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The grand partition function for a degenerate electron gas with relativistic corrections of
order (v/c)2 in ring approximation is given. The technique used is the method of Montroll
and Ward; in this problem independent field degrees of freedom are not required. The cor-
relation energy, which represents a generalization of the Gell-Mann-Brueckner result, is
obtained. Comparison with the field-theoretic results of Akhiezer and Peletminskii is made,
with the same results. However, in view of the absence of independent field degrees of free-
dom in our treatment, renormalization is not required here (to obtain their result Akhiezer
and Peletminskii must resort to charge, mass, and vacuum renormalization).

I. INTRODUCTION

There is considerable interest at present in the
properties of charged-particle systems in a regime
where relativistic effects must be examined. Some
of this interest is generated by possible applications
to fusion problems and some by astrophysical
situations. This paper deals with the equilibrium

statistical mechanics of a dense degenerate elec-
tron gas; the main application is therefore con-
cerned with problems of the latter type, although
there are also implications for hot classical lab-
oratory plasmas (as will be noted).

Apart from the above, there is some bearing on
the fundamental problem of a basis for a relativistic
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statistical mechanics. As is known, relativistic
theories of interacting particles, whether based
on field theory or not, face serious difficulty of
consistency and interpretation. On the one hand,
direct interaction theories lead to difficulties
which have been noted elsewhere. 4' On the other
hand, field theories are beset by renormalization
problems.

Thus, as has been the rationale for previous in-
vestigations of the interacting problem, we assume
the relativistic (v/c) approximation. This work
has dealt with classical equilibrium and non-
equilibriume' cases, as well as the derivation
of a quantum-kinetic equation. To this approxi-
mation a Hamiltonian exists and the statistical
mechanics of the interacting system is well de-
fined.

The quantum-statistical treatment contained here-
in has something to add, we feel, toward the pre-
sumably more rigorous problems in which exact,
rather than approximate, Lorentz invariance is
required. Thus part of the paper is devoted to a
comparison between a field-theoretic formulation,
with its mass, charge, and vacuum renormaliza-
tions, and the present renormalization-free pro-
cedure.

In regard to astrophysical application, we remark
that the (v/c) approximation implies that the Fermi
momentum P~ of the degenerate gas is less than mc.
This restriction confines one to densities less than
O(1029) cm ~. Corresponding temperatures may be
of O(10 ) 'K and still be below the Fermi tempera-
ture 7.'&. Such conditions prevail in white dwarf
stars. 4

The technique used is based on the generalized
cluster integral theory of Montroll and Ward (MW);
in this relativistic approximation the interactions
are similarly treated as instantaneous [in (v/c)
approximation, effect of noninstanteous interactions
is not felt]. Positive energy states only are con-
sidered in the interacting problem.

The ring approximation using the Darwin Hamil-
tonian is made, and the corresponding thermodynam-
ic quantities are found. Included here is the (v/c)2
generalization of the Gell-Mann-Breuckner (GMB)
correlation energy. The comparison with the GMB
result is made without separate consideration of
exchange effects (these will be considered elsewhere}.

FIG. 1. Typical n-toron diagram.

Hz P(e /——r&z)[1 —(II+ r&&r&z/r&&): p&p&/2(mc) ].
kQ

(2. 1)
Spin-dependent interactions will be neglected in the
present theory; these will be generally smaller at
the densities considered here.

The (v/c)3 corrections to the ring integral cal-
culations of MW are now given. Figure 1 depicts
an n-toron (the windings have been deformed into
a circle of circumference nP). The n-toron is
created at c and circulates until it picks up a quan-
tum q at reciprocal temperature P . It then com-
pletes this cycle and moves j complete turns, whence
during the next interval, it discharges the quantum
at P, &. Finishing the discharge cycle, the toron
returns to point c and is annihilated. Of its, total
interval of existence nP, it spends j P+ (P„,q

—P„)
carrying the quantum q.

