(R) can be written as a

single integral over the product of the dynamic
polarizabilities F s(v) and Fs(&o) [F»(&u) =F»(o, 0),
v = (o'-m )/2m] evaluated at imaginary values of m.

In Sec. II, we show that (1.3) can be written in the
form

~OP
C»(R) =

~ d&u f(2~R) [ReE»(~) ImF „(~)8~' ,

+ ImE»((u) ReE»((o)), (1.5)

where Pg~ is obtained by replacing r)" by R"8"/BR" jn
P»r(n) and

f(x) = cosx six —sinx cix .
Equation (1.5) involves the F»(&u) only for real
values of ur and exhibits the fact that V2„(R) is
determined by measurable quantities in a direct
and simple way.

In Sec. III, we describe how experimental infor-
mation about the scattering of light by atoms can
be used with our formulas to obtain the interatomic
potential. In Sec. IV, we generalize a simple but
accurate interpolation formula previously given
for C»(R) to the other C»(R); these formulas
may provide a few-parameter fit to the potential
at all separations. Finally, in Sec. V, we con-
sider some additional results and unsolved prob-
lems concerning our approach to the van der Waals
force.

Here k= (o —m')/2m is essentially a photon energy,
the p's are the spectral functions associated with
the F's, i. e. , p»=ImF»(o, 0) and

Pe» (r)) = P„e(ri) = t)'+ 2q'+ 5'+ Gq+ 3,

Pse(n) =Pj's(n) = (n +2n +7) ) ~

In Sec. II, we derive Eqs. (1.1)-(1.3) above,
and also show that they imply that for very large 8
the potential has the form given earlier, i.e. ,
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II. GENERAL FORM OF. TWO-PHOTON EXCHANGE
POTENTIAL

Consider the elastic scattering of neutral spinless
particles A and B,

A+B-4+a', (2. 1)

with initial four-momenta P„,P~ and final four-
momenta P„', P» respectively. As usual, we de-
fine

S 9A+» B) I f (pA pA) t Q 9A pB)

with s+ t+u = 2m„+ 2m~; s is the square of the
energy in the c.m. system and t is the negative of
the square of the momentum transfer. We denote
the invariant Feynman amplitude for the process
(2. 1) by E(s, f). The normalization is such that the
c.m. system scattering amplitude is given by
f= —E/8vs"'

Let Ez„(s, f) denote the contribution to E arising
from the exchange of precisely two photons between
A and B as symbolized by Fig. 1. For a fixed
physical value of s, Ez„(s, f) is assumed to be an
analytic function of t admitting, in terms of spec-
tral functions p» and p», a representation of the
form

1 pa„(s, f'), 1 pa„(s, u')
F»isp tj—F is tj dt + du

In this section we derive Eqs. (1.1)-(1.3) which
give the general form of the long-range part of
V2„(R), the potential arising from two-photon ex-
change between a pair of neutral, spin-0 particles.
In Sec. IIA, we review the definition of the potential.
In Sec.II B, we study the general form of the am-
plitude for the scattering of a real or virtual photon
by either of the particles. In Sec.IIC we first show
that only the on-shell amplitudes are needed to
determine V2„(R) for separations R which are large
compared to the size of either system. The use of
the spectral representations for the invariant elec-
tric and magnetic "form factors" E~ and F„as-
sociated with the particles then permits one to ex-
press V» in terms of the corresponding spectral
functions p~ and p„. In Sec. IID we show, using
the method of effective interactions, that the thresh-
old values of F~ and F„may be interpreted as static
electric and magnetic polarizabilities, respectively.
(Appendix A describes an alternative approach based
on an 8-matrix definition of the polarizabilities
which leads to the same conclusion. ) The asymp-
totic form of V» now follows immediately from the
results of Sec.IIB together with this interpretation.
A more direct computation of the asymptotic form
is given in Appendix B. In Sec.IIE we show that
V» may be expressed as a single integral over
directly measurable quantities.

A. Definition of Potential

(2. 2)

with f = —Q; the factor (4mAm»»)
' is such that for

s = so, V~„(R) will, when used in a c.m. system
nonrelativistic Schr'odinger equation, reproduce
f2'„"» = —Ez'P/8»»s'I in first Born approximation. On
reversing the order of integration in (2. 3), we have

V,„(R)=, dt p,„(so, f) exp(- f"'R).
7T mmmm g 0

(2. 4)

We already showed in Ref. 2 that p~„(so, f) varies
as t near t = 0 from which the universality of the
asymptotic R ' behavior of V2„(R) follows immedi-
ately using (2. 4). In the present paper we wish to
derive the general form of the coefficient of 8 '
and, more generally, to derive a transparent ex-
pression for V~„(R) which is valid for all R much
larger than the size of either system. We are
thus faced, among other things, with the agony of
keeping track of all factors of 2, m, i, and -1.

From Fig. 1 we see that E~„(s, t) may be ex-
pressed as an integral involving a product of photon
propagators and the amplitudes I'"„and I'„„for
emission of a pair of virtual photons by A and B,
respectively. It is convenient to express 1"» and
I'„„in terms of the corresponding amplitudes M"„„
and M„„for photon scattering for each system.
Thus, let

M=M, „(P', k'; p, k)a" e'" (2. 5)

denote the Feynman amplitude for elastic scatter-
ing of a neutral particle by a photon, with the kine-

FIG. 1. Symbolic Feynman dia-
gram defining I"»(s, t), the ampli-
tude arising from two-photon ex-

b change.

where to = 0 and t 0 = 2m„'+ 2m~ —s —uo are the near-
est right- and left-hand t singularities of Ez„(s, f)
Since crossing symmetry implies that uo= so, where
so is the nearest singularity in the s channel and
so sp where

So =- (mA+ m»»)'

(in the absence of anomalous thresholds in the s
channel, so=so), we have, for s-sp fo —4mAms.
Thus, the second term in (2. 2) arising from the
left-hand cut, gives rise to only a very short-range
force. The long-range two-photon potential V2„(R)
is therefore defined as essentially the Fourier
transform of the first term in (2. 2), evaluated at
S =SO,

1 dQ &o. »»

"dt' p2„(so, f')
3 8

4mAm»» (2»») 0 v f' f-
(2. 3)
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FIG. 2. Symbolic Feynman diagram
defining the Compton amplitude
M~v (P', k'; P, k).

from the three available independent four vectors
k, k ', and P= p+p ', the ten coefficients are sub-
jected to six constraints, via Eqs. (2. 8) and (2. 9).
On using these constraints to eliminate some of
the coefficients, one may write M~„ in the form

matics indicated in Fig. 2; of course, p+k=p'+k'.
We define P-=p+p' and write

r„=r,„(k,k';P)= M, „(p-', k'; p, -k) (2. 6)

so that I"~„is the amplitude for two-photon emis-
sion if both ko and ko are positive. F»(s, f) is then
given by

d4kd4k'—iF3 (s, t) = —&&(-f) 4 5(Q —k —k')
(2v)'

5

M „=-Q T,.„+,
where, with P= P/m,

Ti; ~„=k ~ Pk' Pg„„+k k'P~P„

-k Pk„'P„-k'. Pk„P, ,

Tu~„=k k'g~„—kg~,

(2. 12)

(2. 13)

(2. 14)

where

x —, —, I'":I'B, (2. 7)

and (less important for our purposes)

T3,.„„=k k'k„k'„+k k' g„„—k k~k'„—k'2k~k„, (2. 15)

T4., „„=k' P(k g~p —k~k„)+k k'k~ P„—k k„'P„,(2. 16)
r:rs —= I"„„(k,k'; P )I' (—k, —k'; P )Q g"~

(2. 8)
5I p v 4i vw I k (2. 16')

PA ~A ~A& PB ~B ~B

@=p~-p~= —(pe-pe)
(2. 9)

The general form of M„„, or equivalently of I"„„,
form may be inferred the results of Ref. 2. We
briefly review the argument. The identity of the
photons requires that

The factor ~ in (2. 7) is needed to avoid counting
each diagram contribUting to F» twice; the factor
(-i) arises from the fact that the Feynman rules
applied to, for instance, the left-hand bubble in
Fig. 1, give —i M~„i.'"a'", and we wish to be con-
sistent with the normalization and phase conventions
implied by (2. 5). Before attempting to use (2. 7)
to compute the spec.ral function p», we consider
form the general of M~„.

B. Amplitude for Photon Scattering by Neutral
Spinless Particles

We note further that for real photons (k = k' = 0,
c k = e' k' =0) M, „may be replaced by

3

Mg v Z Tg'g pFg (2. 17)
a=&

since, as is easily verified,

T, ,„„&'&"= 0 (a = 3, 4, 5) (2. 18)

if the photons are on the mass shell. This fact
has the important consequence that the long-range
part of V»(R) is determined by the form factors
F& and F~ only. As we shall show in Sec. IIC, the
quantities

If all the particles are off the mass shell, the form
factors F, are functions of, for example, the six
scalarproductsk k', k ~ P', k' ~ P, P,k, andk' ~ F„
F2, and F3 are symmetric under the interchange
k k'. There are only four independent F,', since,
corresponding to (2. 16) and (2. 16'), one has

F, =F4I. ' .

