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Translational-vibrational energy transfer in collinear collisions of an atom and an harmonic
oscillator has been treated in the impulse approximation of Chew. Although transition prob-
abilities for a soft exponential interaction potential compared poorly with exact quantum-me-
chanical results, for sufficiently small incident masses good results were obtained for a hard
impulsive interaction. This is understood in terms of the ratio of the collision time to the os-
ciOator period; the impulse approximation is expected to be valid when this ratio is small.
For the smaller incident masses, qualitative agreement with exact results was obtained over
a wide energy range for the "hard-sphere" collisions. This represents the first successful
approximate treatment of impulsive collisions for this model. In contrast to the familiar per-
turbative methods, the quality of the approximation does not decrease for multiple-quantum
transitions and improves as the energy increases. The one-dimensional impulse-approxima-
tion transition probabilities P~~ are ill behaved at threshold; however, most computed prob-
abilities remained well behaved to within about @I~ of threshoM. The approximation fails to
conserve probability. It was found that the sums of probabilities g&P~& for the various ini-
tial states i provided reliable measures of confidence in the approximation. For a given i, if
the probability sum was nearly constant with changing energy, the P;~ curves were qualita-
tively good; on the contrary, the curves were in less good agreement with exact results if the
probability sums were less stable with changing energy. When the curves for a given i were
qualitatively good, a simple renormalization yielded quantitative agreement with exact re-
sults and, minimized the effects of threshold misbehavior.

I. INTRODUCTION

The purpose of this paper is to suggest that the
impulse approximation (IA) of Chew' may be used
to advantage in quantum-mechanical treatments of
some inelastic molecular collisions. In particular,
we investigate its application to one-dimensional
atom-molecule translational-vibrational energy-
transf er problems.

In the IA, the collision of an incident particle
with a single particle held bound in a complex is
assumed to occur so rapidly that during the time
of interaction the binding potential can be neglected
compared to the potential under which the two par-
ticles interact. This will occur when the period 7,
of the internal motion of the bound particle is long
compared to the collision time 7,. The only effect
of the binding potential under these conditions is to
determine the momentum distribution of the target
particle. Thus, the total wave function wi1.1 be that
of a free particle scattering off a target particle
represented by a momentum wave packet. If one
assigns the coordinate x to the incident particle and

y to the target particle, the IA to the wave function
may be written

e(x, y) = e'"(x, y)= f"dk'g;(k')yf ,„.(x, y), . (l)

where g;(k ) is the momentum distribution function
of the target particle in the ith eigenstate of the
binding potential and g~. ~. is the wave function for
the scattering of two free particles under the same
interaction potential as in the bound problem. Equa-

tion (l) is often referred to as the quasifree approxi-
mation since 4'(x, y) is taken to be the free wave
function but weighted according to the momentum
distribution of the bound particle.

Since the IA assumes that r, /r; is small, it is
best suited for high-energy collisions under a
short-range potential. In the work reported here,
the best results are obtained for an infinite repul-
sive barrier or "hard-sphere" interaction potential.
In the systems where the IA can be validly applied,
it offers considerable advantage over Born-type
perturbative methods in that the scattered wave need
not be small compared to the incident wave. In
addition, both nondissociative and dissociative col-
lisions can be treated within a single approximate
framework. Although the present calculations
deal with a very simplified model, the relative
computational ease with which results can be ob-
tained augurs well for possible future application
to more complex systems.

The one-dimensional model has been widely used
as a prototype for systems where translation-vi-
bration energy transfer occurs. Its admitted in-
adequacies as a realistic physical model need not
concern us here; it has considerable value as a
testing ground for approximate methods, especially
since some exact quantum-mechanical results are
available for comparison. 3'

As regards the importance of the size of the ratio
r,/r, in atom-molecule collisions, the viewpoint of
Landau and Teller' is instructive. They proposed
that the transition probability be expressed as



Xg

XA

FIG. 1. Coordinates for one-dimensional model.

proportional to exp(-7', /7', ). This was in accor-
dance with the qualitative notion of Ehrenfest that
the more rapidly the collision takes place the less
chance the molecule has to adjust adiabatically,
and therefore the larger the transition probability.
But the condition for the validity of the IA is that
r,/r, -0, which according to this view would cor-
respond to maximum collision efficiency. Thus,
the impulse approximation is expected to be most
suitable for systems where large transition prob-
abilities occur, and should serve to complement
the first Born and first-order distorted-wave ap-
proxiraations, which are valid only when transition
probabilities are small.

m„(m~+ mc)
/, =-

Pl~+ Ply+ WSg

We noir separate out the constant center-of-mass
motion Rnd con8ldel' the Schrodinger equation for
the relative motion only. We further assume that
the molecule is bound by harmonic forces, i.e. ,

with yo the equilibrium separation of 8C and X the

force constant. The following transforlnation can
now be performed ."

