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The third law of thermodynamics is proved for a large class of Ising models with generalized
ferromagnetic many-body interactions. A sufficient condition for the third law to hold is that
the model have nearest-neighbor couplings which are bounded from below by a positive con-
stant, . The proof is based on a spin-correlation inequality of Griffiths which implies a cor-
responding inequality for the bulk entropy per spin. Ground-state degeneracy considerations
are completely avoided.

The third law of thermodynamics (TLT), origi-
nally conceived by Nernst in order to predict the
equilibrium conditions of chemical reactions, has
since become recognized as a fundamental principle
of physics and chemistry. ' Its theoretical founda-
tions lie in the domain of quantum-statistical me-
chanics, and it has been shown to be satisfied for
a number of specific soluble model systems. How-

ever, statements concerning its validity for classes
of systems whose Hamiltonians have certain general
properties, and which may not be soluble at present,
have been few.

In this paper, we prove that TLT is obeyed by a
large class of Ising models with generalized ferro-
magnetic many-body interactions. The proof makes
use of an inequality of Griffiths, which has al-
ready been useful in a rigorous proof that the three-
dimensional Ising model exhibits long-range order
for sufficiently small positive temperatures. This
inequality and others related to it have been the fo-
cus of considerable recent discussion because of
their applications to Ising systems and their poten-
tial extensions to other types of systems. ' It is
perhaps surprising that one of these inequalities
allows an elementary and very general proof of TLT.

A simple statement of TLT is that the zero-tem-
perature limit of the bulk thermodynamic entropy
per particle exists, and is independent of all exter-
nal parameters. For the Ising models considered
here, there is but one such parameter, the external
magnetic field. The adopted statement of the third
law entails taking the thermodynamic limit before
the zero-temperature limit, a point of view which
has been explained in some detail by Griffiths,
and which is in accord with the modern-day philoso-
phy of "rigorous" statistical mechanics. In particu-
lar, it avoids any explicit discussion of ground-
state degeneracy and, consequently, is not subject
to the various criticisms "' which have been
leveled at that type of approach.

Consider an Ising lattice, which consists of a set
A of N spins in some geometric configuration in
one, two, or three dimensions. To the ith spin, as-
sign the quantum number a, which is + 1(-1)when

the spin is up (down). Let R represent a subset of
A and define

as=II ar.
i6R

For each set R, let J(R) & 0 represent the corre-
sponding many-body coupling constant. VYhen R
consists of a single site, say i, J(i) —= ijH, where
p, is a magnetic moment and H &0 is a uniform ex-
ternal magnetic field. The system's Hamiltonian
is taken to be

X=-Z, Z(R) a, .

The sum runs over all subsets R of A. If the sys-
tem is at temperature T= (bP), with b the Boltz-
mann's constant, it is describable by a canonical
ensemble with partition function

The sum runs over all configurations of the set
(a~}. The thermal average of as is

& „)=Z-'La e-' (4)

The Griffiths inequality which is useful in what fol-
lows is

a&a„)
sr($)— (5)

0& Js (R) & J~ (R)

for each set R in A, then we obtain

«.).-&W&.=&.~.(R) (&..).-& .).) 0

because of (5) and (7). It follows from (6) that

(7)

for all subsets R and 8 of A.
Now, consider two identical' lattices labeled 4

and B, with interaction couplings (J„(R)}and

lee(R)}, resgectively, The corresyonding entroPies
$(J'„) and $(Js ) satisfy the inequality'

$(~,) —$(~ )»P(&%) «3)A)—
The equality holds if and only if (Xs —X„) is a con-
stant, independent of the set la&}. &X)„represents
an average using the canonical distribution associa-
ted with system A. If it is assumed that
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limo, (p, H)=O for H&0.
g «oo

(lo)

The independence of the latter limit on H is a
statement of TLT.

Envision now a generalized linear chain with

the same H as above, with nearest-neighbor cou-

ylings J«~&&'& J&0, and with arbitrary other two-,
three-, . . . , N-body ferromagnetic couplmgs such

as in (2). Due to (9) and to the fact that the entropy

is manifestly non-negative, ' the generalized linear
chain's entropy S& satisfies the relation

o&s„(P,H, N) & s, (P, H, N) .

If the couplings (J'(H)] are suitably chosen so that

lime „N 'S„=o«(p, H) exists, ' then the limit
function ~o(P, H) cannot exceed a, (P, H) for a given

P and H. This follows from (11), which holds for
each member of the limiting sequence. As a con-
sequence, we obtain

0 & lim o, (P, H) & lim o, (P, H) = 0
tj', «oo g «oo

for all H &0, and g,~'satisfies the TLT property
[Eq. (10)].