I'„„(q,q'; P) = I' (q', q; P) (2. 1o) Fs = —(4Fi+ F~)/2m (2. 19)

or, in terms of M~„,

M„p(p', k'; p, k) = M~ (p', —k; p, —k'), (2. 10 )

and

Fu —= F2/2m (2. 2o)

which is just the requirement of crossing symmetry.
The neutrality of the particle together with the con-
s~, ". . vation of the electromagnetic current imply
that

have a simple physical interpretation as generalized
electric and magnetic polarizabilities. Correspond-
ingly, it is useful to introduce "purely electric"
and "purely magnetic" tensors T~ and T„via

k M =k'M""=0 .pv v (2. 11)
l~

TE&p v &Ti&p, v (2. 21)

On writing M„v as a linear combination of g„„and
the nine second-rank tensors which may be formed so that

j.
TN'p v ~ T~ fkv+ 2T2' v j (2. 22)
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o={P+k)'=(P'+k')', f=(P-P'}'=(k-k')'. (2. 24')

We note finally that, for fixed t, E~ and I'& are
expected to be analytic functions of 0, admitting
spectral representations analogous to (2. 2), e. g. ,
for Il~ of the form

1 " ps'"(o', f), 1
" ps(2'(o', f) d,

fyo
O' —C F y (T —0'

0

(2. 25)
with 0 analogous to u, i. e. ,

o =(P-k')'=(P'-k)' .
An important simplification now arises from the
crossing relation (2. 10') which implies, since Ts
and T„are invariant under the transformation

—k' while 0 V under the same transformation,
that

(2. 27)Es(o, t)=Esb, t), E„(o,t)=F„(o, f) .
It follows that ps' '(f, f) = ps'~'(g, f) and oo = oo so that
we may write Jl~ in terms of a single spectral
function pz(a, f), viz. ,

F~(v, )) = — «' gz(v', )), +, ) (2. M)
1 ", , 1 1

fyo

and, similarly,

5' (v, ))=— «'«(v', )), +, -) (2 2)))
1, , 1 1
Tf eo C —O' CF —C

In the absence of anomalous thresholds in the 0
variable, 0,'~'=m, the threshold for elastic scat-
tering in the c.m. system Equati. on (2. 23) for
Q„ together with the representations (2. 28) and
(2. 29) are the results we shall need in Sec.IIC.

C. Computation of V2q(R)

Reduction to On-Shell Photon Amplitudes

To compute V»(R) from (2. 4) we need the spec-
tral function pa„(so, f), defined indirectly by the
spectral representation (2. 2). It follows from
(2. 2) that

p»(s„ f) = (I/2i)[ E(s„t)], (2. 30)

where

[E(s„f)]=E(s„i+i~)-E(s„f-i~)(f& 0) (2. 31)

(2. 23)

When all particles are on the mass shell (p =p'3
= ma, k' = k' =0), the form factors Es and E„are
conveniently regarded as functions of o and t, the
squares of the c.m. system energy and momentum
transfer. Thus, we write

E -E (o, f), E„E„(o-,f),

is the discontinuity of E(so, f) across the cut start-
ing at the branch point t=0. This singularity may
be thought of as arising from the two-photon inter-
mediate state in the crossed-channel reaction

(2. 32)

p»(so, f) = p»(f) +e(f —fg)p»(f),

where p»(f) is the contribution to the discontinuity
arising from real two-photon intermediate states
in the crossed channel and pa„(f) is the remainder.
It is easy to see from (2. 4) that pa„(f) contributes
a term which decreases for 8» a& like

(const)e ""&/ft, (2. 34)

or more rapidly if p', „(f,) =0.
It follows from the above considerations that the

long runge part of -V»(R), i. e. , the part which does
not decrease exponentially, is determined by a
knowledge of p»(f) alone. Thus, we may write

V»(ft) =(I/Iev m.m, ft) f,
"

df p»(f) e~(- f'"R)+ ~ ~,
(2. 35)

where the dots indicate terms with which fall off
exponentially for 8» a, a denoting a measure of
the size of the "larger" of the two interacting sys-
tems.

We ean now see why knowledge of the photon
scattering amplitudes is sufficient to determine
the long-range part of the two-photon exchange
force. According to the ideas of generalized unit-
arity, p»(f) may be obtained from (2. 7) by putting
the photons on the mass shell, i.e. , by replacing
the propagators 1/k' and 1/k" by —2w H(k') 8(k')
and —2vi5(k' )8(k' ), respectively, in (2. 10). Thus,

p „(f)= —-'[I/(2~)'] f d4 (I'":I' )
~ ... , (2. 36)

where a bar is used to denote the antiparticle. For
tightly bound systems, the next singularity on the
positive real t axis will be at a value t, such that
t~~I~ is the rest mass of the next least massive sys-
tem which can be exchanged by A and J3. For ex-
ample, if A and 8 are elementary particles, say
w mesons, t,' will have the value 2m, where m,
denotes the electron mass corresponding to the ex-
change-positron pair. However, for loosely bound
systems such as atoms, the value of t, will be con-
siderably smaller, t', ~ po, where po= am, is the
Bohr momentum (n = e~/4wt'c); these smaller values
of tj correspond to the presence of so-called
anomalous thresholds whose values are not simply
determined by the masses of intermediate states
but are rather a measure of the size of the inter-
acting systems. ' Thus, if we define a, =-t& "we
expect g, co=Bohr radius. Such thresholds al-
ready arise in the ease of single-photon exchange
where they give rise to terms which fall off ex-
ponentially with B. Let us write
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I A. I B (2. 38)

where

d4) =—5(Q —k —k')5(k )5(k' )e(k )8(k' )d kd k' (2. 37)

is just the volume element in phase space for two
photons. Furthermore, corresponding to the re-
duction of M„„to M, „[Eq. (2. 17)] on the photon
mass shell, we may, in (2. 7), make the replace-
ment

p~ replaced by p„" and p„, respectively.
On using (2. 43) and (2.44) in (2.42) and reversing

the orders of integration, we get

P2,(t) =& Pxr(t), (2. 47)
Xf F

where

p„„(t)=
(
"

t Jl fdrr dp 'p (p'', t)p (p t),',

where
X@XY(oA) VB t t) (2. 48)

r „„(k,k'; P) = M, „(p', k'; p, - k) . (2. 39)

Lest there by any doubt about the replacement
(2.38), we remark that it is easy to verify directly
that if

~A
Qf Pt v Ta', g v P=PA ™

and T is similarly defined, then

T, :T, =0 (a or b& 3),

if k =k' =0. Thus,

p,„(t)= —(1/18v') f de (r":r'), ,

(2. 40)

(2. 41)

(2. 42)

M (pA, k'; pA, k)=mA[TBFB(o„, t)+TBF/t/(oA, t)], '

(2. 43)

with (YA = (PA+ k)', and a similar expression for
M „. On noting that T ' - —T ' when k- —k,
we see that

1'"(k, k';P„) = m„[T F (o„, t) + T„"F„"(o„,t)],
(2. 44)

r'(-kt k'p PB) =mB[T-BF'B(oB) t)+ TBF'B(oB) t)] r

where, using (2. 28),

and only the on-shell amplitudes enter into the com-
putation of p,„(t), and hence into the determination
of the van der Waals potential.

2. Computation of p2„(t)

To evaluate (2. 42) we write for the on-shell
photon scattering amplitudes, following the nota-
tion introduced in (2. 22) and (2. 10) but suppressing
the polarization indices,

with

P (tr„', rr'; t)=f dd T":T
+A +A +A +A

PA =gt"', P)-
(t t1/2 ~r

)

P A(- t"B', -P),

p (lt1/2
~pt)

k=(—'t ' )(1 k), k'=(—,'t )(1, —k),

where k is a unit vector; since we are interested in

p2„(t) for values of t far below the thresholds 4m2

or 4mB for the reactions A+A —B+B, the mass-
shell constraints p„=mA, pB =mB imply that the
three vectors p and p' are pure imaginary, so that
we write

zmA~A-P P = zmB (BP f

where p and p' are real unit vectors and

1 — 2, $B= 1—

x, , +, , (249)(
1

OB —gB OB- OB
0

and both X and 7 assume the value E or M.
To evaluate (2. 49), it is convenient to work in

the c.m. system of the crossed reaction (2. 32),
thought of as a two-step process,

A+A'- y+y', y + y' B+B',

taking place at a total energy equal to t" . Thus
we write, with PA P A a d PB PB

1 ",A, 1 1
FB(oA, t) = — doA pB(oA) t), +, +

7r 2 +A +A +A + A
mA

(2. 48)

P (p, t)= — d p (p t), , +, ),1 1 1
F .2 O'B —O'B O'B —O'B

B

In terms of these variables we readily find

2 1 ~ 1/2mA+ 2t zt mA~A&A

+A +A +A mA 2~ ~™ A~A+A

+ t 2 1 1/2
+A +B +B mB + 2t+zt mB ~B+B

(2. 80)

with

o'A = (pA + k)', o A
= (pA+ k')',

O'B = (pB +k)', o B = (pB+k');
(2. 48)

2 j. ~ 1/2
oA —cd = oB —mB +—,t —zt mB )BxB,

where

F„and Fdd are given by Eqs. (2. 45), with pB and XA=P k, XB =P' k .
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The two-photon phase space element dC assumes
the form

C' = 8 d
7

+ms), that

1+(t/4m„m ) 1 0 t
g=P'P + 2m2 ' (2. 54)

where dQ is the element of solid angle for the inte-
gration over k. A pleasant feature of the next step
in the calculation is that on combining the denomi-
nators in (2. 49), using (2. 50), the square roots
disappear and we get

Hence, we may also set y=1 and xA=xB =x, with
dQ = 2vdx. Using approximations (i) and (ii), we
have, to very high accuracy,

T" T' = T":T'= —,'t'(2 —2x'+x4)

2 1

dg +A ™A+2t
(o' —m' + t/2)'+ tm' (2 x' T 'T —T T —'t( 2—x+-x).

