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Expressions for the stored energy, energy Qow, and power dissipated are derived for
electromagnetic waves in terms of the complex permittivity e' and permeability p,

' for a fre-
quency-dispersive absorbing medium. This is shown to be possible when e' and p,

' are known
functions not only of frequency but also of all the loss factors —e. g. , collision frequencies,
etc. The derivation is not restricted to media with small losses. An oscillating particle sys-
tem and an electric circuit are used as illustrative examples of the application of the energy
expressions derived.

I. INTRODUCTION AND SUMMARY

Stored energy and energy Qow are fundamental
quantities in the analysis of wave motion. Energy
expressions for electromagnetic waves in terms of
the fields, and the permittivity & and permeability
p, are well known for the nondissipative dispersive
medium, ' but the expressions given for a dissipative
medium are based on an assumption of small losses.
It has also been questioned if it is possible to deter-
mine energy expressions from & and p, in the dis-
sipative medium. This is due to the fact that sys-
tems with the same e'(~) = ez(e)+ j&2(ur) and g'(&o)
= pq(&o)+ jpa(ur), where the complex c' and p' include
dissipational terms and where j= v'-1, may have
entirely different energies. In this paper it is
shown that it is possible to derive energy expres-
sions from &' and p,

' in the dissipative medium when
&' and p.

' are known functions of the loss factors X,
such as collision frequency, etc. , as well as frequen-
cy. This is in general the case when &' and p,

' are
determined from a model medium. The advantage
of deriving the energy expressions directly from &'

and p.
' is, besides the convenience, that the ob-

tained energy expressions are consistent with the
approximations made in &' and p, '. The derivation
is not restricted to media with small losses. We
have assumed the medium to be linear, homoge-
neous, and temporally dispersive. Primarily we
have considered electromagnetic waves, but the de-
rived expressions are valid for any wave motion
provided it is described by one of the two wave am-
plitudes which are responsible for the energy flow.
The expressions can also be used to determine the
stored energy in systems of coupled linear oscilla-
tors, e. g. , a network.

For a nondissipative and temporally dispersive
system, it is well known that the average value of
the stored energy is determined by

EE + HEI* =( W )+(4 e(d 860

A frequently used expression for the time-averaged
value of the stored energy in adissipative system is (1)
with e and p, replaced by E& and p.„respectively. But
as pointed out by Ginzburg this may lead to a neg-
ative value for the stored energy, for example in a
plasma, which apparently is incorrect. Ginzburg
derived a conservation relation based on quasimono-
chromatic waves which includes terms dependent
on the manner in which the electric field is estab-
lished. To avoid these problems Neufeld3 suggested
a reformulation of the dielectric constant in an ab-
sorbing medium, such that & is independent of the
frictional parameter. The dissipational process is
then taken into account by extraneous forces. This
formulation is based on a behavior of dispersive
media which is physically different from the one
customarily used.

In the present work the stored energy, energy
flow, and power dissipated are expressed in terms
of e' and p,

' [or in the equivalent dispersion function
D(&u, k)]. It is demonstrated that if the dissipation
can be represented by a frequency-independent con-
ductivity we can use (1). For other cases expres-
sions similar to (1) are given by formulating new
quantities E& and p, &.

The analysis will be applied to an assembly of
simple oscillators which often serves as a model
for a plasma or a molecular medium. The results
are also applied to an electric circuit, and the ne-
cessity to know the impedence as a function of all
dissipational quantities, i. e. , all resistances, is
demonstrated.

II. ENERGY EXPRESSIONS IN AN ABSORBING MEDIUM

An expression for the stored energy will be de-
rived from the conservation law including power
delivered by an external source. '5 The stored en-
ergy is expressed by means of energy flow and pow-
er dissipated. Expressions for these quantities are
then obtained from &' and p, '.