The momentum-space propagator corresponding
to the n-toron and emitted quantum may be written
as

(2wh) "'exp(- &~[(n -j)p —+~]]h "'u(q~, p„,p„„)
x(2vh} 's exp[- t~„(jp+o. )], (2. 2)

where o'„—= I p„,~
—p I. The exponential terms oc-

curring in (2. 2} represent the momentum-space
representation of the free-particle propagators,
and &~ and &~, , are the relativistic kinetic energies
of the particle with momentum p and p+ q, respec-
tively.

u(q„, p„, p, ) is the Fourier transform of the
interaction energy and is expressed as

h "'u(q„, p-, p„, ,) = (2/w)"'(e'h'/q')

II. RING CONTRIBUTION TO GRAND PARTITION
FUNCTION

A Feynman-type perturbation series is used by
MW to obtain the grand partition function. In the
present problem the interaction operator Hl, which
will be used in the perturbation expansion, is the
Darwin interaction given by ~

x[1 -pZ. .i:(11-q-qdq'-)]. (2. 3)

5 '@u = (2/v)"'(e'h'/q')[1 —p~, , sin8„sin8„, ,

x cos(Q „—Q „,,)]. (2.,4)

If 8 and fIt represent the polar and azimuthal mo-
mentum angles, (2. 3) may also be written as
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The momentum-space propagator of torons of all orders is computed in the same manner as in the origi-
nal MW paper. Taking the inverse Fourier transform of the result and integrating over P then gives the
propagator in configuration space of all possible diagrams resulting from Fig. 1:

(Cl ff ~ 1

J(ft...-ft.; e...-e.)=(2.1') "'& (-1)"'""&f d'p. e p( e-,[( j-)P -.]}{q., p., p.. )

(2; 6)x exp[- &~„(jp+ u )]exp[ iq -(R„,( -&„)l@]dq ~

A rj,ng of pf g-torons is constructed from the basic diagram shown in Fig. 1. A cut exists between the Nth

and first torons, and after the calculations are complete, one sets %+1=1 to close the chain. The total

propagator for the ring is

g g N

&»(&». (-ft('P». (-Pi)=$ '' f, II&(ft ~ (-&, P ~ g
P)-dPg''' f4(f('& 2''' f('&» (2. 6)

Substituting {2.5) into (2. 6) and integrating over the R variables and then the variables q, to q„„
one finds that

The product of the interaction transforms which results from substituting (2. 5) into (2. 6) may be sim-
plified by employing the azimuthal Q~ integrations. One finds that

f d'p, d'p»(((py2q) ~ ~ ~ (((p»pgq)=f d'p( d'p»$1 —2(-1)"[p,'sin'8, /2(mc)']x. . .&&[p2»sfn'8»/2(mc)']}.

The P integrations in (2.6) are facilitated by defining the functions

00 n-1
G,{u„)=(2((h') 'I 2{-1)"'~z"Z f (f'p exp(-e~[(n-j)p — „u]} exp[- ~e, ,(jp +u)],

n=1 I=0
(2. 6)

G»(u )=G,(u )p~ sin~8„/2(mc)'. (2. 9)

Using (2.7)-(2.9), one finds that (2.6) reduces to

&»{ft».( -&(; 4.( -&() = {2»@) ' f d'q &/q')" exp[-iq (&», g -&&)@ '] g "
fo G»(u()G»(ua)

& G» (u» ()G»(u») dP3 '' d&»+'2(-1)»I2((8) 'fd'q(A/q')» exp[ iq ~ (R-», , -A()ff ']

&& f, " J Gs(u()G»(um)&"'&«s(u» ()G»(u»)d&2 "'d4 (2. 10)

~ =-e'e'{2/v)"'