It follows that

(2.55)

s=so

(2. 51)

2ms+ 2t (TA TB).
(os —ms+ t/2)'+ tms &Bxs

where

4„=C', [I+O(t/m')], (2. 56)

The contractions Tx:TY are straightforward to
evaluate. Using the definitions (2. 13) and (2. 14) we
get

Ti.T, =2t $„)BS,
where

—4$xAxB + xA + x B + xAx B
2 2 2 2 2

with

X=P'P

and, more simply,

TA. TB t2( 2 TA. TB t2(2 TA. TB & t2

From these equations we infer, using the definitions
(2. 21) and(2. 22),

XY 2 ~ m ( ( 72 +x2 72+x2 XY

(2. 5V)

Here we have introduced the abbreviations

and

(o„' —m„'+ —,'t)
A m ( t1/2mA A

2 j.+ —t
m ] t"'mB

e„=e„„=2-2x+x', e,„=e„=-2x+x'.2 4 2

(2. 58)

The integration over x is now elementary and yields,
without further approximation,

0 vt 12 lgxY(TB) gxY(TA)]
@XY (2TATB

A B~A~B B ~A

(2. 59)
T~:T~ = 2t )A/B$,

T„:T„=2t $„)BS+t (t/4m„+t/4ms),
(2. 52) where

gs, (T) g„„(T)= T'- (2+ 2T'+ T4)(tan-'T)T ',
gss(T) =gss(T) = T —(2T + T' )(tan 'T)T ' . (2.60)

(2. 53)

It should be stressed that so far no approxima-
tions have been made in the evaluation of p2„(t).
However, to compute the long-range part of V2„(R)
in the case of interacting atoms or molecules, we
only need accurate values of p2„(t) for values of
t" much less than ao', since for t" &go we only
get contributions to V2„(R) which fall off as
exp(-R/aB). Thus, we shall make a number of
approximations which will simplify the formulas
without losing anything essential. (i) Since for
t & 42 m, the quantities t/4m„and t/4ms are of
order 10 ', it is a marvelous approximation to
neglect these terms relative to unity. (ii) In car-
rying out the angular integrations in (2. 51) we may
set P' =p. This is because from the relation
s = @A+Ps) = (PA -PB) we infer, for s = sB —= (m„.

3. Evaluation of the Long Range Part-of V2„(R)

Corresponding to, (2. 56) we have, using (2. 35)
and (2. 48) the "semifinal" result,

V2„(R)=5~ —
4 dt exp(- t"2R)

Px(oA t)PY(os t)@ 2
dgA AOg

mA mB

(2. 61)

which exhibits the long-range part of V2„(R) in
terms of the spectral functions px(o„, t) and p„(os, t)
associated with E~(oA, t) and Fz (os, t).

To proceed further, we note that for atoms,
px(o, t) will be a slowly varying function of t for

«ao . To see why this is so, we observe that
px(o, t) will in general be an analytic function of
t, with a nearest singularity at t =t, ao corres-
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px(c f) px(o 0) (2. 62)

ponding to the presence of anomalous thresholds
in the t channel referred to previously. On ex-
panding the denominator t'- t in a spectral repre-
sentation of px(o, i), we infer that px(a, f) = (I+tf, ')
px(o; 0), where tz' is a mean value of f ' and hence
of order t, ' or smaller. Thus, for t«ap we may
(iii) make the replacement

1 t"
d]

e Ps»(&R) (2 70)
4ssR e

g
"

(k~ ~ g )(k, + g )

where

Pss(Y)) =P„„(Y))=Y) +2q + 57i~+6ri+3 . (2. 71)

For the case X=E, K=M, or X=M, 1'=E a similar
but much shorter calculation, given in Appendix C,
shows that

k„= (c„' —mg/2m„, ks = (os —ms )/2ms, (2. 63)

in (2. 61). Using (2. 62), we see that on introducing
new variables

Uz„(k„, ks; R ) = U„s(k„, ks; R )

1 d e ~"Ps„()R)
(k'+ q')(k'+ g') (2. 72)

(2. 61) assumes the form, on reversing orders of
integration,

where

(Y))=P (Y))=-(Yi'+2Y)'+Yi') (2. 73)

V,„(R)=5 "dk~ dk~
k„P»(k„)ksPY (ks )U»Y,

X, F
(2. 64)

where

On combining Eqs. (2. 64), (2. 68), and (2. 70)-(2. V3)

we may write

V~„(R) = Vs»(R)+ V„„(R)+Vs„(R)+ V„s(R), (2 74)

where, for R»a- ap,

and

Vx„(R)= —C»Y(R)/R

with

(2. 75)

P»(kA) Px(oA, 0)i . Px(ks) =Px(os—, 0) . (2. 66)
00 00

Cxx(R) -=5
i dk„dks[k„px(k„)][ksp„(ks)]

41T pe) p

Yg- v'g =2k„/t ',1/2 v., - ro = 2k, /f"' (2. 67)

in Eq. (2. 59) for 4»Y. Replacing also g„and $s
by unity once more we get

1Uo„-U „(k„,k~;R)= , d-fexp(-t" R
p

8»Y(~A) g»Y(~B)X
pZ 2

YB +A
(2. 68)

We now make a last approximation: The major
contributions to V2„(R) will come from atomic ex-
citation energies o" —m~ n m, or larger. Hence,

f/(o —m ) & (om, ) /(o. m, )(2m)~ m, /m~ 10

and we may (iv) make the replacement, using (2. 63)
and $g= (~=1,

(2. '76)

Equations (2. V4)-(2. 76) correspond to Eqs. (1.1)
-(1.3) of Sec. I and are the principal results of
this subsection.

D. Asymptotic Behavior of V»(R) and Interpretation
of Form Factors

1. AsymPtotic Behavior of V,„(R)

The asymptotic behavior of Vz„(R) for R -™
follows readily from Eqs. (2. 74)-(2. V6). On set-
ting f = q/R we get, from (2. 76),

(R)~
4g R kg

Q 2 (2. 69)

and carrying out repeated (fivefold) integration by
parts, one has.

Use (k„, ks; R ) = U„„(ks, ks; R )

a universal function of R, k„, and k~.
We are finally in a position to make contact with

previous work and to derive Eqs. (1.1)-(1.3) of
the Introduction. For the case X= Y=E (or X= Y

=18)the integrand of (2. 68) coincides essentially
with that considered in Ref. 8, where it was shown
that on setting

dgexp —2n P~ q . (2. 77)

From Eqs. (2. 28), (2. 29), and (2. 63) we see that,
since t-0, 0 =m implies 0 =2m —0. —t-m,

~ 0 =-' d"'-" "=-'
l

dkp-")

(2. V8)

Furthermore, computation gives

J d'g e '"Psz(1) = 4, fo dli e '"Ps„(ri) = —;
(2. 79)
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Using the fact that, as shown in Sec. IID 2,

Fx(m, 0) = 4v ax (X= E, M),

where nx is a polarizability, we get

(R)
~z z ~ (R)gg 4 R s NN ~4

(2, ao)

(2. 81)

where

and

—p Qs~s g F "F "4'~v (2. 88}

X, = ——,'[E (0)]$ QE'"E„„, (2. 89)

It follows from Eqs. (2. 81), (2. 82), and (2. 75) that,
as asserted in Ref. 3 for R -~,

V2„(R)~ —D/R,

where

(2. as)

D =—(esca+ n„"cP„}——(ns~cP„+ n„"nss) . (2. 84)

It should be noted that Eq. (2. 83) is an exact
statement independent of any of the approximations
made in Sec. III C above in the computation of p»(t)
for t &0. This is because the behavior of Va„(R) at
R = ~ depends only on knowledge of p»(t) in the
immediate neighborhood of t =0. In particular, to
obtain (2. 83), it is only necessary to compute the
first nonzero term in an expansion of p»(t) in
powers of t, since higher powers of t will give
higher inverse power of R. An alternative and
more elegant derivation of (2. 83) which is based on
this feature, and which was in fact used by the
authors in first obtaining (2. 83), is described in
Appendix B.9

2. InterPretation of Eorm Factors

We wish to justify the identification (2. 80) of the
threshold values of the form factors Es(c, t) and
E„(o, t) with static susceptibilities. Perhaps the
simplest way of seeing the validity of (2. 80) is the
following:

Let us note first that, according to Eq. (2. 17),
at low energies and momentum transfers (c =m,
t = 0), the particle-photon scattering amplitude is
approximately given by M' =M„'„e~&", where

M„'„=—[T,,„„F,(0)+ T2,„„F~(0)] (2. as)

3' —X)+X2 ) (2. 87)

and

E~(0)=E~(m, o) (j =1, 2-) . (2. 86)

We now find, for a spinless electrically neutral
particle, the simplest effective Hamiltonian den-
sity SC which leads, in lowest order, to an amplitude
for two-photon emission given by (2. 85). Guided
by the form (2. 13) and (2. 14) of T~.„„and Tz.„„,
and the requirement that Xbe bilinear. in the particle
and photon field operators Q and A„as well as
gauge invariant, we obtain

with F„„=8„A„—&~A„, the quantized electromag-
netic field tensor.