In order to avoid unnecessary complications we
will specialize to an isotropic medium. We further
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assume the medium to be linear, homogeneous, and
temporally dispersive. In order to derive energy
expressions it is suitable to consider the problem
of excitation of the wave system by a source con-
sisting of a current j'(t, z) and to describe the re-
sponse by the electrical field E(t, z). The two quan-
tities are chosen such that the product -E(t, z)
&&J (t, z) is equalto the power delivered (per volume
element) by the external source. The relations be-
tween the time-space transforms of E(t, z) and of
J'(t, z) can be written '

This relation must be fulfilled for all values of t
and z, and by expressing P, by means of (8) and

(6) we obtain

2kz Sp 2') Wp+ Psp = ~e ImDEpEt

2kS, —2~W, +jPd, = ——,'DE',

(8a)

(8b)

kImSO 2Im Wo+ &o Pso

+Re[(-2jkS)+2jp)W)+P„)-P ))et« "Ret «Ree)] —0

D(td, k)E(p), k) = jJ'(&d, k) (2) After variation of p), and k, , (8a) yields
We call D the dispersion function. D is an analytic
function of frequency, propagation constant, and
medium parameters. D(p), k) is expressed in e'
and )t

'
by (A4) in Appendix A.

We now consider a wave motion characterized by
the angular frequency co and propagation constant
k. E(t, z) is then equal to

Re[Epet'"' ""]= Re(E)

and J'(t, z) has the same form. The relation be-
tween E and J' is

9So BWo 1 BP~o

kqm
'

Bk~ 2 Bk

1 BD
Re E—pE *—

4 Bk

BWo
k

BSo 1 BP~o
Wo+ &im —kzm

B+Im B+xm BIm

1 BD= —Re—E E*
4 B(o

(9a)

(9b)

where ~ and k may be complex. In the case of
free-wave propagation, 8'= 0, and the relation be-
tween ~ and k is determined by the dispersion re-
lation D(p), k) = 0.

The energy conservation law (poynting's theorem)
can be written

BS BW—+ +P =P
Bz Bt

(4)

where S is the energy flow, W the stored energy,

P„ the power dissipated, and P, power delivered by

the external source. P, is given by

Re[E t(&at k)] Re[J-es ( ettme)]k

In the lossless case we obtain with ~, = 0 and

k, = 0 the time- or space-averaged expressions for
the energy flow and stored energy (see Refs. 4
and 5):

S=-——E E* W. = ——E E+& BD 1 BD

4Bk ' '

4 Bc@

When e, = 0 and k, 4 0 we obtain for the time-
averaged expressions

(S)= Spe ™( W) = Wpe~~™

(P ) —P ezk)me

where Sp and Wp are given by (8a) and (9b):

Sp
———(ImDE pEp + 2P~p)/4k,

2&&Im&-&Img& + Re&P &2& tk)&-~&&l,oe + e~ „e J
(5)

(12)

where ~, and k, are the imaginary parts of co and
k, respectively, and

P,p= ——,
' Re(EfeT p) Ps) = 2Ep~0 ~

When ~, = 0, the time average of P, is given by

P,oe "'m', while P,&e2~™characterizes that part
which oscillates with twice the frequency of the

wave; and when the phase of the signal is unknown

but uniformly distributed, P,oe '"~m' '&m" is the ex-
pected value and (2) 't P»e '"'m' «)m" is the stan-
dard deviation of P, ; in the point z at the time t.
For S, W, and P~ we use analogous notation. Intro-
ducing these expressions into the conservation re-
lation (4) yields

If we for the moment assume P„ to be known, we
conclude that it is necessary to know So as a function
of ~, in order to determine Wo when +, =0. The
situation is still more complicated when co, as well
as k, differ from 0. The energy-conservation re-
lation only yields a relation between 8, W, and P~
in this general case. In the Sec. III we consider
some cases when it is possible to derive expressions
for S and Ps which together with (8) yield an expres-
sion for W.

III. DERIVATION OF DISSIPATIVE POWER AND
ENERGY FLOW

The main problem in an absorbing medium is to
separate the energy components. Primarily, we



ENERGY OF ELECTROMAGNETIC WAVES IN THE PRESENCE

need an expression for the power dissipated, and
it will be shown that it is possible to derive such
an expression from the dispersion function if this
is an explicit function of the dissipational param-
eters X, , i. e. , D=D(~, k, &,). We assume that
the power dissipated is given by

Pg QX—-)(Reg;) (13)

where p, is such an amplitude that X, is frequency
and wavelength independent and describes the "real"
loss process. (If not, energy-storing processes
will be "hidden. " For the meaning of X, see
Sec. VI. ) We now introduce the amplitude ratio
&; = v& /E, where && is in general a function of
frequency as well as wavelength. It mill be
shown that A; can be obtained from the so-caQed
dispersion function D(&o, k, X,) by varying the loss
factor X, . We assume linear relations between
E, e&, and 4'. After elimination of the irrelevent
amplitudes in the set of equations describing our
system, me can describe the relation betmeen E
and v& by (cf. Ref. 5)

