
y, = - (u, + v, ) n', + n, ),
y,

~
O& = - (u, + v, ) ng O) .

Hence, (uq+ vq) =(O~ 4y-q~O) .
(37)

(ss)

For brevity we denote the ground-state expecta-
tion value of 1,y, , by I',. The equations deter-
mining the u's and v's will be

(»)
(4o)

The solutions are

u', = (Z, + i)'/4y, ,

v', = (Z, —i)'/4Z, .
(4l)

(42)

Hence, the I's and v's can be determined from
the ground-state properties of the system.

ators of the excitations, e~ and e„respectively,
by the folloming equations:

VI. SUMMARY

A systematic approximation scheme based on
the assumption of small density and current fluctu-
ations was presented. The operators p, and I'~ ap-
pearing in the Hamiltonian were expanded, using
the above assumption, in terms of simple oper-
ators. The possibility of obtaining the excitation
mave functions and spectrum to any desired order,
elthe1 by using known ground-state expectatlon
values or by using the procedure described in Sec.
Itt", is outlined. Hence, this method allows one
to obtain the interquasiparticle interactions. To
demonstrate the applicability of the method, it
mas shown that the first-order calculation yields
the mell-known Feynman results as well as the re-
sults of Bogoliubov and Pitayevski. It mas further
shown that second-order calculations yield the im-
proved result of Feynman and Cohen.
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The semie1assical theory of gas lasers has been reformulated by adding rate terms to the
density-matrix component differential equations. The solution to these equations, in the form
of a Fourier series, is applicable at high laser intensities. A calculation of the effect of
phase-changing collisions is also included so that the results can be compared to experimental
data taken with a He-Ne laser operating at a wavelength of 1.15 pm.

I, INTRODUCTION

Lamb's semiclassical theory of the gas laser'
accurately predicts many laser properties, such
as the power output and the frequency as a function

of cavity length. However, as Lamb points out,
the applicability of his third-order results is lim-
ited to lom laser powers. Bennett's hole-burning
theory is more heuristic and gives results equiv-
alent to those of Ref. 1 at low intensities. At-
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tempts to extend Lamb's theory to fifth order in
the electric field lead to cumbersome expressions
which necessitate many approximations. In ad-
dition, the iterative approach of Refs. 1 and 3
seems to lead to an asymptotic series which can-
not be used if the electric field is large. The re-
sults of Refs. 1 and 2 are also limited to atoms for
which the width of the velocity distribution is large
compared to the natural widths of the laser levels.

Recently there have been several papers on the
theory of high-intensity lasers which use the semi-
classical approach. 6 The results of Refs. 4 and
5 seem to be equivalent; they are useful at higher
laser intensities than the theories of Refs. 1 and
2. Effects due to low-velocity atoms are neglected,
however; these effects become important at high
intensities and when the Doppler width of the laser
transition is not large compared to the natural
widths. The Stenholm-Lamb theorye is useful at
higher intensities than the results of Refs. 4 and
5 and includes some interesting features not pres-
ent in the other theories. The theoretical results
of the present paper are equivalent to those of the
Stenholm-Lamb paper, although the approach is
different.

The purpose of the present paper is to describe
a method of calculating the intensity of a gas laser
which is applicable at high intensities and to com-
pare the results of the calculation to experimental
data obtained using a 1.15-p, m He-Ne laser.

Section II describes how the laser intensity is
related to the macroscopic polarization of the gas.
In Sec. III, the quantum-mechanical description of
the atoms is developed, resulting in equations for
the time-dependent components of the density ma-
trix. The solution to these equations in the form
of a Fourier series is developed, and the macro-
scopic polarization is related to the coefficients of
the Fourier series. Section IV is a description of
the method used to find the coefficients. In Sec. V,
the laser intensity is calculated for both flat and
Maxwellian velocity distributions. Section VI is
a calculation of the effects of Lorentz collision
broadening on laser characteristics. In Sec. VII,
the results of the calculation are compared with
experimental data from a 1.15-p,m He-Ne 1aser.