If the particle is moving slowly in a region R
where there are external (c number) electric and

magnetic fields E and H whose sources are outside
of R, the first line in Eq. (2. 88) gets contributions
only from n = P = 0 so that, regarding F~"as an ex-
ternal field in (2. 88), we get

(2. 90)

In arriving at (2. 90), we have used sop-imp and
noted that the second line in (2. 88) makes no con-
tribution since 8 F ~~j', which vanishes in R.
Since F""F„„=—2(E' —H'), (2. 89) is equivalent to

3C~
—'[F (0)](/FAN(E —H ) . (2. 91)

Using (2. 87), (2. 90), and (2. 91), we have

3!- —~as(2m/ p)E —2a„'(2m/ $)H

with

n,'=- [4F,(O)+F,(O)]/2m

and

a„' =F,(O)/2m .

(2. 92)

(2. 93)

(2. 94)

Since 2mrf& p-E(a~~a, ~" ) in the nonrelativistic limit,
we may infer from (2. 92) that the corresponding
addition to the Hamiltonian for the particle moving
slowly in an external field is simply

(2. 95)

It follows that n~ and n„' may be identified with the
static electric susceptibility (polarizability) and
static magnetic susceptibility, respectively. Since
we are using the Heaviside unit of charge (ea/4vac
=~~~) we have

Q@ = 4+Qg)
t

&g =4&&~ (2. 98)

where o~ and n„are in the usual Gaussian units.
If we combine Eqs. (2. 93), (2. 94), and (2. 96) with
the definitions (2. 19) and (2. 20), we arrive at
(2. ao).

An alternative, perhaps more convincing approach
to the interpretation of the form factors which also
leads to (2. 93) and (2. 94) but which is based on
the S matrix and gives some further physical in-
sight into the significance of the F„ is given in
Appendix B.
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From (2. 97) we see that for (d =ir„we have

&p«(k) (2. 98)

E. Alternative Forms for C& &(R)

Equation (2. 76) exhibits C»(R) as a double inte-
gral over the imaginary parts of the invariant
functions F«(o, 0), apart from an integral over the
parameter. We now show that C»(R) may be ex-
pressed as a single integral over measurable quan-
tities, thereby arriving at a form which may be
particularly useful for the determination of C»(R)
from experiment.

It is convenient to introduce the notation

F«((o)=F«(o, 0) (o =m +2m(d);

the variable + = (o —m )/2m (which was denoted by

P in Sec. II D) may be interpreted as the energy of
a photon incident on a particle of mass m at rest
in the laboratory system. It follows from the de-
finitions (2. 24'), (2. 26), and from the dispersion
integral (2. 18) evaluated at f =0, that Fx(v) may
be written in the form

("„(w(=— d 'p (w'), , ) . (2. (('((
1 ", , 1 1

m Q
tie —('d 4) + CO

CO OO

We may remove P«„(ER) from the integral by
writing

(gR )
-2(lR P oP -2(.'s

where

EE NN 16 R 4 R+4 R R+

oP oP ~ 4 4 1 3 3 j. 2 2I'Eg=PgE=)6~ 8 +-~ BR —-~ ~R,
(2. 108)

with Ss —= d/dR. We then obtainl,q
"

d] 2(s
"d, (u'ImD x(r(u')

C~~ = —
4 P~~ e

8m Q Q e +

(2. 104)

Inverting the order of integration and using the
identity

1 f(2(d R)
CO + ( CO

Q

(2. 105)

imD«„((d') = ReF x((d')ImF r(~') + ImF x(&u')ReF r(&u ') .

On substitution into (2. 99) we obtain

On reversing the integration over f in (2. 76) and

using (2. 98) we get

where

f(x) = cosx six —sinx Cix. (2. 105')

Dxr(~) = Fx((d)Fr(&) (2. 100)

has analyticity and symmetry properties analogous
to those of the individual factors; namely, D»((d)
is analytic in both the upper Bnd lower halves of the
complex ~ plane with D»((d) = D»(- ~) and Dxr(~)
=D«r(~). From these properties it follows that

Dxr(m) admits a spectral representation analogous
to (2. 97),

1 1 1
D»(~) = — d(d' ImD«r((d ) ( +

7T Q
CO +(d

(2. 101)
It follows from (2. 100) a,nd (2. 101) that

F"(if)F (iL) = — d ',~, ImD „( ')
+ ~ (2. 102)

C~~ = 3 dge I'gy gA g if F~if.
Q

(2. 99)

Equation (2. 98) is well known for the case X= Y= E.
However, although only a single integration is in-
volved, the quantities F«(ir) entering (2. 98) cor-
respond to dynamic polarizabilities at imaginary
frequencies and are therefore not directly mea-
surable, at least in scattering experiments.

To convert (2. 99) to a form in which only directly
measurable quantities enter we note first that,
with w regarded as a complex variable, the pro-
duct function

Here six = six ——,m, and si, ci are the sine and co-
sine integrals, we finally obtain'

Cxr —— 4 Pxr dm'f(2((('R)(ReF«((((')imF r(~')

+ ImF «((o')ReF r((u')) . (2. 106}

In this form, the measurable form factors F» F~
at real frequencies occur, and so the integral in

(2. 106) can in principle be calculated from experi-
ment. We discuss the feasibility of this in Sec. III.

We can also derive the next terms in the asymp-
totic expansion of V(R) from (2. 99) or (2. 104). We
rewrite (2. 99) as

1C» ——
3 Px„e F«(if)Fr(i&) dr . (2. 107)

7T Q

3 P«r 2R
e F«(0)F r(0) —

8R2
1 gq 1

x[F"(0)F "(0)+F""(0)F (0)j + ~ ~ ~,

(2. 108)

where F" means the second derivative of F with
respect to the frequency; we have used the fact

Changing variables from ( to g = 2&8 and expanding
F« „in powers of fI/R we get
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that Il is an even function. Thus where

Mu, v ~(TB')ooFB+ TN )ooFN} (3. 2)

+F""(o)F'„(o)] +." .

A simple calculation gives

(2. 1O9)

(2. 11O)

and TE and T„a.re defined by (2. 21) and (2. 22).
The scattering amplitude is, in the c.m. system,
f= —I/SwW, with W=o"', the total energy in this
system, so that the e. m. differential cross sec-
tion averaged over the initial and summed on the
final photon polarization is

,p 1 129,p 1 81' -m =-16m' -' -8R =-168'
Hence, using (2. 60), we get

c„(R)= „u,'(0}u,'(0) —, , [,(o}n,"(0)

(3.3}

Since, for a gauge-invariant matrix element,

Z Iml'=M, „m,„,(-g '}(-g""'), (3.4)

we have, using (3.1)-(3.4),

C„(R}= „n„"(O}u„'(0}— „,[n„"(0}H (O)

~ o„"(o) o„(o)] + o
(
—,),

(2. 111)

C„(R)= — H(O)o.„'(0}+-, , [n,"(0}n,"(O)

~ o.,"(olo),'(o)]+o(—,),

+ 2Re (FaF„*)Ta:T„], (s. 6)

where

TX TF TX;ff vT Y (3. 6)

Using (2. 21) and (2. 22) we have

TS ~E 4~1.~1~ ~hf. TM 4~1 T1 2~1.~Z+4~Z ~Z &

+~1 Ti T1 TZ (3.7)
Ma(R}= —

4 R +(0)& (0)+, [u'(0)n (O)

Further terms can also easily be calculated in this
way ~

III. DETERMINATION OF POTENTIAL FROM
EXPERIMENTS ON ATOM-LIGHT SCATTERING

Computation, using (2. 13) and (2. 14}, yields, with
I =F/m,

T, :T,=2(f Ff'. F)'+(f f'F'}' 2I .Ff' Pf -I'I",
(3.6)

The amplitude for coherent forward scattering
(&

' = E, k' = k) is given by

f(0) -=— e'e" J)d„„I

0' = 0

I,et us see what ean be determined by measuring
the scattering of unpolarized light by the atom.
The invariant on-shell transition amplitude is
given, according to (2. 6) and (2. 23), by

M = ~'~"M, „, (3. 1)

%e have shown in Sec. II that the van der %aals
potential is determined completely by the "polariza-
bility form factors" Fa((d) —= Fa(o, f = 0) and F„((d)
—= F„(o, f =0). In Sec. IIIA, we discuss to what ex-
tent these quantities can be obtained from experi-
ment. In Sec. III B we analyse the relative con-
tribution to C«(R) from various regions of (d, the
photon energy in the lab system. In Sec. III C,
we consider some simplified forms of Cx„(R},
suggested by examination of E(I. (2. 106).

A. Information from Cross-Section Measurements

-2{& p)'
IFs(~)+ Fa(~)]8gS m

(3 6')

or, since O'P =k, 8'=wm where k, is the c.m.
momentum of the photon,

f(O) =(k, (u/4w}[Fa((d)+F„((d)] .

The total cross section is given by the optical
theorem as

(3.9)

or((d) =(4v/0, )Imf(0) =(ulm[Fa((u)+F„((u)] . (3.10}

From (3. 9) and (3.10) it is clear that measurement
at or very near the forward direction can at best
determine the combination Fa(~) + F„((d). However,
if, as is normally the ease, lF„ I «)F~ t, one may
neglect F„and use or(&u) to determine ImFs(m)
[which is all that is needed in the computation of
V«(R) via E(I. (2. V6)]; one may then use do/dQ to
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find IFz I and hence ReFz(u&), at least up to a. sign.
The sign may be fixed by comparison with that pre-
dicted by the spectral representation (2. 97).