N
—= (&ac&/@ ) (y 0'0))

x =- (i),e,X/h')' "([(ms+ m, )/m, ]x—yo),

to reduce the 8chrMinger equation for the relative

%'e will consider the collinear collision of an
atom of IQass tPg~ Rnd R diatomic molecule consi8t-
lng of two Rtoms + and C of IQRsses 1Ãg Rnd Big.
DeslgQRting the posltlons of the three pRrtlcles Rs

Xg, Xe, Xc (Fig. I), the time-independent Schr0-
dinger equation takes the form

h 8 5 8
p

— —
p

— -
g + U(XB —Xc)

2m~ &X~ 2m~ 9X~ 2ypg~ BX~

+ V(X„—X )+ I (X —Xt;)I t) = X)' (2)

If one neglects V (X„—Xc) as being much smaller
than the other potentials and transforms to center-
of-mass and relative coordinates, one has for the
Schrodinger equation

8 , + v(y)
2M 2z 2g&c ay 2P
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8J': Seorest- Johnson, Ref. 4.
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0. 1x10-'
0.5x10 3

0, 1
0. 7 x10-'
0. 1 x10"
0.5x10-'
0. 1x10-~
0.2 x10-'
0, '7x10
0, 5x]0 5

0. 1x10-'
0.2 x10-'
0.3x10-'
0.2 x10-'
0.2 x10-'
0.7x10-'
0.4 x10-'
0.1x10-'
0.2 x10-3
0.3x10-'
0.2x10 3

0.2 x10-'
0.1x10-'
0. Sx10
0. 3 x10-'
0.1x10-'
0. 7 x10 3

0.2x10-«
0.1x10 4

~81~
'ff

0.2 x10-'
0 ~

0.9 x10-'
0. 1
0. 1x10-'
0. 1
0.4x10-'
0.3 x10-'
0, 6x10 ~

0.3
0. 1x10

0.3
0.2
0.3x10 ~

0.6x10-~
0. 4
0. 7x10-'

0 0 ~

0.4
0.3
0.4x10 ~

0.2
0.6 x10-'
0.4
0.3
0.5 x 10-'
0.2
0.2

TABLE I. Transition probabilities for exponential
potential, 0. =0.3 and m=3.
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TABLE II. Values of 0-f transition probabilities for m =5.0.

1.0
l. 25
1, 5
1.75
2. 0
2. 25
2. 50
2. 75
3.0
3.25
3. 5
3. 75

0
4.25
4. 5
4. 75
5. 0

IA

0. 4x10 3

0, 3x10 3

0.2 x10-7
c

0-0

SJ

1.0
1, 0
1.0

0.96

0.9

0.94

IA

b
b
b

0.3x10 3

0. 1 x10 6

0-1

SJ

b
b
b

0. 1x 10 ~

0.3x10 &

0.7x10 ~

IA

b
b
b
b
b
b
b

0.4x10-'
0.2 x10-~

c
c
c
c
c

0-2

SJ

b
b
b
b
b
b
b
d
d
d

d
d

0. 01

0, 02

IA

b
b
b
b
b
b
b
b
b
b
b

0. 1xl0 6

0.2xl0 4

c
c
c
c

0-3

SJ

b
b
b
b
b
b
b
b
b
b
b

d
d
d
d
d

Denotes Secrest and Johnson, Ref. 4.
Energies below threshold.

'Values less than 10
Values too small to be read on SJ's graph.

motion to

1 e~ 1 83 1
HC = — 2-- 2+- y3+ VX-v C =EC

2tpl 2x 2 2$ 2
(7)

where

known intermolecular potentials, such as the Len-
nard-Jones. 2

With the model so described, one can now proceed
to partition the Hamiltonian as

H=eo(x, y)+u(x, y),

m -=m„mc/Mme,
g g

R(X/P, ~c)' " Su) ' with'0 chosen such that one can solve exactly for
the so-called reference states 4 of H„viz. ,

so that the energy E is now measured in units of
reduced oscillator quanta.