II. POLARIZATION OF MEDIUM

Lamb' has shown that the calculation of laser
characteristics reduces to the calculation of the
macroscopic polarization of the medium by the
laser field. In the present work, the electric field
is assumed to be in the g direction and of magni-
tude

8(z, i) = E cos(vi+ q) sinKz,

where the z direction is along the laser axis. If

L is the cavity length, then Z = nw/L, where n is a
large integer. The amplitude E and the phase y of
the field are slowly varying functions of time; for
the present purposes, they may be assumed to be
constant.

The electric field acting on the gas atoms in-
duces a macroscopic electric polarization P(z, f),
with the space Fourier component

P(f)=(2/I. )J, ~(z, f)sfmsds

-=C cos(vt+q&)+S sin(vt+y) .
The equation for the amplitude of the electric field
is

E+ 2(v/0) E= —2(v/&0) S, (3)
where Q is the "Q" of the cavity. (A similar equa-
tion relates the frequency of the laser light to the
coefficient C.) A steady state exists when E =0,
l. e. ,

S/E = —eo/Q = const

This equation is analogous to the "gain" = "loss"
equation used by Bennett. 2

In Lamb's "third-order" theory, we have

S=g&E gsE ~

3

where g, and g3 are functions of the cavity length
and of atomic parameters but not of E. The laser
intensity, proportional to E3, is then the solution
to

S/E =g, -g, E'= const.

As Lamb points out, this solution is only applicable
at very low laser intensities. However, it was not
possible to tell at just what intensity his theory be-
comes inaccurate.

In the present method, S/E as a function of E is
obtained without using an expansion in E . The
laser intensity is still given by solving Eq. (4) for
Ea, but S/E is no longer a series in powers of E .

III. DENSITY-MATRIX EQUATIONS

The gas atoms comprising the medium are
thought of as having two excited levels a and b

which are connected by electric dipole transitions.
The wave function describing an atom is

g = a(t)t), + b(t)P„

where a(t) and b(t) are the amplitudes of levels a
and 5, respectively. From the time-dependent
Schrodinger equation

ih =Hq=[H, + eh(t)x]q-dg

follow the equations for the amplitudes:



a = —ia E,/If-ibV, a
——,

'
y, a,

p

b = —ibEa/@ i-a V,a
—,'y—ab,

atoms pass through the position z at time f,, then
their position at time I; is

whex e E, and E~ are the energies of states a and b,
z=z+e, (t-t). (ie)

V„=— ~' = — ~- cos(vt+q) sinKz, (11)
&8(g, f) '0 E

and 6'= e-fg spade. (12)

The terms - (-,'y, )a and —(~aa)b have been added to
account for the spontaneous decay of levels g and
5 to other levels. The lifetimes of levels a and b

are 1/y, and 1/ya, respectively.
The equations describing the time behavior of

the density-matrix components of a single atom
follow directly from Eqs. (9) and (10):

p„=-—(aa*) = —y, p„+2Re(iV,*,p„),

P aa=d (bb~) = —yaPaa —2Re(iV, aP, a), (14)

p

pat= {ab )= (yaa+tPt a)p a+tV a{Po Paa)

(15)

where y a-=a(y +ya) and (0 a—= (E —Ea)/S. The di-
pole moment per unit volume due to one atom at
position z at time t is

—1g*eQdr= —e(a*bf gxgadv + ab*f g~*+,d7')

Using Etl. (11) and the rotating wave approxima-
t1on, '

( -tlat+ a)( tra e-tKa)
) 4@'

L~
-kyr fZ~P"v 7& -l&v-Eo &t

Af

4jk
-fE4"ezt ~ &- f ~@+ EfPg~t I

The latter expression shows explicitly the two fre-
quencies v -Kv, and v+Ke, of the two travelling
waves comprising the standing wave, as well as
the phase relationship between them.

The problem is solved first for fixed v„z,and

t; z and t are then dependent variables. The final
result is to be summed over g„z,and t, although
the result turns out to be independent of z and t,
so that only a summing over e, is necessary. {One
could choose Z, t to be zQ, tQ the excitation point;
the final result then turns out to be independent of
zQ tQ as one wouM expect for a steady-state prob-
lem such as this one. )

Thus, the density-matrix component equations
used here are

= 2 Re(p„.tP*) . (16) &aa
= ~s —yb pa.