It is interesting to ask what further information
can be obtained by measuring do/dfI for all values
of 8. From (3. 5) it would seem that, in principle,
one could determine the three quantities i Fz(v, f) I,

I Fz(o, f) I', and ReFz(o; t)Fz*(o, t), since they are
the coefficients of functions T~:T» T„:T» and

T~:T„which have different dependences on 8. How-

ever, the values of & which are important in deter-
mining V„(R) are of order 10 keV or less (see
Sec. III B) and thus are small compared to m + 10
meV. It is easy to verify that for

co«rn (3. 11)

we may replace P = (P + P ')/m by (2, 0, 0, 0) in (3. 7),
the spatial components of P and P' being of order
&, by momentum conservation. Thus one finds

Tz:Tz =4(u [1+cos 8+O((u/m)],

Tz: Tz = 4(u [I+cos'8+0((u/m)],

Tz: Tz = 4(u'[2 cos9+0((u/m)],

(s. i2)

where 8 is the scattering angle in the c.m. system
(cos9 = k ~ k'). Corresponding to (3. 12) we have,
on replacing also m/W by unity in (3. 5)~

4

dn (sv)', [( IF, I

'+ IF„ I
')(1+cos 8)

F» (o, t) is neglected, (3. 5) and (3. 10) could be used
to determine both Fz (&u) and F„(&u) in the domain
~ «I only if do/dD were measured with fantastic
accuracy. Qf course, if experiments in which pho-
ton polarizations are measured were feasible, the
separate determination of Fz(~) and Fz (&u) would

be possible, provided that F„(~)and Fz (ur) are
not too different in magnitude.

B. Analysis of Frequency Range

From Eq. (2. 106), we can determine over what

region of frequency we need to know F~, F„ in or-
der to get the potential in the region R & several
atomic radii. For smaller values of R, other things
than the two-photon exchange forces are important.
Let us use the symbol a for (o.m, ) ', the Bohr
radius.

We first show that frequencies»a ' are not
important. Consider the contribution of frequen-
cies &a to the integral (2. 106). This energy is
generally well beyond the first ionization energy
&uz of the atom, and, for light atoms (ZS 10) is
larger than the ionization energy for any of the elec-
trons. In this case, it seems justified to use for
ReF and ImF their high-energy expressions. Let
us concentrate on Fz (&u), and use ImFz (+)- (I/~)
or (~). It is known that for ~l «&u «m„or behaves
as

(u~ a' ((ul /(u )'~ ' Z',

+ 2 Re(FzF) )(2 cos9)] . (S. IS) and hence,

In arriving at (3. 13) we have only neglected (purely
kinematic) terms which are of order &u/m relative
to unity.

It follows from (3.13) that for the interesting
values of ~ [satisfying (3.11)] one can at best hope
to determine only two quantities, I F& I + I F& I and
2Re(FzF„*), rather than three, by measurement of
the differential cross section. We note also that,
as discussed in Sec. IIC3, the quantities Fz(o; I)
and F„(o;f) are expected to be slowly varying func-
tions of t =2k,' (1 —cos8) for III ='a .oHence,
for

~«o.'m, (3. 14)

we may also neglect the t dependence of F»(a., f)
and write

2(I IFz(~) I'+ IF (~) I'] &1+cos'8)

+ 2 Re (Fz (&u) F„*(&u))(2cos 8)}. (3. 15)

The fact that
I Fz I

and
I F„ I

occur with the
same angular factor in (3. 13) and (3. 15) is solely
a result of the cancellation of the second and third
terms in T„:T„[Eq. (3. 7)] in the limit P- (2, 0, 0, 0).
As a consequence, even if the t dependence of

ImFz ((u) - a' ((u, /(u)'~'Z'.

Qn the other hand

ReFz ((u) - -a' ((u, /(u)' Z

in this region. " As a result we have

Izz (R) —= J, d~'f (2~'ff) ReFz(v') ImFz(e')

- -n'Z' 13/ 2

f (2s) 'R) —,' d&a
' . (3 16)

1/a

Since R is always & a, 2''R &2 in this region, and
we can approximate f (2a&'R)- 1/2m'R. Hence

a Z dx a 2Z
2R 5~' =-2R iS

4) la) -&

(3. 16')
Since +a is - 10, the contribution of the region
under consideration is generally very small com-
pared to the contribution of smaller values of e,
which is of order a R '. (Similar results are
probably true for the magnetic contributions, al-
though we have not obtained any specific limits for
these. )

We can therefore reasonably cut off the co inte-
grals at co-a ', or about 10 keV. We next con-
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sider the contribution of (d below the ionization lim-
it of either atom A or B. In this region, ImF" and
ImF are appreciable only in the neighborhood of
resonances, being smaller by a factor of (I'a/((1„)
-10 ' between resonances. We can in fact ap-
proximate ImE in this region by a sum of sharp
resonances

C. Simplified Forms of C& &. (R)

In order to simplify the expressions for C» as
much as possible to use what experimental infor-
mation does become available, we shall make some
approximations on the function f (x), defined by
(2. 105'). Note that

ImF L 5 ((d-(o„)vf„, (3. 17)

f(x)= ~ v for x«1,
f(x)=1/x for x»1.

(3. 18)

where f„ is related to the oscillator strength for the
excitation of the resonance. This approximation
is certainly valid if A and B are different atoms;
when A and B are identical, more care is needed
because ReE" will also be rapidly varying near
+ = +„ in that case.

With approximation (3. 17) for ImF", the integral
(2. 106) over the region in question reduces to a
sum of contributions from the resonances of each
atom multiplied by the presumably smooth ReF
from the other atom. It is regrettably the case
that all resonances, whatever their angular mo-
mentum, contribute to the F, although the contri-
bution of resonances with J & 1 is smaller by a fac-
tor (~a), and so it may be a good approximation
to include only J = 1 resonances.

When the energy + is between the ionization lim-
it of the two atoms, i. e.~ (dP & (d «dna, then ImP will
be nonzero generally, and will be a relatively
smooth function, perhaps with resonancelike peaks
(auto-ionization states) superimposed on it. Simi-
larly for ReE". On the other hand ImF will con-
tinue to be approximated by a sum of sharp reso-
nances and ReE by a smooth background with reso-
nances superimposed. However, the resonance
terms in ReF are unimportant since they change
sign going through the resonance, and hence con-
tribute essentially zero to the integrals in this ap-
proximation.

Finally, when &or", ~1 both&co, ImE", ImF,
ReF", and ReE all become comparable quantities,
consisting of a smooth background with resonances
superimposed.

An examination of the size of the contribution of
these regions to the potential indicates that each
region contributes comparable amounts, essentially
independent of the value of R at which the potential
is desired.

A cursory survey of available data on the elastic
and inelastic scattering of light by atoms and mole-
cules has convinced the authors that the necessary
data to perform the integrals over frequency in

(2. 106) and (2. 76) are simply unavailable at pres-
ent. Whether such data could be obtained through
presently available techniques is unclear to us, but
we would hope that this question could be taken up

by experimental physicists.

We can then distinguish two regions of interest,
in terms of whether R is large or small compared
to v z', or around 200 A. (Here &uz is the smaller
of the ionization energies. )

(a) (d, R & 1. To determine Cxr, we need the in-

tegral I», defined by

or

Ixr —=
fo d(d f (2(dR) [ImDxr ((d)]

(„=1d (f(2 (()—
) ( D (a(

(3. 19)

ReDxr (0)
+ 4 lT ~ (3. 19')

In the first integral in (3. 19'), we can approximate
the bracket by zero when v &R ', and hence obtain

&/a

f (2((1R) — . ImDx„((u) d(d
1

2coR 'Ixr-
0

v ReDxr (0)
4 R (3. 20)

+ 2m fo ImDxr((d)d((1 (3. 19")

The term

(v/2) f,
"

ImDxr((u)d(o

is just the London constant Cxr (0) determining the
short-range behavior of the corresponding potential
Cx„(R). In the remaining integral, we approximate
the bracket by zero when +R & 4 and obtain

Ixr=Cx„(0)+f [f(2(dR)-~w] ImDxr((d)d(d

(3. 21)

The integral now includes the continuum region for
one or both atoms, but no very low-frequency con-

In this expression, since col &R, the first integral
is over the region in which the ImDxr (u) gets con-
tributions only from the resonances. This formula
gives explicitly the correction to the asymptotic
formulas for the potential, i. e. , to the last term.
The correction involves an integral over the low-
frequency, i. e. , resonance region only.

(b) (dzR &1. Then we write

I»= f d(d [f(2~R) --,' v] ImD»((d)
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tributions.
Finally, we note that if we approximate f(x) by

its asymptotic forms everywhere, i. e., if we make
the replacement

f(x)- —,'v for x&1, f(x)-1/x for x)1,

we can obtain the unified expressions for I»

dzz= 8 uzuz/Czz . (4. 5)

The motivation for (4. 3) is the same as that given8

for (4. 1): Integration by parts of (1.3), followed
by changing to g= fB as integration variable, leads
to

C (R)= dk dk
P"( "-)P"(')

ill JI/I 8~4
0 0

A 8
A+ 8

4 g + 2
%' — Imaxy M tkd

0
(s. 22)

1
Ixr Cxr (0) + —

g w ImDxr ((0)d(d.