V(x —y) is typically chosen to be an exponential
fit to the repulsive portion of one of the more we11-

Ho@ = E~'.

Pne then writes without loss of generality

@(x,y) =@(x,y)+0,(x, y).

(io)

2-0

TABLE III. Values of 2-f transition probabilities for m =5.0.

2-1

2. 5
2. 75
3.0
3.25
3.5
3. 75
4. 0
4. 25
4. 5
4. 75
5. 0

IA

0, 4x10 5

0.7x10 7

SJ

O. 01

0. 02

IA

b
0.2 x10-&

0.2x10 3

0.2x10 5

0.2 x10 7

c

SJ

0.2x10 '

0. 12

0.3

0.4

0.3

IA

0.4
0, 2x10 &

0.3 x10 3

0. 1x10 5

0, 1x10
b
b
b
b
b

1.0

0. 98

0. 88

0. 70

0. 55

0.48

IA

b
b
b
b
b

0. 1x10 ~

0.7x10-2
O. 1x10 3

0.2 x10 5

SJ

b
b
b
b
b
d

d
d
d

Denotes Secrest and Johnson, Ref. 4.
"Energies below threshold.

Values less than 10
~Values too small to be read on SJ's graph.
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problem becomes

8 1 8 1 2 4 x, $ =E@ x, g
2m ex' 2 ay'

(12)

The functions 4 are products of plane waves and

harmonic-oscillator eigenfunctions. The solution
to the scattering problem can be written

4 ?

(A)

.2
I

', 2-0

',3-0

5 6

2.s

' 3-0

)s
2-0

s I

I

I

P ~

VII

r
~«'t

4 5
E

?

FIG. 4. (A) Exact 2-f transition probabilities for m

=0.5, Ref. 3. E is ln units of 2kp. (8) IA 2-f transition
probabilities for m = 0.5. Graphs constructed from values

computed every g energy unit. (C) Renormalized IA 2-f
transition probabilities for m = 0.5. Graphs extrapolated
to threshold from g energy unit above.

application of the PODIA to atom-molecule transla-
tion-vibration energy transf er. Application of the

DULIA is currently under investigation.

III. PLANE-WAVE IMPULSE APPROXIMATION

When one chooses 'U in Eti. (6) to be the interaction

potential V(x, y), the reference-state SchrMinger
equation for the one-dimensional atom-oscillator

.3-0
I

'I 3-2 ~

I

~ I
I
l

f
~

E

6

FIG. 5. (A) Exact 3-f transition probabilities for m

=Q. 5, Ref. 3. E is in units of $ht. (Bi IA 3 ftransition-
probabilities for m = 0.5. Graphs constructed from values

computed every @ energy unit. (C) Renormalized IA 3-f
transition probabilities for m = 0.5. Graphs extrapolated

to threshoM from g energy unit above.
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e(x, y) = (2v) ' ~~ e "~"y, (y)+ y, (x, y), (13)

where q& is a normalized harmonic-oscillator func-
tion corresponding to the state of the molecule be-
fore scattering and the x part is a travelling wave
incident from the right with momentum

n, =-+ (2mz - f ——,')' ".

8 f 83

,p —
2. , ~ ~ &( —v)I 0:,, , (,y)

= 2* +
2 t.",»(x. , y) (23)

For x- ~, we impose the boundary condition The scattering amplitude expression can be simpli-

+ (2w) Zys~ye ~ g7y (y)»

where a;& is the scattering amplitude for transition
from state i to state f. We will consider the case
where the interaction potential allows no transmis-
sion, so for x- —~, our boundary condition is

The probability that the oscillator has undergone a
transition from state i to state f is given by

P;~= (k~/u, ) ~a,~j',
the ratio of outgoing flux arising from transitions
to state f to the incident flux. Substituting expres-
sion (ll) for 0 into the Schrodinger equation (7) and

making use of Eq. (10), we obtain

(H, -Z)y, =- V(x-y)e(x, y).