The P integrations of the iterated kernels in (2.10)
are done in an analogous manner to that of the MV

paper, i.e. , by means of an integral equation
technique. Choosing a set of characteristic func-
tions (g'» '},{P&"'}and associated eignevalues
(&~ '},(&&"'}, one then finds, after setting 8», (
=Bg and Pg, ~ =P~, that

f F„(0,0)d'ft, dP, = V(2»a)-'Z f d'q

g [gg(s )/q2)» + 2( 1)»gg(B)/qa)»] (2 11)

The statistical weight necessary in (2. 11) is the

~[m~,"'/q'- h (1+m~',"/q')]

—V(2»a) Z f d'q [m~~&»&/q'

+ln(1 —2A&q"' /)q]. (2. 12)

same as that used in the nonrelativistic problem,
l.e. ~

—,'2"(-1) (i(t —1) l/N ! .
Combining these statistical factors and summing
over all N gives the contribution to the free-particle
grand partition function from the ring integrals:

lnZ, = h Z,("+V(2»n.)-'2-'P fd'q
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)( ec A, e

Go=Go(P sino8)/2(mc)o.

(3.2)

(3.3)

Summing directly over j and then over n in (S.2) and
(S.3) leaves

Go = (2vk') '(no, , —n~)/(eo '- 1), (3.4)

where n/, =1/(1+x eo'&) is the occupation number of
electrons with momentum p. Performing the e in-
tegration in (2. 1) yields

X/
' = (2vS ) fd P(n~, , —n/, )~e/[ (rH) + (27/j/P) ],

The K = 1 term gives rise to self-interaction (ex-
change) effects which are not considered in the
present paper. The direct-interaction term for
N= 1 vanishes for an assumed electrically neutral
system. In the nonrelativistic limit, Gs (and hence
X/'"') is 0 and (2.12) reduces to the expression ob-
tained by MV.

III, CALCULATION OF Xj AND A j'

The periodicity requirements of G~ and G~ lead,
as in the nonrelativistic problem, to the following
expression for X&

' and X&~'.

y(s, s) f G (~) eonOa/od~ (S.1)0

The notation S, R means that &&
' (&/a') results when

Go (Go) is chosen.
Defining he= eo —t~. .. one may rewrite (2.8)

and (2.9) in the following way:
oo 1

(2~8.2)-3/2/ ( 1)n+ 1 en f dop e epno e/8 &n

x-=cos((P, g ) = cos8,

u=—2o'j/ppoq =2'/ppo og, a =po/mc,

then to order a =po/m c, A/~
' and A/~"' may be

written as
2

X/o&=- (2xh') "2ompo dxg da'8"

x( 6' x/ $ ( 6' x + u ) [1, +ao (P o(—' uo/ g) og ~ u2)]}

(S.9)

x&"' a (2mgo) o/o2vmpoa'f, dx (1-xo)

ds'& [8'x/0(8"x'+u')]. (S.10)

A/~s~ =2(21r) / h omPoa [(1+u )R(u) —o], (3.12)

where R(u) = 1-utan 'u '.
It is to be noted, also, that in the limit of P-~

the parameter u = 2' m/p k poo becomes a continuous
variable with du = (2mm/P QPoo)dj, so that the sum over

~
j appearing in (2.12) may be replaced by (P QPo/2mm)
x f"„du.

The limits on the 6' integration follow directly from
(3.7) in the small- 0 limit. The indefinite 5' inte-
grations are tabulated in Ref. 19 so, after evaluating
the result at the limits, taking care only to include
terms of 0( Z), and integrating over x, one finds

X/
' =2(2o)" if mpo[R(u)+a [R(u) —1/2(l+ u )]),

(S.11)

IV. EVALUATION OF GRAND PARTITION FUNCTION

Substituting (3.11) and (3.12) into (2. 12) and de-
fining

ao -=(4me /mhpo)(R(u)+a [R(u) —1/2(1+u )]j, (4. 1)

n„=- (4meoao/mePo)[R(u) (1+u ) —n], (4.2)