The macroscopic polarization P{z, f) is gotten by
summing this expression over all atoms which

happen to be at z at time I;.
Lamb' and Stenholm and Lambe consider atoms

excited to a given state j = u or b at time tQ and po-
sition zQ which arrive at z at time t. The atoms
are assumed to have uniform speeds in the axial
direction e, so that z, t is related to zQ, gQ by

8 = zp+ f)a{f—fp) .

{pg
et tut + yt(etrg e tea)p (-20)ab

P» = &s '4P»

{pQQ
+ 2 Re et&vt+ a&(etta e t&t)p

' -(21)
4g cb

Pea = (yoa+ tPtaa)paa

They calculate the polarization due to these atoms
[Eq. (16)] and then integrate the resulting expres-
sion over zQ, tQ, i, and g, to obtain the macroscopic
polarization at z, t.

In the present method, the density-matrix com-
ponents are taken as describing a volume of atoms
moving along the z axis with speed e,. Excitation
is accounted for by adding terms X, and X~ to p„
and p», respectively, where X, is the number of
atoms per cm3 sec excited to state i w'ith speed e„'
Xg ls assumed to be a function of gg but not of z ox'

t. As the atoms move thxough the standing-wave
pattern, they experience a potential which is
changing in time not only because of the cos(vt+ y)
term in V,~ but also because of the sinKz term,
since their position z changes in time. If the

After substituting

{P.~ g (pg y y )~
Pab 4I Jab&

the equations become

(2s)

p tr -tz
Paa ~a yapaa+ 6' a Re[{e e )f a] (24)

The solution to Eels. (2S)—(26) is obtained by

f,a
—i(v —Pt,a+iy, a)f,a= —(e' ' e' ')(P„-P-aa).{26)
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assuming a series in odd powers of e'»' for f,„and
series in even powers of e' ' for p„and p», all
with undetermined coefficients. The coefficients
are gotten by equating powers of e' ' in Eqs. (23)-
(2S). The result is

p pbb=+o 1 2@Re 8080

+2n Re Z (B„,R„,B„R—„)p„e"' '
n=1

(26)

e-z(vt + tp)

all above the real axis, for example,

f R R„dv,= f R p„dv,=0,

f R R„*dv,&0 .

The macroscopic polarization at z, t due to
atoms with v, is

P„(z,t) =2 Re(p„a*)= —
@

np
I(pl's

—i(vt+e& ~ (2n + 1)i«B
o

— e

„p&&. z&.. &; . &' -&..»;
)in= o ~n

- (2n+1)iEg
+e 0

n

(30)

where n, -=X, /y, X,/y-„~= I+I'E'/8@'y, y, ,

b.'„—= v —e„+(2n+ 1)Kv, +iy, p,

1 1
Rn =iypp (A-)

—
(A&)~

To calculate the laser intensity, one needs the co-
efficient of sinKz [Eq. (2)]:

2p„(t)=— P„(z,t) sinKz dz

Zgafb + 1 ~

4rab «V, —~2ra «V, —~orb -=C„cos(vt+y ) + S„,sin(vt+ p) . (31)
and the coefficients B„obeythe recursion relations

Bp 1 —+=[2 Re(BpRp) + (BpRp —B,R, )P,], (28)

Bp= o'[B"Pp |pp.|
—B„R„(p„+p„,i)+B„iR„ip„], n)0. (29)

The quantity ~0 is the unperturbed inversion den-
sity at v, . Defining

Thus, the out-of-phase component of the macro-
scopic polarization due to atoms with v, is

I~I'Z . B, B~~
~0Re ~ —'+ —

+++

0 0

I(P l2@ 1 1
np Re tBp ——(,)„

~, = A, W(v, ),
where A; is the number of atoms excited to state i
per cm sec, and

f W(v, )dv, —= 1
where

I ~l'z I ~ l'~
np Re(Bp Rp):

@ np G, (32)
~ab 2@~ah

then n, = —' ——W(v, ) =NW(v, ),A, Ab

~a ~b

where N is the unperturbed total inversion density

f npdv, =N.