(3. 23)

where

x drIN, (P„—„(q)e '")
0

2kztan '( i/rk„R)-k„t an'(rl/kzR)
m

(4. 8)

(4 q)
These two forms are expected to be good for rela-
tively large and for relatively small values of 8,
respectively. Applications of these formulas to
the calculation of the van der %aals potential for
specific atoms will be given elsewhere. '

IV. iNTERPOLATION FORMULAS FOR V„{R~

Czz (R) = Czz x—tan
2 ~] d@@ (4. 1)

It has been shown elsewhere that there exists a
simple interpolation formula Czz (R) to the function

Czz (R) which agrees extremely well with the results
of numerical calculations based on the definition

(l.2), for the available cases (A. , &)= (H, H), (H,
He), and (He, He). This formula is

Since K, 1 for R 0, (4. 8) has the form

C„„(R)= C„„Fr,(R), (4. 8)

where g, (R) is a weighted average of N, =N, (k„,
kz, r/; R) over the three-dimensional space of the

integration variables kA, 08, and g. Next one notes
that (i) N, is a slowly varying function of these vari-
ables; (ii) the function

&, =(2/v)tan '((, /R),

with ),=ri(k„+kz)/k„kz, is, for fixed R, a very
good approximation to N, for most values of kA,
k»and g; and (iii) N, has the same asymptotic form
as N, for R-~: N, -N, -(2/v) {$,/R). These facts
suggest that if a mean value $, = $, (R) is defined by
writing

where Czz=C»(0) and dzz is a length defined by X, (R)=(2/v) tan-' [],(R)/R] (4. 0)

A 8/~
Qg Q@/ ~8+ y

(4.. 2)

C„„(R)= C„„-tan dNN (4. 3)

where C„„=Czz(0) is the magnetic analog of the
van der %'aals constant C», i. e. ,

C = dk dk P" ("")P"(')
NAf 8~4 A 8

(4. 4)

so that C»(R) coincides with C»(R) for both very
small and very large R.

In this section we consider the extension of such
formulas, first to Czz(R) and then to the more in-
teresting case of the "interference" terms Cz„(R)
and C„,(R).

. A. Interpolation for C{R)

Since &zz (rl ) = &zz (g), the suggested interyolation
formula for C„„(R)is completely analogous to that
for Czz(R), viz. ,

then $, (R) will be a slowly varying function of R.
On approximating $, (R) by $, (~), and noting that
(2. 81), (4. 8), and (4. 9) imply that $, (~)=dz„, we
arrive at Eg. (4. 3).

B. Interpolation for C&{g~ and C&{g)

An interpolation formula for C„z (R) or C» (R)
is necessarily more complicated than that for C»
(R) or C„„(R). The reason is that although, like
Czz(R), Czz(R) varies as R ' for large R, its be-
havior for small 8 is quite different. Since

&zz (n) = -n'(I+a)'- n'-
for small g,

f e Lz~ (gR ) -ga
(0'+k~) (0'+kz) 0 (f'+kg) (fz+kz)

3
=2m

(k„+kz) (4. 10)

Hence, from (l. 3) and (4. 10), for R 0,

C (R) -R C, C (R)--R C, (4. 11)
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l&~. pu(&~)) [& p'(&91"' 8v' J " ' &+a
0 0 A. 8

{4.12)
and C» is similarly defined.

Thus we shall require our interpolating function

C„s (R) and C»(R) to have the behavior (4. 11) for
R-0, and a behavior consistent with (2. 82) for
large R.

A possibility analogous to (4. 3) is to take

a 2 -ides (des/R)
R 1 (d /R)

(4. is)
which satisfies (4. 11), and to pick d» so that C»
{R) has the correct asymptotic form for large R.
Thus, since tan 's-z(I+a )-3s' for s-O, we
take

dies hit +s +s/ sz) (4. 14)

d [e-'"(I+q)'] dg, (4. 15)

2 a, tan-'(eye, z)-a„tan-'{n/a a))
7t k~-k~

(4. i6)
Since Na- I for R-0, (4. 16) has the form

c (R) = -R' C„,Fr, (R), (4. 17)

where N2 (R) is a weighted average of Na We not.e
further that (i) N2 is a slowly varying function of
the integration variables; (ii) the function

(~,/R)
u. s )')

with

t, =q [au„'a,'/(u„+u, )] "',
is, for fixed R, a good approximation to N2 in a
large part of the integration volume; and (iii) Pa
has the same asymptotic form as Na for R

2,-Er,- (4/Sv) (],/R)'.

In analogy to the considerations of Sec. IVA, these
facts suggest that if we define a function $, (R) by
writing

To motivate (4. 13), we note first that integration
by parts of (i. 3) with respect to f, for X=M, I'= E,
using f (f +k„) ' (1' +k )

' as one of the factors,
yields, with g= fR,

C (R)= ~ dk dkNs 8v4 J 4 B

Fr (R)=-' tm- ""' ~ {")/" (4,9)
7r R 1+ [t', (R)/R]2

we may expect 4(R) to be a slowly varying function
of R. For R- ~, (4. 19) has the form

iV, (R)-(4/Sv) [(,( )/R]',
so that, by comparison with (2. 82) and (4. 17)

&2{")=dss ,

defined by (4. 14). If, in (4. 19), we approximate
$2(R) by its value at R = ~, we arrive at (4. 13).

Of course, numerous other, almost equally sim-
ple interpolation formulas might be considered,
e.g. , C„s~R (tan 'd/R)', but (4. 13) seems
closest in spirit to the very successful Css(R), Eq.
(4. 1). Unfortunately, unlike the case of Css (R),
numerical calculations of Css (R) or C„s(R), based
on (1.3), are not available with which to make a
comparison. This must await further work, per-
haps by an interested reader.

'V. SUMMARY AND DISCUSSION

Ite have seen, in Sec. II, that for separations R
large compared to atomic dimensions the potential
V2„(R) arising from two-photon exchange between spin-
less atoms or molecules is given by Eqs. (2. 74)-
(2. 76). These equations express V»(R) in terms
of the absorptive parts ps(&u) and p„(u&) of the in-
variant ampbtudes

Es ((o) = Es (o; f = 0) and E„{(u)= E„(a, t = 0);

here Es(o; f) and F~(o, f) are defined by the general
expression (2.31) for the photon-atom elastic scat-
tering amplitude M„„(o, f). Using an approach based
on the method of effective interactions, it was
shown that the threshold value Er (o= m, f = 0) could
be identified with 4m@x where ux is the static polar-
izability (X=E, M) (Sec. II C); the same result was
obtained in Appendix A in an approach based direct-
ly on the S matrix. Using this identification, we
also derived the asymptotic form (2. 83) of V»(R),
given il. . an earlier paper, 3 starting from the gener-
al form {2.74); an alternative and more direct der-
ivation of (2. 83), based on recognition of the fact
that to determine V2„(R) for large R only requires
knowledge of the value of the second derivative of
the spectral function at t = 0, was given in Appendix
B.

In Sec. II E it was shown how V»(R) could be
written as a single integral involving products of the
real and imaginary parts of the dynamic polarizabil-
ties Fx(~), evaluated for res/ values of ~a„[Eq.
(2. 106)]. This is to be contrasted with the familiar
expression (2. 99) in which the Ex(v) must be eval-
uated at imaginary values of z. In Sec. III A it was
shown that if, as is normally th
measurements of the differential and total photo-
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atom cross section would suffice to determine F~
(&o) and hence V»(R); if F„ is comparable to Fs,
measurements involving either initially polarized
photons or detection of the final photon polarization
appear to be necessary. In Sec. III B an analysis
of the frequency regions important in the evaluation
of V»(R) was given and the inadequacy of the pres-
ent experimental information in this regard was
emphasized. In Sec. III C some simplified forms
of Vxx(R) based on approximations to (2. 106) were
considered. Finally, in Sec. IV, the interpolation
formula for V»(R) considered in Ref. 6 was gen-
eralized to the other Vxx(R).

In connection with these results, there are a
number of points which seem to merit further dis-
cussion.

R'Y„(R)= (—, ) s
ip 0

(5. 1)

with a, the Bohr radius, while

0

V». and V» become equal for (40) '$'e +=1 or (
—=R/ao-5. Thus, for say R ~10ao, V» and Va'„

will both be negligible compared to V2„(R).
To arrive at the final form (2. 74)-(2.76) for Vz„

(R) we also neglected (a) the t dependence of the
px(o, t) —this leads to the intermediate Eq. (2. 64)—
and (b) terms of order m, /m -10 ' in 8». Approx-
imation (b) is essentially one of convenience and
only serves to simplify the form of the function Ux„

A. Review of Approximations

Previous studies of the retarded van der Waals
interaction invariably introduce the so-called dipole
approximation at an early stage of the calculations.
It is interesting to analyze to what extent and at
what stage a corresponding approximation is intro-
duced in our dispersion theoretic approach. W'e
recall first the approximations made in arriving at
our "semifinal" result (2. 61), which was derived
from the defining equation (2. 4) for V2„(R). The
first approximation made was to replace pa„(so, t)
[Eq. (2. 33)] by p~(t), i. e. , to keep only the terms
arising from real two-photon intermediate states in
the crossed channel; it is this step which permits
the computation of V2, (R) to be reduced, in princi-
ple, to a knowledge of the photo-atom scattering
amplitude (albeit, in unphysical regions of the o, t
plane). The neglect of pa, (t) corresponds to drop-
ping a potential Vz„(R) which falls off exponentially
with R [Eq. (2. 34)]. To estimate the relative im-
portance of such terms we note that V2„(R) will cer-
tainly be smaller than V»(R), the potential arising
from the exchange of a single photon, which also
decreases exponentially with R. To get a numerical
estimate, consider the interaction of two hydrogen
atoms. Then'3

appearing in (2. 64), permitting its replacement by
Uxr(k„, ks; R) [Eq. (2. 68)]; both Uxx and Ux„are
universal functions, independent of the details of
atomic structure. It is approximation (a), i. e. , the
replacement

px(& t) px(o 0)= px(k) (5. 3)

which is decisive for arriving at a formula which
has essentially the same structure [(2.64)] as that
obtained by Casimir and Polder. The point which
we wish to emphasize here is that (5. 3) is a toeaker
approximation than the dipole approximation refer-
red to above.