In the degenerate limit, the nonzero contribution
from ~&

' and &J 'occurs if n~, ,=Oand n~=1. By
writing the energies out explicitly in the expression
for no and n&„, the nonzero contributions to (S.5)
and (S.6) are found to be satisfied if

Ipal po, p po (3.7)

one finds that

InZa-1nZa'=V(2oS) pm pof„dug d g go

(S. 5)
&' ' = (2ma') "'fd'p(p' sin'8/2m'c') (n n)-

x go/[(gg), (2'/p)'] (3.6)

where po is defined through the fugacity as

= exp[P(p', c'+ m'c4)'"] .

(S.8)

If one substitutes (3.8) into (3.6) and(3. 5), and
defines the quantities

O'=-
I p I/po, z-=I ~ I /po,

Further reductions on the integrand in (3.5) and
(S.6) are found by considering the small-q limit.
Under these circumstances an expansion of c~, ,
in a Taylor series about small q leads to

p'q p( a)
m[1+ (p/mc)']"'

x[no 0 ' —In(1 +n og-')]

—2V(2m@) pm 'po

xf du f, d& k'[&„4 '+ ln(1 —o s k ')] .
(4. 3)

The quantities +& and &„are greater than 0 for all
values of u provided that 0&tan u &m. The 4
integrations diverge at the upper limit; but a cut-
off at /=1 is justified.

Evaluation of the k integrals in (4.3) will be done
in the high-density limit (p- ~). MW have shown
that in the ground state (P- ~) the appropriate
dimensionless quantity describing thermodynamic
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properties is me~/k2p /2, so that expansions per-
formed in e are equivalent to expansions in inverse
powers of density. Following the GMB theory, the
integrals in (4. 3) are evaluated to order e' (i.e. ,
1/p) which, in view of definitions (4. 1) and (4.2),
is equivalent to O(()(z ~)

Solving the a~ integral in (4.3), to order 8 ~,

yields

The n~ integral can be computed by an appropriate
integration by parts and then by employing the
Cauchy principal part on the result (see Appendix
A). One finds that

f dg t3[n 0-~ ln(1 —o. 6) ~)] = —,'n2 (-,' —Inc.„).

—,'c(,'(-', —inn, )-=[-,' y'Il'(1+ 2a')] (-,
' —»If)

+-,'~' y[~h yIf/( 1+u') -If'], (4. 4)

y —= 4me'/p, )(L (4. 5)

All the quantities of O(a~) are not grouped together
because, in its present form, the integration of the
first expression on the right-hand side of (4. 4) has
been evaluated already by GMB. Using their re-
sult and evaluating the remaining terms in (4.4)
(see Appendix B for details of the s integrations),

From (4. 2) it is observed that oz~ (po/mc) . There-
fore, in the high-density limit, the correction to
lnZc from the Darwin interaction is of order (v/c)
and may be neglected in the (v/c)' approximation.
This is consistent with the classical result which
can also be interpreted as contributing terms of
O(v/c) from the Darwin interaction.

Before evaluating the u integrals the quantity
—,'o(z (-,

' —inc'~) is expanded to order a . Using the
definition of &~ leads to

one finds that the grand partition function becomes

~ ~,= —V(2va)-'p -'p,'[y'K(»+C --,')

+y'«'(-,'» —o.o26)],

where

K-=vi(l-ln2), C=--0. 551.