D E+D qv;=j J

D~ E+Dq~ g, = -jF) (14b)

D.a» a

(Dts)'

For our. objectives it is not necessary to know the
exact form of the coefficients. %e introduce a
fictitious force E„and the signs of D,', and D,', are
then defined by the fact that the power delivered to
the system is ReE, Rem, . Elimination of v& finally
yields (E, =0)

DE = (D.'. D.', D' /D,', ) E—=j ~' (»)
According to (13) the dissipation is described by a
damping force X, v„which means that ~, is included
in D,~ only as jX&. —According to (14b) A; = —Db, /
D~~, which means that

Equations (18) demonstrate that it is not necessary
to know X„but only that part of X, which directly
characterizes the dissipational process, say v,
The assumption that P„can be written in the form
given by (13) is fulfilled when D is a rational func-
tion of the loss factors.

In order to obtain expressions for the energy flow
we restrict ourselves to media without spatial dis-
persion. For such media the dispersion function
has the form (see Appendix A)

D(~, k)=~&'(~)-k'/~ V'(~) (19)

From Appendices A and B we have 8=Re(E)Re(H)
where H= —2(SD/Sk)E, and we obtain

lBD
4Bk

(20)

BD . . BD '
Wo= Im D-jkr —+j~, j E

4(dye Bk . BX,

1 BD BD
(21)

where the sign is determined according to the text
after (17). Particularly when +, =0 we obtain from
(12), (18), and (20)

BD . B D . BD 1/2
Wo=-,'Re —-jk, +j

B(o Bk '
BX~

These expressions can be generalized to other wave
motions characterized by D(v, k) on the form given

by (19). This implies that we use one of the propa-
gating field amplitudes (e. g. , analogous to E or H)
to describe the medium response and that the quan-
tities corresponding to ~e' and up' are independent
of the propagation constant.

IV. EXPRESSIONS FOR STORED ENERGY

From (8), (18), and (20) we obtain

Since the system is reciprocal we have Db, =+D„,
yielding

1/3. -
~o~o

BX.i
(22)

2 y BDp, =& an&&~Eo=~ +a j&i Eo41 BX)

(18)

Aq ——+j-. BD
(17)

The sign of A, is determined from an analysis for
large (d and k, when we know that A& takes the form
(j&) "(-jk) C, where C is real. As long as we
need A, A, the sign is unimportant. The expressions
wanted now are

These expressions are valid in a medium without
spatial dispersion. D is included for convenience
in (21) although D= 0 for free waves. By means of
(19) the dispersion function D can be expressed in

and p
The analysis above assumes the power dissipated

andthe storedenergyinthe medium to be located
mhere the medium interacts with the electric field.

A crucial point in the analysis of an abosrbing
medium seems to be the definition of one quantity
responsible for the energy storage and one for the
dissipation. By definition we have &' = &, +j&3 = &

—j (o/~). Ginzburg used e =a, and cz= —o/~ (real
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frecluencies) and found that o as well as e contributes
to the stored energy. Neufeld reformulated the
definition of c such that it was independent of the
dissipation. In this paper we have determined the
stored energy and the dissipation directly from
expressions for D or &' and p, '. However, intro-
ducing the definitions

a(&~') ~~P f'

~(&P )P2=—

Pp(&, k) =Z X, A;((o, k) E((o, k) e A, ((g, k) E(oI, k),
(27)

P,(.ar, k) =jD((o, k) E((u, k)*E((o, k)

W(to, k) is obtained from the transformed energy-
conservation relation

W((u, k) = (1/j ~) [P,((o, k)

-P, (~, k)+jkS(&, k)] .
The time-space expressions are obtained by inver-
sion.

VI. APPLICATIONS

Energy Density of an Assembly of Oscillators

( )

{W)=-'Re ' " lEf'+ ' ~- faf'
&(j~z.) &9~z ),.-o

'

E,' and p, j are equal to &, and p, for real (d. How-

ever, &j and p, ,' do not determine the oscillating
part of the stored energy and the dissipation as long
as ~&,' and w p,' are dependent of {d. This means
that we cannot in the general case give definitions
of the 4,' and p.,' which can be used to determine the
instantaneous value of the stored energy.