24

.0-o

4

Then, given that the Green's function for (Ho —@)
satisfies

(If,-E)G,(x, y;x', y' ) = g(x- x')~(y- y'), (IS)

we have the integral equation

$,(x, y) = —J dx dy 'Go(x, y; x', y ')V(x'- y ')y(x', y ') .
(8)

Q 3

The eigenfunction expansion for Qo is

Go(x, y;x', y') = —. Z —y~(y)yP(y') e*"x "*'
f=0 f

(2O)

Using this expression in Eq. (19) and taking the
x-~ limit, we identify [cf. Eq. (14)]

a„=[(2w)'"I/e, ] f dx'dy'e "&"'

p s

LQ Q
l

8

&@~(y')V(x'- y')e(x', y'). (21) 2.~-
0-3

The IA to a;& is obtained by substituting 0 '"(x', y')
into Eq. (21), giving

a', ~ =[(2m)-'~~m/ik~] j'dx'dy'dn'e '"~"' p~(y')

where g~ ~, (x, y) satisfies

FIG. 6. (A) Exact 0-f transition probabilities for m
=0. 125, Rev. 4. E is in units of ~&hp. (B) IA 0-f transi-
tion probabilities for m = 0. 125. Graphs constructed
from values computed every p energy unit. (C) Renormal-
ized IA 0-f transition probabilities for m = 0. 125. Graphs
extrapolated to threshold from g energy unit above.
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fied by transforming the integration variables to
center-of-mass and relative coordinates, since
g, » (x, v) can be factored in these coordinates.
The tx'RD8formatlons Rre

B m m+1 1 m+1 x

are elusive. It seems clear, how&ever, that a suf-
ficient condition for IA validity is the physically
intuitive one given by Cheer~: that the ratio of the

coQision time to the period of the internal motion
of the bound particle be small. For typical atom-
molecule systems %here vlbx Rtlon-tx RnslRtion en™
ergy transfer occurs, this ratio is of order unity

(a4)

(k, /
(1/(I+1) -m/(I+1)) I 0 j

vrhere R is the center-of-mass coordinate, k~ the

momentum of the center of mass, x the relative
coordinate, and k, the relative momentum. [The
somewhat unconventional signs appearing in the
second of Egs. (a4) is dictated by the fact that k,
is taken to be the positive number (amE —i ——,')'/ .]
In these coordinates

t», .» « ~)=(av) '"e """x»„(~), (a5)

where X, (r) satisfies the free relative Schrbdinger
equation

(A)

putting Eq. (aS) «r tg, » into Eg. (aa), replacing

pq (y') by its Fourier transform and using the S

function from the R integration to perform one mo-
mentum integration, one obtains finally the IA ex-
pression for the scattering amplitude

alp=(aw)'"m/~ a,f da'g, (a'')gi"(a'-a, —a, }

x V(&)X(»&+m»')/&~+»( ) '

Note that the second integral is proportional to
the (non-energy-conserving) amplitude for scat-
tering from relative momentum state (kg+ tÃk )/
(m+ I) to a final relative momentum state k&+ m

&c (k; —k')/(m+ l) under the potential V(r) Thus, .
for application of the IA, one needs to concentrate
one's attention on the evaluation of the free rela-
tive scRttex'1ng amplitude fol' arbitrary moIQenta,

The free amplitudes ax e evaluated in Sec. V for the

examples consldex'ed here.

IV. REGIONS OF VALIDITY FOR IMPULSE
APPROXIMATION

Necessary conditions for the validity of the IA

FIG. 7. (A) Exact 2-f transition probabilities for m

=0. 125, B,ef. 4. E is in units of 2hv. (8) IA 2-f transi-
tion probabilities for m= 0. 125. Graphs constructed
fx'om values computed every g energy unit. (C) Benor-
mali2, 'ed DI) 2-f transition probabilities for m= 0. 125.
Graphs extrapolated to thxeshold from g energy unit above.
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for thermal energies. Thus, one would expect the
use of the IA would have to be restricted to certain
energy regions and then used in conjunction with
other approximations to obtain a meaningful ther-
mal average.