The saturation parameter n is proportional to
the intensity of the laser field and inversely pro-
portional to the level widths. n is of the order of
the ratio of the stimulated transition probability
per second to the spontaneous transition probabil-
ity per second at resonance. The present calcu-
lation is applicable at large values of Q., whereas
the iterative approach is applicable only for small

n is large even at moderate intensities if the
level widths are small.

The quantities R„andPn are defined in such a
way that, in an integration over v„the poles are

S= S„,dv, = —
@

G(v, )W(v, )dv,
16' I'ZN

~ab

l(P I2~~
2@~ b

where Z=Z(o. , v —&u,p, y, p, y„y„)
-=f G(v, )W(v, ) dv, .

(34)

(36)

By using the recursion relations, one can show
that Bp(—v, ) =Bf(v,). Also, Rp(- v, ) =Rf(v, ).
Therefore, if W(v, ) is symmetric about v, =0,

Z 2f G(v, )=W(v, ) dv, .

For a Maxwellian velocity distribution, we have

(36)

G = G(v„o.', v —e„,y„,y„y,) =—Re(Bp Rp) . (33)

To integrate over velocities, replace no by
NW(v, ). Then
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The laser intensity parameter n is determined
by

S/E= -eo/Q= const.

Suppose N~ is the threshoM inversion density at
v= (d„,N~ is proportional to the cavity losses, then
Eq. (4) can be expressed in the form

Ia' I N
J(&, & —M y, y y, yg, yy)2',g &

('(vz)

,8
)

J(0, 0, y, t„y„yp),
40

or J/Jr = Nr/N=

where Jr=J'(0, 0, y„,y„y~). n is then the solution
'to Eq. (39). Slllce Eq. (39) ls allalogolls io a ga111
= loss equation, it is evident that G(v, ) is analogous
to the gain due to atoms with velocity v, .

IV. DETERMINATION OF COEFFICIENTS OF
FOURIER SERIES

In order to calculate the laser intensity, the re-
cursion equations [Eqs. (28) and (29)]must be solved
for Bo. One method is the iterative method. Solv-
ing the equations iteratively for Bo can be shown to
be equivalent to solving the original density-matrix
component equations [Eqs. (20)-(22)] iteratively.
In Appendix A, the iterative solution is derived and

14

X

l. 2

I l

K "z ~oh

&4' ) = Be(&pBp) as a function of Ep /J y for
v-co~=&,&, y, =p&. The solid lines are case A; the
dashed lines are case 8; the dot-dashed lines are for
Bp=l/(1+2&BeBp). For 0. =0.1, cases 8 and C coincide
with case A. Case C coincides with case 8 for all the
n's. The x's are the exact solutions for kg=0.

is shown to lead to Lamb's first-order and third-
order results. ' The solution is carried to fifth or-
der to show that the series appears to be asymp-
totic and thus is not useful except at small values
of e. For this reason, another solution to the re-
cursion relations is desired.

In Appendix 8 it is shown that there are two
Fourler series for p~y~ R divergent OIle Rnd a con-
vergent one. The convergence condition is

B„11m - & 1~ Rs s~~.

For v, 40, the desired convexgent solution has the
property

B„lim " = 0, Rs s

G{Vz)

I

4
KV2/t g b

FIG. 1. G(yg) = Be(BpBp) as a function of Egg/y~q for
v —co~=0, y~=y&, The solid lines are case A; the dashed
lines are case 8; the dotted lines are case C; and the
dot-dashed lines are for Bp= 1/(1+2@Re Bp). The exact
solutions for v~= 0 are denoted byt x.

In Appendix C, the recursion equations are
solved exactly for the case v, =0, as a check on
the method. If v, 40, no exact solution is available,
but a solution can be obtained to arbitrary accu-
racy by means of the following procedure: Set B„
equal to zero for all n greater than some ¹ Then
solve for B„,B~ » B~ ~, ~. . . and eventually for
Bo. The accuracy of this procedure can be judged
by doing the calculation for N and then for M+1
Rnd comparing the results. If no change results
in going from N to M+1, then the solution obtained
stRrting Rt N is good eIloug11.