Let us consider this topic in more detail. We
recall first that the contribution M'"'" to the photo-
scattering amplitude M, arising from an intermedi-
ate (bound) state of energy E„and angular momen-
tum l, with the initial photon being absorbed first,
has the form

M"' -N"'/((o„—&u),

where &u„-=E„—Eo and [for a one-electron atom with
ground state

l

0&]

N" '((o, t) =Q:(0
l

e' p e '" '
l
n, I, m&

e'" "-1 e'"'- 1 (5.4)

This is equivalent to setting k'=k= 0 and hence, to
the replacement of N"'(&o, t) by N"'(0, 0). In the
dispersion theory approach one instead replaces
N"'(ur, t) by N"'(ar„, 0) to obta, in the "pure" pole
contribution to M corresponding to a term 5(v' —ar„)
N"'(&u„, 0) in ps(o', 0). However, the energy varia-
tion of the difference [N"'(ur, 0) —1P'(&u„, 0)]/(&u„
—v) is not neglected; it is taken into account by the
integration over the continuum in the spectral re-
presentation (2. 97) for Fs(o, 0). The approximation
(5. 3) and (5.4) are related by virtue of the fact that
the conditions for their validity are related; (5. 3)
is valid for

l tl «ao, while (5.4) is valid for aors
«1. For a fixed physical scattering angle, the
second condition implies the first, but the converse
is not true.

B. Symmetry between FE and F~

We saw in Sec. III B that the separate determina-
tion of F~ and F„ from cross-section measurements
is hindered by the fact that

l
Fs

l

' and
l F„l enter

the differential cross section in precisely the
same way, for co«m. A simple way to see the
source of this "degeneracy" is to make use of the
effective Hamiltonian

«2 1 2H = —2&gE -~ @AH

x(n, I, ml ~'p e'"'"10& .
In the dipole approximation one makes the replace-
ment
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considered in Sec. IID, where E and H are now re-
garded as quantized fields; E = —Ar, H= rr && Ar
with A& the quantized transverse radiation field.

It follows that, in this approximation, the matrix
element for phonon-atom scattering is proportional
to

ns z e~(d + nu (E&&k) (e'xk'). (5. 5)

The equality of the coefficient of
l

nz
l

z and
l

nu
l

'
in the differential cross section now follows immed-
iately from (5. 5) and the identity

l &,
'

~ t;l ' = g
l (t,'&& k') (e; x k)l ', (5. 6)

where o.~ is the polarizability measured when the
particle is a state with eigenvalue m for S.z, and
E = E02. Let a& be similarly defined. The asymp-
totic form of Vz", (R) is then given by

Vzs(R) - —D/R, (5. 11)

where the sum is over a complete set of product spin
states

l m„, ms), with eigenvalues m„and ms for
the projection S& and S~ on some arbitrary z axis.
Furthermore, for a particle of spin S let us define
the average polarizability by

n= Q n",1 (5.10)

where (z„&z, k) and (zI, z2, k') form right-handed
systems. Since E&&&k= -7&, &&&&k=e&, etc. , the
right-hand side of (5. 6) is just a reordered form
of the left-hand side.

C. Sum Rule and Sign of aE

where

D= —( nz nz+ nu nu)

(n n +nunks) .
4 8 N

(5. 11')

Qg+ Qg&0 ~ (5. 8)

The existence of paramagnetism and diamagnetism
shows that a& may be either positive or negative.
However it appears that n~ is positive for all
known substances. It mould be interesting to know

to mhat extent an inequality of the form n~ & 0 is gen-
erally valid, i. e. , derivable on the basis of general
principles.

D. Extens&on to Include Sp&n

It is of some interest to ask to what extent the re-
sults of this paper can be generalized to neutral par-
ticles with nonzero spin. With regard to the asymp-
totic form of the two-photon potential, an analysis
of this question has already been carried out, ' with

the following result. Let S„and S~ denote the spin
operators associated with neutral particles A and B.
We define the sPin-independent part V~„" of V» as
the part of V» which does not involve S& or S»
more precisely,

1 1=
( ) ( )

~ &m» m, lvzrlm» ms&,

(5.9)

On adding the spectral representations for Ez (&o)

and Fu(~) [Eq. (2. 9V)] and using the optical theo-
rem (8. 10) we see that, since px(v) = ImEr(e), the
coherent forward transition amplitude Es(up) + E„(sr)
satisfies

, ar(~')
Ez(&) + Fu(&) = d& i i +

71' g 0 (0 CO (d +(d
&

(5.6')
If we put or=0 and use the relations Fr(0) =4znz, we
arrive at the sum rule'

(5. V)

0

which shows that

Equation (5. 11) is indeed a very natural generaliza-
tion of (2. 88) and was originally guessed on intuitive
grounds; its derivation turned out, however, to be
of surprising complexity. In this connection, we
mention here only one important way in which the
case with spin differs from that treated in this paper
and in Ref. 2. When the particles have spin, the
one-photon exchange potential has a spin-dependent
part which is not short range; it follows that the
contributions to Mz„(s, t) arising from intermediate
states in which the initial particles occur (or, equi-
valently, in which the atoms are in their ground
states) must be removed from Mz„before a defini-
tion of V» is made as a Fourier transform of a thus
modified M».

E. Higher-Order Electromagnetic Corrections

The asymptotic R behavior of the two-photon ex-
change potential V2, (R) depends on the behavior pz„- t near t= 0. This behavior is assured if the limit
of Fx(o, t) as o- m and t- 0 exists which is in turn
assured physically by the existence of a finite static
polarizability u~. From a purely theoretical point
of view, one certainly expects that F„(m', 0) is fin-
ite in the lowest order of electromagnetic interac-
tions. However, one should note when higher orders
are included Fx(o, 0) will no longer be analytic near
o=m; as recent work shows, ' near

&o = (o - m )/2m -0, Fx - [I + O(n) &g ln&o j

Nonetheless this is still finite for + 0.
Similarly, as emphasized in Ref. 8, one may ex-

pect that px(m, t) is no longer analytic for t-0 when
higher orders are included; if the singularities are
no worse than those in ~, Ez(m, 0) will continue to
exist even when higher orders are included. (For
atoms, the word "order" refers to the numbers of
virtual transverse photons exchanged; the Coulomb
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:A„(x~)A„(yg):=i g~„D~(X), (5. 12)

where the horizontal bracket indicates the contrac-
tion operation encountered in the expansion of the
S matrix, using Wick's theorem and

D~(x) ~1/(x' —i'e) (5. 12')

with x = x', —
~
x~ '. For

~

x~ & 0 the time integral of
DF(x) is (put xo=q ~x~ )

J D„(x) dx' I/~x~, (5. 13)

that is, proportional to the Coulomb potential arising
from single-photon exchange.

Now let us consider the effective Hamiltonian
(2. 87), describing the interaction of a neutral spin-
0 field with the electromagnetic field A, . For sim-
plicity we restrict our attention to the second term
X2~ P~PF""F„„, with F,„=B„A„—B„A„. The effec-
tive propagator G(x, —xz) for the exchange of a pho-
ton pair emitted at the world point &y by particle "1"
and absorbed at the world point x2 by particle "2"
is then given by

G(x1 x2) Dye ' 08(x1 xa) D (x1 x2)~ (5. 14)

where

D„„.~y(x, —xa) =:F,„(x,)F„(x,): .
Using (5. 12'), (5. 14), and

s, e, (x') '=(x') 'I(6x,x,/x') —2g„],
one readily sees that

G(x) = const/(x )

(5. 14')

(5. 14")

In analogy to (5. 12) and (5. 13) one therefore expects
a potential proportional to

f (x) 0
J

8 8 ~ 4
i

~7xo —x +i& ~x

as first found by Casimir and Polder. '
(We remark

that a similar argument can be used to predict the
behavior of the potential arising from neutrino-

pair exchange. )
'

Furthermore, within the framework provided by
an effective Hamiltonian, one can understand the
R ' behavior simply on dimensional grounds. For
example, with X =g Pty F„+"",we must have
dimg=L inorder tohave, as required for an energy

interaction must be separated out, so as not to des-
troy the existence of bound states ). The problem
of the precise behavior of Fx(o, t) near o= m', t= 0
seems to merit more detailed study.