(4.6)

The procedure to fi.nd the relativistic correction
to the correlation energy for a system of fermions
proceeds in a manner similar to the nonrelativistic
calculations of MW. The energy and density of the
system may be found from the grand partition func-
tion from the following equations:

—s(lnZ, ) e(h Z, )
&p

' van (5. 1)

p, = chemical potential= (poc + m c )'/, (5.2)

o(= in(ze~ '
) = p[(p'Oc'+m'c')"'-mc']=- pp'. (5.3)

To order (v/c)', the quantity Po may be expressed
xn terms of n:

p()
= (2m'/p)"'[1+(2mo. '/p) (8m'c') ']. (5.4)

Substituting (5.4) into (4.6), and using only orders
of (v/c)', one finds that

~ h Z, = iW, mac(0) =—V(2'va)~ 'mP (32/-m)"'

~f1.(5/8 "') (2 /P)]I„ (5.5)

where

Ir = —[y'K(lny —1.05) + y'K( po/mc)~(-, ' lny —0. 026)].
(5.6)

Equation (4. 6) is valid for low-momentum transfer
((I-0) at ground state (p- ~) and high-density condi-
tions (p- ~) and in the limit as a' «0.

V. CORRELATION ENERGY AND &P;„g

performing the differentiations in (5. 1) and using the ground-state energy and density to order (v/c)
leads to

E/ [ r(rr))'P]'mfnrrrr)()l —5(rr'/Mm'r )r)(rrl +2(rr (() +(rl I }— (5.V)

p = [2(2~8') ] ($ )(Po)+ 10PDIr(1+p()/4m c ) —2(1+p()/4m c ) p —+PI
8P ' 8P

(5. s)

~=- [1+5p',/Sm'c'].

Now, po must be eliminated from both (5. 7) and

(5. 8) and E expressed in terms of p. Assume that

Po =Pz+ &Po&

where Pz is the Fermi momentum of a set of non-
interacting particles and Bpo is a small correction
due to interactions and relativistic effects. From
(5. 8) and (5. 9) it follows that

6p, /p = —,'7r 5I (1+p /4m —c) —2(l+p /4m'c )
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x —+ PI~—

The correlation energy &~„ is defined as

4,.„=A(P/N) = (Z -E«.„)/N.

(5. io)
lecting quantities of like order in 1/m~c', one finds
that

5po/pr = (1/8m) [si' K(lny-1. 05) —yaK

+V&(p /m c')(41ny —2. 70)] . (5. 16)

Substituting p, = pr (1+5p,/pz, ) into (5.7) and using
(5. 10), one finds that

~..„=—(SP,'/8vm)I, ,

the terms involving [P SIr/8P+ PIr BM/SP] cancelling
out. Defining the dimensionless quantity

r, =r, / re (5. ii)
where x~ = Bohr radius and xo is related to the
density by p '=

3 mr', and using the explicit expres-
sion for IT, & „may be written in units of
rydbergs/electron as

e„„=(0.062 lnr, —0.091)+ (Pr/mc)

x(0.031 lnr, —0.021). (5.12)

m, = inZ,"'+V(2~k)-'pm-'p40I, . (5. is)

The contribution from lnZ~ ' is found by performing
a, (v/c) reduction on the result of Chandrasekhar. "

By assuming that po = pr (1+6po/pQ and then sub-
stituting this form of po in (5. 13), dropping orders
of I~5po, one finds

AP= P —P,4„,= [8vPr/15m(2m') ] [55PO/Pr

x[1 —(p /mc) /2]+15I /8v "I

(5. i4)
where the ideal-gas contribution is given by'

P44,4) ——8vpr/15(2m') m(1 —5pr/14m c ). (5.15)

performing the differentiations in (5.10) and col-

When the density is expressed in electrons/cm', it
follows that

( p /mc)' = 1.93x 10 'r, ' .
In the nonrelativistic limit &„„corresponds to the
GMB value.

Nozieres and Pines have shown that the GMB
result is valid if x, &1. This corresponds to alower
limit on the density of about 10 ' cm '. Up to den-
sities of 10 'cm ' the (v/c) approximation is quite
good since, in these regions, (pr/mc) is reasonably
small [for example, at p=10 ' cm ', (pr/mc)
= 0. 065]. One may extend the range of p to about
10 cm ' [(Pr/mc) =0.3 and r,=0.025], but above
this density (pr/mc) grows quite rapidly and the
approximation breaks down.