Expressing r,/r, in terms of the range ro of the
potential, we have for our atom-oscillator system

~7 ~g 47 ~f' Pl s/a

v, 2~ 2v 2(E —i —,'-) (26)

Q~P;y(E) = 1, all E (29)

is not observed. Second, the IA expression [Eq.
(27)j for the scattering amplitude becomes infinite
at threshold. The lack of probability conservation
is due to the fact that the IA corresponds to an ap-
proximate scattering or S matrix which is not uni-
tary. Additional steps would be required to ensure
a unitary S matrix. This would be a simple matter
if there were an obvious IA to the Hermitian reac-
tance, or K, matrix (as indeed there is for the
distorted-wave Born approximation), 8 One would
merely compute a unitary S from the defining rela-
tion

Thus, the IA would be expected to. improve with (i)
decreasing range, (ii) decreasing mass ratio, (iii)
increasing energy, and (iv) decreasing initial quan-
tum number. In particular the IA should be best
suited for short-range interactions and low incident-
particle mass.

There are at least two limits in which the IA be-
comes exact. When U, the binding potential, van-
ishes, +'" becomes the correct wave function for
the scattering of two free particles under the inter-
action potential V. Similarly in the Born (no-scat-
tering) limit, 0 '" becomes exact, so that the IA is
always at least as good as the first Born approxi-
mation. However, it is most significant that valid-
ity of the IA, unlike the first Born, in no way re-
quires that the scattering be small, so one may ex-
pect to apply the IA successfully in cases where the
Born approximation breaks down because the tran-
sition probability is too large.

Although the first Born approximation is not ap-
propriate for potentials which prohibit transmis-
sion, it is also true that the distorted-wave Born
approximation (which is appropriate) breaks down
when the inelastic scattering becomes important.
Thus, the IA might be the best approximate method
to employ for impulsive efficient molecular colli-
sions as a complement to the distorted-wave Born
method which is best for slow, near adiabatic, or
inefficient collisions.

There are two shortcomings to the IA as formu-
lated for this problem. First, in common with
most approximate methods, the probability conser-
vation condition

S= (1 ——,'@)/(I+ —,'iA), (2O)

which involves only energy-conserving states. Un-
fortunately, there seems to be no obvious first ap-
proximation to K corresponding to the IA.

In the best of the calculations reported below it
is found that although Eq. (29) is not satisfied, the
individual probabilities are in the correct ratio so
that a simple probability renormalization brings
the results into quantitative agreement with the
exact probabilities.

The threshold singularity seems to be an artifact
of the one dimensionality of the problem. One
easily sees, from Eqs. (16) and (27) that

V. FREE SCATTERING PROBLEM FOR EXPO-
NENTIAL POTENTIAL

As noted in Sec. III, the use of the IA demands
that one have an expression for the free relative
scattering amplitude for arbitrary initial and final
momenta.

In the present paper we consider only the expo-
nential interaction potential, V(r) =Re ". This
has been widely used to represent the atom-mole-

TABLE IV. Sum of IA transition probabilities for
m=0. 5.

Zf 3f

l. 0
1.25
1.50
1.75
2. 0
2. 25
2, 5
2. 75
3.0
3.25
3.5
3, 75
4. 0
4. 25
4. 5
4. 75
5. 0

0.21
0. 13
0. 08
0.29
0.21
0. 15
0. 10
0.28
0. 21
0. 16
0. 12
0.27
0.22
0. 15
0. 14
0.27
0.27

0. 17
0. 16
0. 17
0.22
0. 16
0. 15
0, 15
0.22
0. 16
0. 14
0. 13
0.23
0. 17

0.22
0.24
0, 22
0. 17
0. 19
0.21
0. 19
0. 17
0. 16

0, 25
0.30
0.27
0.21
0.21
0.25

lim P'A -I /&z,
ky" 0+

lim P,'.~ -I/y, ,
0"» 0+i

the first resulting in a singularity at threshold for
upward transitions and the second for downward.
This difficulty was circumvented in our calculations
by the practical expedient of avoiding the evaluation
of probabilities very near threshold. Generally,
it was possible to approach to within about 4 A~ of
threshold without encountering strongly singular
behavior.
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cule interaction and in the limit o. -~ encompasses
the infinite repulsive barrier, where the IA should
be most likely to give good results.