An exRmination of the recursion equations shows
that the quantities B» Bz, ~ - -, p~, pa, ~ ~ ~, in-
fluence the results only for certain values of n,
v —co,&, and v, . Since 8,-0 as n-0, the effect of
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l.O

3(vz}

FIG. 3. Q(v ) = Be(BOZO) as a function of Ev8/p~& for
p —or~&=0, p, =10'& or p&=10'~. The solid lines are
case A; the dashed lines are cases B and C; and the dot-
dashed lines are for Bo=l/(1+2@ BeBO}. Cases A and
8 coincide for e =0.1. The x's are the exact solutions
for v =0.

a nonzero B& on the value of Bo increases as a in-
creases.

If I v —~,b t is large compar ed to y, & „
the term

(BORO —By Ry)pg ln the expression for Bo ls small
for all n„since p~ has its maximum at v, =0,
whale 80 and Bj peak at Kv~ = + ) v —e~& t and
& 3 lv —&u,

„
I, respectively. Then Bo is the solution

to

Bo= 1 —a[2 Re(BORD)]

pendence on P&, P2, . ~ ~

Figures 1-4 show G(g, ) = Re(BORD) as a function
of Zv, /y, ~ for several values of v —&o„andy,/y~.
Case A is the solution obtained by setting B,= Ba
= ~ ~ ~ =0 case 8 that obtained for B =B ~ ~ ~ =0
and case C the solution for B3=84= ~ ~ ~ = 0. Ex-
plicit expressions for G{e,) in the various cases
are contained in Appendix D. G(e,) is symmetric
about v, =0. For case A, Bo is the solution to

Bo —1 —o.'[2 Re(B~Ro) + BoRopq];

it differs from Eg. {40) (and from Refs. 4 and 5)

by the term nBOBO p, . The figures show that case
A. is worst for y, =y~, for v={d„,for large cL and
for v, =0. In Fig. 1, the dip in G(e,) near v, =0
(see also Ref. 6), most pronounced for unequal

y, and y~, is caused by the term BOAop, . This
effect is not taken into account in Bennett's hole-
burning theory' or in other theories where the re-
sponse of the atoms to the electromagnetic field is
assumed to depend on y, ~ only, andnot on y, andy, .

Although there are noticeable differences among
cases A, 8, and C in Figs. 1-4, these differences
do not affect the results for the laser intensity
very much, at least in the case of a flat velocity
distribution, since J/'J'z is proportional to the
areas under the curves of G(v, ) versus e„which
are not very different for the three different ap-
proximations. This point illustrated in Fig. 5,
where Z/Zz is plotted against o. for y, = y~, and for
(v —&u, ~)/y, ~=0, 2, and 4, for a flat velocity dis-
tribution, " the difference between cases A and 8
is only about 2% (and the corresponding error in 8
is also about 2%%d) at n = 5, v-&o,~= 0. The error

I.O

ol

B,=-[1. {R,.R,*)]-'
y'

1+2m
(v —(o„-Zn, )'+ y,",

G(vz )

(40)
ya

a,b

(v —(Vga +Ksg) + ygy

This is equivalent to the results of Hefs. 4 and 5
and is also contained in Ref. 1.

Even if tv —v,~t is comparable to y,~, Bo is
given by Eg. (40) except near v„=0, since p, is
small everywhere else. Similarlyq Bgq J33y e o ~

are small except near kg =0, because of their de-

. (

5

FIG. 4. G(v,) =Be(BoBO) as a Sanction of Ev~/y~& for
p —m~&=3y~&, pe=y&. The solid lines are cases A, 8,
and C; the dot-dashed lines are for B0=1/(1+2@BeRO);
and the x's are the exact solutions for v~=0.



for v-(d~&0 is much smaller. Since the rest of
the paper is concerned with values of n much
smaller than 5, case A only will be used in what

follows. However, one can easily extend the re-
sults to higher a simply by using cases 8, C, etc.
(see Appendix D).