Finally we obtain for the stored energy when {d

is real

1 &((o&,) &((o&p) E E,
4 e{d

e(diam

1 & (pp p, ) B(&u pp)

(26)

This expression is identical to the frequently used
expression

0 0 4 g~ Q Q

when op&3 and w p~ are frequency independent, which
is equivalent to &&2 and co JILz being frequency inde-
pendent. However, if the correction term is small,
(26) can be an acceptable approximation although it
does not yield a physically correct expression.

V. ENERGY EXPRESSIONS FOR ARBITRARY SIGNALS

The derived expressions can as well be used for
arbitrary signals. We have, according to (3( (13),
and (20), expressions for S(e, k), Pp(~, k), and

P, (v, k) in terms of convolution integrals (marked

by p)~

1sD
S(s), k) = —

2
—E(ru, k)p E(~, k)

We will now apply our expressions to an idealized
structure of an atomic medium described by an as-
sembly of independent oscillators. The motion of
the electrons can be expressed by

where mvg (df;/df) ls t'he frictional force and m~(p )
the restoring force on the bound electron. Assum-
ing that the mean velocity of the electrons is 0, we
obtain after linearization

2

=60
~ V —+~ -)CO&.

where v&& N, e /me——
p and N; is the density of the

electrons characterized by sr& and v, . From (19)
we now obtain

3
D= Ide —,=&p (p-Z

COP, »&o

(31)

We will now determine the stored energy from the

knowledge of the dispersion function. Vfe first notice
that D(pp, k) is not real for &o and k real. This
means that the medium is lossy. It is inferred that
the loss factors are v&. The power dissipated is
given by (18) with X, = v&.

1Pp=m p&pvg
l

~p/

—Re p &pv( p ~ pE (32)1 (d~) 2

{dg (0 JV]

which is identical to

as expected. From Eq. (21) we obtain

«r(l+ «/Ir0I ) Ir

)~-4 0+ ~0 a 3+ 3l~- ~,/~-gvgf l~l pp
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which can be written

(d(()(l —(dg/(0 ) f[

(88)

lustrated in Fig. 1 (see p. 485 of Ref. 2), namely,
R&=Ra=A and I =ASC, we obtain 8=-B. Thus, it
is not possible to determine the stored energy from
Z. This is due to the fact that Z is not a function
of the "real" loss factors B& and Ra.

w 3

0 Re(E) +LN, m Re

+8((,m. o)', [((a(~()]'+so[((e((1)\'I,

i.6. , the saxne as would be expected by physical
arguments whether or not the dissipation process
takes place.

For M&~= 0, the tixne Rvex'Rge of the stox'ed energy
is given by the first term in (38). The same expres-
sion can be obtained from (22).

ElectflcSI CII'cMts

ID electrical circuits the equation corresponding
to (3) is Df =jV, and D is given by D = -jZ. We
have no energy flow, and E[l. (21) is reduced to

Re(Z —QR, IA) I') (

(86}

A.
&

relates the current in a certain bx'aoch of the net-
work to the input current. If the resistance R& is

. repx'686nted by R conductRDce 6] ln the expression
(85), the other sign for A& must, be used, and we
obtain

V] 18 the voltage acro88 6] These 1elRt10QS IQay

be useful ln Gthex" coQQectloQS too.
%hen vge have fox ced oscillations vrith &, '= 0,

and Z =R+jX, the stored energy is according to (12)
given by

The essential feature of this analysis is to dem-
onstrRte hMv energy expressions canbedellveddl-
I'ectly frGIQ the expressions fox' the complex pex'-
Mittivity ~ RQd pelIQ6Rblllty p, »

or I'Rther the dis-
pexsion function D. It is shmvn that the power dis-
slpRted P& can be derived %'hen 6 RDd jib Gx' D Rle
known rational functions of all the 1088 factors.
Furthermore, an expression for the energy Qow 8
is given for frequency-dispersive IQedia. The ex-
pression fox the stored energy is obtained from the
encl gy-coD8ex'vRtlon x'elation by IQeans of Ig Rnd 8.