The next thermodynamic property to be cal-
culated from (4.6) is the (v/c) ring contribution
to the equation of state for a dense electron gas.
Using the definition of Ir in (5.6) it follows that

Putting (5.16) in (5.14) ultimately leads to the
ring contribution to the pressure in units of dynes/
cm:

~„„,= -2. 18&&10"~

x(&+ (pr/mc) [(- &)inr, +0. 324]),

(5. i7)
where r, is given in (5.11). Note that the nonrela-
tivistic contribution to the pressure in (5. 17) is
independent of terms proportional to e'lne'. This
point has been observed by other investigators
however, in Ref. 23, if one performs all the dif-
ferentiations of the density, the factor of 3 shown
here in (5.19) will also occur (proportional to e').

x[in[1+ 4''e A, (k)/k ]

+2 ln [1+4vm ea(A(k) -A&(k))/2k ]

-4vm'e'ii(k)/k').
(6.1)

As pointed out in Ref. 13, the main contribution in
(6. 1) is derived from the region of small e and k4

so, in analogy with the cluster integral method, the
upper limit in the & integral is chosen to be the
quantity po= (i4~ —m2)'~ .

With the change of variables &u=ksinP, k4= kcosg,
(6. 1) becomes

—pate, = —Vp(2v) ' f, dQ sin Q f ' dkk'

x(ln[l+4wm e A, (0, Q)/k ]

+ 2 ln[1+4mm'e'(A(0, &f&)

VI. GRAND PARTITION FUNCTION DERIVED FROM
QUANTUM FIELD THEORY

The purpose of this section is to give a compari-
son, to order (v/c), of the grand partition function
derived by the cluster integral method and the grand
partition function calculated from quantum field
theory. The latter procedure was used by Akhiezer
and Peletminskii" to determine the thermodynamic
properties of a gas of electrons, positrons, and

photons with an accuracy proportional to e lne .
The log of the grand partition function is defined
as —PAQ„and naturalized units are used (k= c = 1).

For extremely low temperatures (P «p -m) AP
(Ref. 13) find that the correlation contribution to the
thermodynamic potential is given by

—PA@, = V(2v) f dk4 f d&u&u
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—A~(0, $)/2k )] —4' e A(0, $)/2k I . (6.2)

If one defines k =P,x in (6.2) and

~ =-4~m'e'/P, ', AA-=A(0, y) —A, (0, y), (6.3)

then the k integrations of (6.2) lead to

-', (o.AA)' ln (-,
' o.AA sin'y) +-,' (nAA)' ln(nA, sin'y)

--,'[-,'(o.AA)'+ (nA, )'j . (6. 4)

u -=(I +a')"' coty/a;

A(0, Q) and At (0, Q) may now be written as

(6.5)

A(u) =a[R(u)+a ]/v (I+a )'

A, (u) =aR(u)[I+a (1+u )]/x (1+a )'~2,

(6. 6)

(6. 7)

where R(u) = 1 —u tan 'u '. Also, it is found that

f'dP sin Pf(g)-a(1+a2) ~ f du[1+a (1+u )] ~f(u).

(6. 8)

Using relations (6. 3)-(6. 8) in (6. 2) and using the
small-a approximation, one finds that

—P&fl,:——I'(2v) 'Pm 'P,' f„du ,'I 'yR'[ -In( yR) ——,']

In order to put (6. 2) and (6. 4) in a form more
suggestive of the integrations involved in the cluster
integral method, the variables are changed once
again. With a =Po/mc, let

The contribution of order (v/c)' given in (5. 12)
has resulted entirely from terms involving the
ring contributions from the relativistic free-particle
propagators and the Coulomb interaction. The mo-
mentum-dependent interaction, in agreement with
classical results, gives effectively no contribution
to this order.