F. R 7 Behavior from Photon-Pair Propagator

It is instructive to relate the asymptotic R ' be-
havior of V2, (B) to a simple model for an effective
photon-pair propagator. We recall first that the
single photon propagator is given by

density, dimX=L . On including a kinematical
factor M for each initial and final particle, one
sees that the general form of a power-law potential
will be V~g (M '~2)'r "

T. he requirement that
L ' = dim V = (L ) (L~) L " then leads to —1 = 6 —n or
n =7.

G. Concluding Remarks

The question of the nature of the force between
atoms is of fundamental interest for physical theo-
ry, especially for our understanding of the proper-
ties of matter. As we have seen, for spinless
atoms, quantum electrodynamics makes clear pre-
dictions about the interatomic potential for R» ao,
independent of any atomic model. Although the re-
tarded character of this potential has been indirect-
ly verified in experiments involving the interaction
between macroscopic bodies, ' a more direct test
of theory of the retarded van der Waals potential by
means of atom-atom scattering experiments would
seem highly desirable. We hope that this paper
will help to stimulate the efforts of experimentalists
in this direction. A calculation of the very low-en-
ergy atom-atom scattering cross section is current-
ly in progress with the aim of determining the ex-
perimental accuracy which would be required to
measure the retarded van der Waals potential at in-
termediate distances. '
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APPENDIX A: S MATRIX APPROACH TO
ELECTROMAGNETIC SUSCEPTIBILITIES

In Sec. II D it was shown that the threshold values
Fe(m, 0) and Fv (m', 0) of the form factors Fe(o', t)
are proportional to the static electric and magnetic
susceptibilities n~ and n„, respectively, by a
method based on the construction of an "equivalent"
Hamiltonian. Since there might be some doubt
about the uniqueness of this procedure, it seems
worthwhile showing how the same conclusion can
be reached directly, by study of the S matrix for
scattering of a neutral spinless particle by an ex-
ternal electromagnetic field A'(x).

For a weak external field, we may assume that
the S matrix can be expanded in powers of a param-
eter characterizing the strength of the field. The
second-order term, corresponding to double scat-
tering, is then given by I see Fig. (2)]
S' '=2t N I"„„(k,k';P) A" (—k) A" (—k') d P",

(Al)
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where I', „is the amplitude for two-photon emission
[see Eq. (2. 6) and Fig. 1] and

A"(k)=(2&) ' f A" (x) e'"'"d'x. (A2)

The integration variable in (Al) could be either k or
k' but is more conveniently chosen as

ticle being scattered. Then P, - (2m, 0) so that
P,Ps - 4m~ g«, g@0, and N- (2m) '. With these sub-
stitutions in (A7), we find, using (A8) and

F F, = —E F 'F„=2(-E'+H )

that

P"=P -k= p'+ k' . (A3) S"'= —2vi5(f" f') (-p'IH'Ip) (A9)

The quantity N is the kinematical factor appropriate
for a spin-0 particle, a =--, o~Z --, ~„'H,r 1 I 2 1 t p (Alo)

(4~10PO)- 1/ 2 (A4) with

From Eqs. (2. 13) and (2. 14), we readily find that

T, .„„A (-k) A"(-k') = —P Ps F "(-k)F~ (-k'),
(A5)

T, „„&'(-k) A"(- k') = - -', F„,(- k) P"(- k'),
where P=P/m and

F""(k)= —i[k"A (k) —k A (k)].

is the Fourier transform, analogous to (A2), of
the field tensor

F'"(x)= 8"A" (x) —8" A "(x) .

From (Al), (A5), and Eq. (2. 5), we get

S'~' = —,'(iN) f (F,P Ps+Fsg, s) P'" (-k)

n,' -=—[4FIo'+ F,(0)]/2m = F, (0), (All)

n„'= F,(0)-/2m=F (0) . (A12)

Ts „„A~(- k).A"(- k') =J (- k) O'I (- k'), (A13)

Since (A9) has the proper form to permit identifica-
tion of II' as an effective interaction operator and
since the quantities n~, e„', and II' defined by
(A10)-(A12) coincide with ns, o~, and H' defined,
respectively, by Eqs. (2. 39)-(2.95), we have con-
firmed the interpretation of the F,(0) given in Sec.
IID by an approach based directly on the S matrix.

It is interesting to consider the nature of the
effects arising from the terms in M, „which did not
contribute in the limit of static uniform fields.
It is easy to verify that

x& (-k')d4P" +. . . , (A6) where

where the dots indicate the terms arising from Fs,
I'4, and I'4. These will, however, make no contri-
bution to the limit we now consider.

For a static field F'"(x)= F'"(x) we have F""(k)
cc 5(k ) F'"(l), tso that in the arguments of the F, in
(A6) we may set ko=k' =0. For a field F'"(x)
which is slowly varying, i.e. , constant over a large
region of space and falling smoothly to zero outside
this region, we may also set k=k' =0 in the I', in

(A6) since if F~"(x)-C"", independent of x, F "(k)- (2v) C~ "5(k). Under these circumstances the
terms not written out in (A6) may also be dropped
and (A6) assumes the form

J (k)=——ik"F~, (k) .

By Maxwell's equations, J,(k) is just the Fourier
transform of the electric current J (x) producing the
external field. Similarly,

T4 ~,A" (-k)A"(- k') =i P„Js(-k) F (- k'),

(A14)

T...„A"(- k) A"(- k') = i P, Js(- k') F @(-k) .
If we again consider a static source and neglect the
variation of the E, with momenta (a=3-5), the con-
tribution of (A13) to the effective Hamiltonian is
proportional to

S'"--,'(iN) [F,(0)P.P, +-.'F, (0)g., )&", (A7) F (0)J (x)J"(x) (A15)

or

Z '= f F "(x)F',(x)e'"'~'"d'x

where

Z" = f F""(-k)F'.(-k') d'P" .

On going to coordinate space, we get, using (A3)

and for (A14) [with P,- (2m, 0, 0, 0)] to

m[F4(0)+F, (0)]J(x) E(x) .
It follows that, in order to detect such terms, an
experiment would have to be performed in which
the wave packet of the neutral particle has appre-
ciable overlap with the som. ce of the external field,
rather than just the field itself.

K"= 2v 5Q"-p')(p'I F"'(x)E',(x) I p&, (A8) APPENDIX B: ALTERNATIVE DERIVATION OF THE
ASYMPTOTiC FORM OF V2~(R)

where [p) denotes the state with wave function
We present here the original proof of the fact

We now go to the nonrelativistic limit for the par- that, as stated in Ref. 3, for R
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where

(81)
The evaluation of E&j is rather more formidable,

requiring some patience. Using (2. 13), we first
find

(~z os+ +N o'u) - (~B ~hf+ ~N ~E) ~

Tq. T, =P~P~PsPsI;8„/mg™s,
where

(812)

O
gl2 2n+ 1 !t"exp(- t'I'R) dt =2

that Vz„(R) has the form (81), with

D = —5!C'/Sv mgms .
%e must therefore evaluate C' which, from

(83), is given by

C' = limp2„(t)/t as t 0 .

(as)

(85)

(8't)

From (2. 42), (2. 39), and (2. 17) we see that (87)
reduces to

c =,—,', Z F."(0)F,(o)z.„
ay&1

(as)

If„= lim ~ dC T,":Ts,
t -O, s-SO

and

F,(0)= F,(o = m 3, t = 0); (810)
we have used the fact that for 8 =so, t-0 implies
o' m, Using (2. 13) and (2. 14), we readily find
that on the photon mass shell

T" T'=t'P'/4m' T" T'=t'P'/4m'
yA. yB & t2

so that, since

Compared to the discussion given in Sec. IID, the
approach to be described here is much more direct.
It also has the advantage of making it clear that,
as asserted in the text, the statement Va, (R)
--D/R is an exact consequence of the definition
(2. 4) of Vz„(R), and of showing that the next term
for large R is of order R, as indicated in (81).

Ne begin with the observation that, for t-0, the
spectral function pa„(t) given by (2. 42) will have the
form

p,„(t)= c't' [1+o(t)],
where C' is a constant. On substituting (83) into
[see Eq. (2. 35)]

V,„(R)=, p2„(t) exp(- t'IsR)+ ~ ~ ~,
w mfm2 0 ( )

where the omitted terms fall off exponentially with

8, we see on using

I„.s —( ,'t)2g—,qg«+ —,'t[(k,'kPgs +ksk g,P)

—(k, kis+ks k', )gp —(k pk', + k, k'p)g, )))

+k, k, k,'k'. +0,0 g'y .

From (89) and (813), we see that we need the in-
tegrals

f k=—,k' d4 (814)

Z„. =(v/24) [tg, +2Q, Q ]. (814')

Similarly, we write J„;z as a linear combination
of the ten distinct fourth-. rank tensors which can
be formed from Q„and g», use obvious symmetry
properties to reduce the number of coefficients to
be found, and multiply byg', Q'Q, etc. , to obtain
a sufficient number of equations to determine the
coefficients. This yields

~OP, an = (~/4SO) [t (gPPAe +gee gP)3+gP8 gPe)

+4t(gsQpQ~+gp~QpQs+gps Q. Q~+gp, Q. Qs)

—St(g„Qs Q +g)) Q. Q,) + SQ.Q, Qs Q ]
(815')

From (814'), (815'), and (813), it follows that

fr„,, dC'= (~/240) [t'(llg„g,.+11g.,g,.+g,„
+41(g.PQsQ +gs Q. Q, +g. Q, Qs+g, sQ. Q

-4g. Q, Q. -4g,.Q. Q )+soQ. Q, Q, Q.]. (»5)

J'„,8 =- f k, kPkt)k' d4, (als)
To evaluate J'.. . we write, on grounds of covari-
ance, O'P ~ =ag«+b QP Q~, multiply (814) in turn
by g' and Q'Q, and sum on the indices to obtain

4a+bt = f k ~ k'd4,

at+bt = f Q ~ k Q ~ k'd4) .
Since, on the mass shell,

y. k'=Q. k=Q k'= &t,

the required integrals are immediately found and
hence so are a and b. Thus we get

+g =4~g —t~ +It =4m' —t, and2 2 2= 2

we get
1 1

+&2=+2&= 2& y &22= 4& ~

f d4=-,'v,
11P„Ps+ 11(P„~Ps) + (P„~Ps)2

Slg Pl+

where we have used the fact that the second and