Vfe have considexed primarily the energy expx'es-
810QS Gf plRD6 electroxnagQetlc %aves 1D 180tx'Gplc
media. However, the x'esults of the present work
can be applied to arbitrary plane waves in lossy
frequency-dlsperslve 180tloplc IQedla» Rnd genex'-
alized to anisotropic media. (Then it may be con-
venient to introduce SepRx'Rte 1088 fRctors ln eRch
coordinate direction. )

The present analysis may also be of value in
connection vgith a discussion of the signal velocity.
The same Method Gf RQRlysis cRQ, furthermore,
be applied to the momentum-conservation relation.
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M83Bvell 8 equatloDs fox' the IQRcroscoplc electric
and magnetic fieMs in the presence of material
media MRy be Written Rs

V&8=&0 *J~+J~,
(Al)

~H
"[[(( X E= p, o

—— J J

(38)

in agreement with Ref. 6. From (16}we obtain
that

(' so, (r, ~ (( ',(g~)[g [s0

where A, , is given by (36).
It vfas remarked above that lt 18 necessary to

know how the dispersion function (input impedance)
varies with all the loss parameters. If me choose
certain values of the parameters of the circuit il-

FIG. l. EIectrjcal circuit iihI8tratmg the nece88jtff to
kQGIv ho'% the (48pex'81OD fQQctloD varies with all the IQ88
parameters. If 8~=82=R, and I =8 C,. me obtain Z =8,
aildZ does not keep information of the Stored energy,
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~e'(~)E(~, k) —kH(pp, k) =jJ (~, k),

—kE(&u, k) + ep '(&p)H(&u, k) =jJ'(v, k).
(As)

If the wave motion is excited by an electric source
(J,'= J' OO, J' =0) the medium response is deter
mined by

&(pp, k)E(~, k) = [&ue'(&u) kp/~p, '(~)]g(&u, k)

=jJ'(e, k),

where J, and J are linearized functions of E and
H describing the medium, while J,' and J~ represent
external sources exciting the system. The power
delivered by the external source is

Ps= —E J,' —H J~ . (A2)

After time-space transformation we can write (Al)
in an isotropic case without spatial dispersion
(e' and p' independent of k):

D(&u, k) is closely related to the transform of the
Green's function.

APPENDIX B

P, —Re(jH 5k) Re(.E) —Re(jE 5k) Re(H).

From Eq. (f) we then obtain

Sp= pRe(Hp Ep) Sg= pHp Ep, (B2)

From Appendix A we obtain for a non-spatial-dis-
persive medium

&e'(&u)E —kH=j J;, —kE+~p'(&)H=j J' (B. l)

If we now change k by 6k this change can be com-
pensated by the currents 6J,'=jH 6k and 5J' =j E 6k

in such a way that the system for the rest is un-

changed. This means that S, W, and P„ is un-

changed and that the input power tends to

H(~ k) =, E(~, k) =- -—E. (A4)k 1~D
&d p'((0) ' 2 sk

or

S = Re(H) Re(E). (Bs)
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We use the Coulomb-Born approximation to calculate the total cross section for the elec-
tron-impact excitation of ionized atoms which have one electron outside their closed shells.
When the incident energy is high and the atom is highly ionized, we can use the eikonal and
classical approximations in conjunction with the Coulomb-Born approximation. Then, the
scattering amplitude reduces to a one-dimensional path integral. The path integral, in turn,
can be reduced, to any desired accuracy, to a sum over integrals which can be evaluated
analytically. Using this procedure, we have calculated the total cross sections for the
heavily ionized atoms Fe'+, Co +, Ni' ', and Cu

I. INTRODUCTION

Electron impact excitation of various types of
atomic ions has been examined in different approx-
imations. ' Of particular interest have been the
Coulomb-Born (CB) and the close-coupling approx-
imations. By use of the Coulomb-Born approxima-

tion, electron-impact excitation cross sections have
been calculated for hydrogenic ions by Tully and
Burgess, for He' by Tully, for lithiumlike ions (Be',
C ', 0 ', and Mg ) by Belly, Tully, and Van Rege-
morter, for sodiumlike ions (Mg', Si ', and Fe'")
by Belly, Tully, and Van Regemorter; also by
Kreuger and Czyzak, and for potassiumlike ions