The agreement between the quantum-electrody-
namic result and our own would appear to augment
the contention that (to this order) a screening re-
sult for the transverse interaction such as that ob-
tained in classical argument by Trubnikov and
Kosachev ' may not be valid. That is to say, if
their procedures and approximations are equivalent
to a ring approximation procedure, then the results
to order (t/c)' for the thermodynamic quantities
should be the same.
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APPENDIX A

The integral in (4. 3) is readily solved by integra-
tion by parts. With a x=—g one finds that

-1/2
o.z f dxx [x +ln(1 —x ~)]

-i/2
= && [2x + —,'x' ln(l —x ~)]o&

+ —,'a'y'R'[-, (lnyR) + —,']], (6. 9)
-1/2

+-.' o~ f, [x'/(x'-1)] dx.

where y=—na /v=4me jvpo. Performing the u in-

tegrations in (6. 9) leaves

—PAn, = —V(2v) 'PP', m '

Y [y K(lny+ C —~) + a y K(—,'lny —0. 026)],
(6. 10)

which is identical to the result given in (4. 6).

VII. CONCLUSIONS

The correlation energy calculation for an approxi-
mately relativistic electron gas generalized the
GMB nonrelativistic calculation. The comparison
with the (v/c) approximation of the field-theoretic
treatment of AP (Ref. 13) has been made, with
similar results. However, it is important to em-
phasize that no renormalization is necessary in
our treatment, since independent field degrees of
freedom are not introduced.

Solving the integral by means of the Cauchy princi-
pal part and evaluating the remaining term to

0(o, ~z), one finds that the result is (~ ns)(2 —inn~).

APPENDIX B

The u integrals in (4. 4) have the following val-
ues:

f„R(u) lnydu/(1+u ) = m(1 —ln2) lny,

f [R(u)]'du = ——,'2x(1 —ln2), (Bl)

f"R(u) lnR(u) du/(1+u ) = —0. 694 .
The last integral was integrated numerically, first
by substituting x= tan 'u ' and then evaluating

if'/ 2
2 f (1 —xcotx) ln(l —x cotx) dx .

0

Substituting the expressions in (Bl) into (4. 4) and
using the GMB value leads to (4. 6).
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We study the van der Waals interaction V~~ (R) arising from two-photon exchange between
neutral spinless systems A and B. By using the analytic properties of the two-photon contri-
bution to the scattering amplitude for A+B-A+B and of the full amplitudes for y+A y+A
and y+B y+B, we show that it is possible to express Vpy (R) entirely in terms of measur-
able quantities, the elastic scattering amplitudes for photons of various frequencies co. This
approach includes relativistic corrections, higher multipoles, and retardation effects from
the outset and thus avoids any v/c expansion or any direct reference to the detailed structure
of the systems involved. We obtain a generalized form of the Casimir-Polder potential, which
includes both electric and magnetic effects, and, correspondingly, a generalized asympotic
form Vq„(r) - D/R, whereD= -[23(nsns+nsns) -7( nsnl+ nsns) /)4 sa ndt he n' sdenote static
polarizabilities. In addition, we show that the potential may be written as a single integral
over ~, involving products of the dynamical polarizabilities o.z(~) evaluated at real frequencies,
in contrast to the familiar integral over imaginary frequencies; for the case of interacting
atoms, the domain of applicability of the various formulas is clarified, and the problem of
evaluating V» (R) from present experimental information is discussed. Some simple inter-
polation formulas are presented, which may accurately describe V~»(R) in terms of a few
constants.

I. INTRODUCTION

In this paper we present a theoretical description
of the van der Waals interaction between two neutral
spinless systems. We show that this interaction
may be expressed in terms of measurable quantities

that describe the interaction of the individual sys-
tems with real photons, i.e. , the elastic photon
scattering amplitudes. We are thereby able to
avoid any reference to the detailed structure of the
system, such as is involved in the conventional