We seek first the solution to

dr 2+ k —2 ((Ae )())(r) = 0, (32)

where (( —=m/(m+1). The solution has been given by

Jackson and Mott, ~

)(,(r) = 2e '" (2)() '/~ [(q sinh((q)/(/]'/3K„(y),

where

y
—[2(2((g)1/2/()(]e -mr/2

q =-2k/o, ,

)) =—(2k/n)in[n(2@A, )
/ ]—argl'(2ik/c(),

(33)

a„~i -=dr e ""Ae ")(„(r)
m(e

2 i (ks —k)(J'OiQ Q e "'
(q sfnh((q) / ~

2v 2 g p, 2L[LA

~T' 1+x r 1+x (36)

by use of the integral'

and &(,(y) is a modified Bessel function of the sec-
ond kind. This solution satisfies the boundary con-
ditions

lim )(,(r) = 2e '" (2)/) '/ cos(kr+))),
7I w (0

lim )(„(r) =0.
w oO

The free amplitude can now be evaluated giving

&I. RESULTS FOR EXPONENTIAL POTENTIAL

IA transition probabilities for the exponential po-
tential were computed at a number of values of n,
m, and E. Comparison with the exact results of
Secrest and Johnson showed that the IA is unsuitable
at the values of n, m, and E considered. The re-
sults for n = 0. 3, m =-', are giveri in Table I as typi-
cal. IA transition probabilities for the ((r, m) pa-
rameter sets (0. 114, —,'), (0. 1287, —,', ) and (0. 1287,

P, ) a,re in similarly poor agreement with the exact
probabilities. This is in accord with our expecta-
tion that the IA would be marginal in typical soft
thermal atom-molecule collisions. However, as
the results of Sec. VII show, as the collisions be-
come more impulsive, that margin can be crossed.

VII. RESULTS FOR INFINITE-BARRIER POTENTIAL

For the "hard-sphere" interaction, using E(I.(38)
in E(I. (39), one has in the IA

a'(/= (I/k&) J dk (k, +mk ')g;(k ')g/(k '- k&- k, ).

(40)
Thus, the IA hard-sphere scattering amplitude can
be expressed simply in terms of oscillator function
convolutions. IA transition probabilities for m val-
ues of 5. 0, 0. 5, and 0. 125 were computed using
E(I. (40) and compared to the exact results of Shuler
and Zwanzig, and Secrest and Johnson.

A comparison of the Secrest- Johnson hard-sphere
transition probabilities with those of the IA for m
= 5. 0 is given in Tables II and III. The IA proba-
bilities are poor for this case, disagreeing with
the exact results by orders of magnitude at most
points.

The IA results for m = 0. 5 shown in Figs. 2-5 are
considerably better, as would be expected for the

dttK t 2'r "2" ' 2"
0 TABLE V. Sum of IA transition probabilities for

m=0. 125.

The limit for n- gives the infinite-barrier free
amplitude

a~r, ;=ik/(2 )"'(((/, (38)

The same result is obtained by evaluating the free
amplitude for a finite step potential and then letting
the step height go to infinity.

The IA expression for the scattering amplitude
can now be expressed as

a'" = [(2(()' am/ik/] f dk g,(k )gP (k '- k/- k;)

&c a~()'(+m). ')/(m+ 1)I))/+ (m/(m+ 1))(l)( ))')y (38)

with the expressions E(i. (36) or (38) substituted in
for the exponential or hard-sphere interactions, re-
spectively.

1.0
1, 25
1.5
1.75
2. 0
2. 25
2. 5
2. 75
3.0
3.25
3.5
3.75
4. 0
4. 25
4. 5
4. 75
5. 0

$y Po/

0.24
0.22
0. 19
0. 18
0.24
0.24
0.24
0. 22
0.25
0. 25
0.24
0. 29
0.25
0.25
0.25
0.25
0.22

0. 30
0. 24
0. 19
0. 16
0. 14
0.24
0.22
0.21
0.25
0.24
0.24
0, 24
0.25
0.25

0.32
0.22
0. 18
0. 16
0.27
0.24
0, 21
0. 19
0.27
0. 24

0.32
0.22
0. 18
0.16
0.29
0.22
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P~I/ PU/Z1, P«, . - (41)

Henormalized transition probabilities for m = 0. 5
and m = 0. 125 are plotted in Figs. 2(C)-5(C) and
6(C)-'7(C), respectively.

It should be noted that unless g&P&/(E) = g&P&./(E)
for all E, microscopic reversibility will be de-
stroyed by renormalization. These conditions are
much more nearly satisfied for the m = 0. 125 prob-
abilities than for m = 0. 5 as Tables IV and V show.
The renormalized results are best in the 0 ftransi--
tions for both mass ratios. In the m = 0. 125 case
the results are quantitatively excellent.