Figures 1-5 also show G(v, ) and J/'Zr calculated
using Bc= 1/(1+2@8,Ro) [Eq. (40)]. The errors in

a associated with this approximation are of the
order of 10% at n 0 -1-.1.0 for a flat velocity
distribution and are larger for a Maxwellian dis-
tribution where the effects of zero-velocity atoms
are more important. Figure 15 shows J/J'r as a
function of n for the third- Rnd fifth-order itera-
tive solutions; the scale of a has been expanded,
since these solutions are meant to be applicable
only at small values of &. Figure 15 shows that
both iterative solutions are in error by about 20%%uc

1II (r at (I = 0.05 (ol' ai 1=0. 2 wllel'8 I ls tile iIlteII-

sity parameter of Ref. 1).

V. LASER INTENSITY

A. Intensity for Case of Flat Velocity Distribution

The method used to calculate the laser intensity
is to calculate J/J'r as a function of n (on a com-
puter), draw curves such as those in Fig. 5, draw
a horizontal line representing J'/Jr =st, and find
Q as a function of v —co,~ from the intersections of
the horizontal line with the 8/Zr curves for differ-
ent values of I —(d„. (Of course, if one had a
great deal of computer time available, e could be
found Rs a function of v —(dg~ Rnd X without the
use of graphs. ) Typical results of such a calcula-
tion are shown in Pig. 6. Also shown is the third-
order iterative solution for a flat velocity distribu-
tion

(1 —st-I)
1 + 'Y

I) /[(& —& y) + 'Y
y ]

This is equivalent to Lamb'8 third-order solution
or to Bennett's hole-burning result; the accuracy
is quite poor for% ' smaller than about 0. 9, or
for a greater than about 0.05 at v-{d,~=0.

For single-mode operation over the entire tuning
curve, a typical 30-cm-long 1.15-pm He-Ne laser
has % ' greater than about 0. 8. For a 30-cm
0. 6328-p, m laser, % is greater than about 0. 9
for single-mode operation. Of course, & ' can be-
come quite a bit smaller than these values for
shorter lasers and longer wavelengths, for 3.39-
p, m lasers, for example.

The (luantity a(v - (c,I,- ~) =—a is also shown in
Fig. 6. It was obtained from the solution for large
(I —cI.)))/Y„:

5

,2

-Qj&b)

~ob

2
0

18—
1+2nneg,

which can be integrated analytically by contour in-
tegration with the following results: If the condi-
tion

c("&[(~ ~.~)/r. ~j'(1—+ 2II)

is fulfilled, then, for large (v -(c,I)/y, ))

J 2——(1+2tr)Iia 1 —n
J~ (v —~„)'+y.',()+2a)) .

J 1
Thus, lim —=-„,, as Iv —~„l-~.

FIG. 5. 4/Jr as a function of c( and {v—a),g/Y~ for a
flat velocity distribution and p~ = p&. The solid lines are
for case A, the dashed lines for cases 8 and C, and the
dot-dashed lines for Bo= I//(1+20. HeA0). Cases 8 and C
coincide for (P —u, ()/@~I,= 4.

The colldltlon eT/clr= Sf gives

limn= —,'(xa —1)—= n„,as )v —cI,~1

Figure V(a) shows the width of the dip, the full
width at o.'= —,

' {c(„—(r()) in units of {v —c),())/Y, (), as
a function of K. II() is n(I -&c,()=0). Figure V(b)
shows & Rnd &0 Rs functions of Q The poiQts in
Fig. 7 were obtained from graphs similar to Fig
6.
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.8

,7

,6

4

FIG. 6. The intensity parameter
ab)/ ~ab Cal-

culated for a flat velocity distribu-
tion. The dashed lines represent
the third-order iterative solution
for 5V = 0.8 and 0. 9. The other
lines represent results of the pres-
ent work (cases A, B, or C, which
coincide for these low values of 0.');
The solid lines are for p, =pb, the
dotted lines are the y, = 10pb or yb
=10'„andthe dot-dashed lines re-
preSent 0'(v —~,b- ).
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(' ~ab)/ycb
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B. Intensity for Case of Maxwellian Velocity
Distribution