An MxN two-dimensional Ising ferromagnet can
be constructed using I identical generalized N-spin
chains as the rows. When the rows are uncoupled,
the system's entropy Sz(P, H, NM) equals MS,~(P, H,
N). In the thermodynamic limit, M, N- «, we have

oq(P, H)=o,~(P, H), and the system obeys TLT. The
addition of general ferromagnetic inter-row cou-
ylings in the MxN system lowers the entropy to 83~

(P, H, NM), and (11) holds with N replaced by NM,

and 1 by 2. Repeating the above arguments, it fol-
lows that a generalized two-dimensional system,
for which o~ (P, H) exists, satisfies the TLT prop-
erty [Eq. (10)]. A three-dimensional generalized
system can be constructed from many two-dimen-
sional generalized systems by adding couylings be-
tween planes. In this way, an obvious extension of
the above arguments shows that the three-dimen-
sional generalized Ising ferromagnet satisfies TLT.
A necessary condition in all of these proofs is the

(9)

subject to (V). The inequality (9) means, simply,
that an Ising ferromagnet's entropy decreases, and
its order increases when one or more of its ex-
change couplings (or H) is increased. "

In order to make contact with TLT, consider
first a one-dimensional Ising model with nearest-
neighbor coupling J&0, and all other couplings
identically equal to zero. For this system, the
entropy S, (P, H, N) can be evaluated explicitly. '
The thermodynamic entropy per particle o,(p, H)
= lim~„„N 'S, exists and, in particular,

existence of the thermodynamic limit. " A sufficient
condition is that all nearest-neighbor couplings be
bounded from below by a positive constant. We
further remark;

(i) The above proofs are built upon the result for
a linear nearest-neighbor Ising ferromagnet with
J&0. If Jwere taken to be zero, the third law
would be violated for H=o. " (ii) Specific antiferro-
magnetic Ising models are known to violate TLT.'s
Thus, the mere inclusion of nonzero exchange
couplings does not guarantee that TLT will be sat-
isfied, (iii) The entropy monotonicity property
displayed here provides upper bounds on 0 for
given unsolved models by comyaring them with cor-
responding models with fewer bonds. For example,
consider the following lattices, all with nearest-
neighbor interactions only, and all with the same
coupling constant J;. face-centered cubic (fcc),
simple cubic (sc), two-dimensional triangular (tr),
simple square (ss), and Itnear (1). For a given
P and H, the preceding entropy monotonicity argu-
ments shows that 0„&0„&o&. A bit of reflection
shows that since the fcc lattice can be constructed
by adding couylings between planar triangular lat-
tices and since the latter in turn can be built from
rows of one-dimensional chains, we obtain 0.„,

For H=0 both o'ss and 0'tr are known.
Thus, one has upper bounds for O„and 0„,for
the zero-field case. For H&0, 0, provides an up-
per bound for a„, o„,&r„, and o,«. (iv) It is easy
to see that the average energy (X) also satisfies a
monotonicity property, because

8(X) 8(o„)(,)
=-(oa.)-Z„Z(R) (, &O.

The free energy F=-P 'lnZ shares this property,
since 8E/8Z(B') =-(o„.) &0. It follows that both

(X) and Jl can be bounded from above for the cases
discussed in (iii). (v) The present approach offers
the possibility of proving TLT for quantum fluids.
Since it is known that the ideal Bose and Fermi flu-
ids satisfy TLT, such a proof rests upon the status
of the inequality S„„~„g& S,d„, for specific classes
of quantum fluids. Although this inequality holds
for classical fluids and has been discussed for the
quantum case, ' ' a rigorous demonstration of its
validity (or invalidity) is lacking. (vi) An elabora-
tion of the points discussed here and a related dis-
cussion of magnetic cooling will be published else-
where. '
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The so-called quasiclassical approximations are shown to give, in a certain restricted
sense, lower bounds to energy eigenvalues. Variational calculations of the energies of hydro-
genlike atoms are carried out as an illustration.

I. INTRODUCTION

It is well known that the ground-state energies
of neutral atoms calculated from the Thomas-Fermi
theory'~ are lower than those observed. The orig-
inal Thomas-Fermi density can be derived from a
general formulation of statistical theory by em-
ploying an independent-particle approximation and
the assumption that the kinetic-energy and poten-
tial-energy operators of a particle commute. Such
an assumption is illustrative of a set of so-called
quasiclassical approximations. For these approxi-
mations, the Hamiltonian operator of the system
is divided into two parts, the choice of which is a
matter of convenience, and the two parts are as-
sumed to commute with each other. In studying
continuous bases of xepresentation4 for such ap-
proximations, the possible existence of a statistical
analog of the Rayleigh-Ritz variational principle,

that gives Eoze(.r bounds to energy eigenvalues, was
suggested. The purpose of this paper is to show
that, formally, the quasiclassical approximations
do give, in a certain restricted sense, such lower
bounds to energy eigenvalues. Variational calcu-
lations of the energies of hydrogenlike atoms are
carried out as an illustration of the use of this
"principle of restricted lower bounds. "

II. FORMAL THEORY

In terms of a general formulation of statistical
theory, the density matrix associated with the M
lowest-energy eigenstates of a many-electron sys-
tem may be expressed as3

P&&(+&& +a) ~ n (+&)8(~&& @ n(+ajs
n=i

where the spectral operator 8()&„H) is defined by-