In summary, it appears that wherever gzP&/ is
\

smaller m. Although the IA transition probabilities
are too low throughout, the qualitative behavior with
changing E is good, in an average sense. The pres-
ence of the threshold singularity is plainly evident,
especially in the steep upward slopes of the Pof
curves and the upwa, rd turns of the P,& probabilities
as their respective thresholds are approached from
above. Note that the IA transition probabilities
obs erve micros copic reversibility, even though this
is not in general guaranteed by the approximation.

The IA is expected to be better for m = 0. 125 than
for the other two values, based on the considera-
tions of Sec. IV. This expectation is amply borne
out by the results presen'ted in Figs. 6 and 7.
Again, the probabilities are usually on the small
side, at least away from threshold, but they are
closer to the exact results. Also, the threshold
singularities make their presence felt but not near-
ly so strongly as for m = 0. 5. Over-all, the quali-
tative behavior of the IA transition probabilities rel-
ative to one another is very good for m = 0. 5 and
m =0. 125, For the lower value of m, this good
behavior extends closer to threshold.

In order to assess the lack of probability con-
servation in the calculations, the sums of proba-
bilities $&P« for the various initial states i were
computed as functions of energy. These are pre-
sented in Tables IV and V for values of m = 0. 5 and
0. 125, respectively. Note that the probability
curves are best where this sum is more stable.
Thus, there is a definite correlation between the
stability of the sum g~P«with changing energy and
the over-all qualitative goodness of the i -f transi-
tion probabilities themselves. This suggests that
in future calculations this sum might serve as an
a Pro~i indication of the quality of the IA transition
probabilities from a given level.

Although the IA probabilities do not sum to
unity, if they are in the correct ratio to one another,
as appears often to be the case, a simple renor-
malization shouM give results approaching quanti-
tative agreement with the exact probabilities. The
IA probabilities were renormalized so that

relatively constant with energy and i, one may ex-
pect renormalization of the transition probabilities
to convert qualitatively good results to quantitative-
ly good ones, while minimizing any effects of
threshold misbehavior.

VIII. CONCLUSION

The calculations reported here represent the
first successful attempt at an approximate treat-
ment of impulsive collinear atom-diatom collisions.
Qualitative and order-of-magnitude agreement with
exact results as to correct energy dependence of
inelastic transition probabilities has been obtained
for mass ratio values of 0. 5 and 0. 125, with the
lower m yielding the better results. This is true
for all transitions among the oscillator states of
quantum number 0, 1, 2, and 3. Unlike the fa-
miliar perturbative methods, the quality of the ap-
proximation does not decrease for multiple-quan-
tum transitions and improves as the energy in-
creases.

It should be noted that the customary low-order
perturbative methods could not reasonably be ex-
pected to give good results over such a range of
energy and initial and final states as that over which
the IA was examined here, even for the softer ex-
ponential-type collisions for which they are best.
On the other hand, the IA is not good for those soft
collisions, and the two methods serve to comple-
ment one another.

Although the typical incident energies and vibra-
tional periods occurring in atom-vibrating-molecule
collisions suggest that the IA must be used with cau-
tion, the results reported here show that reason-
ably good results can be expected for sufficiently
small mass ratios in hard collisions. Inherently
poor threshold behavior of the IA one-dimensional
transition probabilities requires that points very
near threshold be avoided. In the present results,
probabilities were computed to within 4Nm of thresh-
old and then extrapolated to zero.

The approximation used here does not conserve
probability. It was found that the sums of probabil-
ities g&P&/ for various initial states i computed as
a function of energy provided a good measure of
confidence for the approximation. For a given i,
if the probability sum was very nearly constant, the
P«curves were qualitatively good, and conversely.
When the curves for a given initial state were qual-
itatively good, a simple renormalization yielded
quantitative agreement and minimized the effects of
threshold misbehavior. The very good qualitative
results obtained before renormalization lead to the
conclusion that an early effort to formulate an im-
pulse (or impulselike) approximation which con-
serves S-matrix unitarity would be well worthwhile.

Finally, the IA may serve as a useful adjunct to
exact calculations which use the method of Shuler
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and Zwanzig for impulsive interactions. It has been
noted by several workers~' 'a that the Shuler-Zwan-
zig method encounters severe truncation errors at

high energies. " Fortunately, for sufficiently small
mass ratios, the IA could be used with relatively
high confidence in this energy region.
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