For a flat velocity distribution, J/Jr is a func-
tion of u, (v —to„)/y„,and the ratio of yb to y, .
For a Maxwellian distribution, J/Jr is a function
of these quantities and also of g, where

WIDTH

OF
Dip 5

0-
t

FIG. 7. (a) The calculated width of the dip in m versus
(v —rug/y, & as a function of K, for y, =yb The width is.
in units of (v —v,g/y, &. (b) n„and no as a function of %.
(The points in Fig. 7 were obtained from the curves in

Fig. 6 and similar curves for larger n. )

r( -=y„/Itu (41)

(42)$
-=(v —(o,b)/Zu.

Then e ~ can be taken outside the integral of Eq.

[see Eq. (37)]. The functions determining G(u, )
= Re(Bo Bs) peak at lf'v, = 0 (the p„'s)and Kv,
=+ I(v —to,„)/(2n+I) I (the 8„'s). However, if
tv —e„lis large, we have already seen that only

Ro is important in determining Bo' Ro peaks at
Kz, = + I v —(d, b I, with a sharpness which is deter-
mined by y,~. If q is much smaller than 1 (the
"Doppler limit" ), then As peaks very sharply com-
pared to changes in the velocity function, and

s "'I"' can be replaced by exp[- [(v —to,,)/Zu]')
= e ~, where~$2
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FIG. S. The intensity parameter 0. as a function of
$ = Iv —&u~P/Xs, for a Maxweiiian velocity distribution.
Here, q(-=&~&/Eu) =0.05. The solid curves are the
present results; the dashed curves represent the present
work in the Doppler limit, and the dot-dashed curves
are from the third-order iterative solution, Eq. (76),
for X '=O.S and 0.9 only.

J/Zr = e' (~I&r)„„. (43)

Here, (j/Jr)t»t is Z/J'/r calculated for a flat ve-
locity distribution.

The Doppler-limit approximation becomes
worse near v —+„=0, because there functions
peaking both at Kv, = 0 and at Zv, = + 1(v —tc„)/
(2n+ I) I are important in determining Bs. It turns
out not to be very good even for g = 0. 05, so that
the integration over velocity in Eq. (37) had to be
done numerically. Typical results of such a. cal-
culation are shown in Fig. 8 for g=0. 05, y, =y~.
The main purpose of this calculation was to obtain
results to compare with experimental data taken
for X ' greater than 0. 8; Fig. 6 shows that the in-
tensity is not sensitive to the ratio of y~ to y, in
this region, so no attempt was made to vary the
ratio in doing the Maxwellian calculation.

Also shown in Fig. 8 is the Doppler-limit case,
Eq. (48), and the third-order iterative solution in
the Doppler limit,

i~L'4-cd~g&/E'g32
y ~- t ~&2

I+y,', /[(v —(o„)'+y,',] I +vis/(('+ vi')

(44)

.05

.04

a
l.4

Qo

IO

using nl, with ones ~tten using the present method
to show the range o- aplicability of a~. This is
done in the following paragraphs.

For purposes of comparing theoretical and ex-
perimental results, the following quantities were
defined: e, the maximum of the intensity curve;
trs, the value of n at v —&c,~=0; and fc, the value
of $ for which m=0 (see Fig. 8). $c is in some
respects a measure of the inversion density; in
Eq. (44), n=0 at e'~= &. For small (cs, )ca=Ã- l.
Of course, the exact relationship between )ca and
gt can be found from curves such as those in Fig.
8, but it is simpler to use $tsas a parameter,
since gc can be measured experimentally.

The quantity njns is plotted against gs in Fig.
9. The quantity (n /nc) —I is equal to the depth
of the "Lamb dip" divided by the height at the cen-
ter of the tuning curve and is a useful parameter
for comparison with experiment. The values of
et+no were obtained from curves similar to the
intensity curves of Fig. 8, calculated for different
values of p. The indicated errors are caused by
the graphical methods used and not by errors in
the calculated values of 8/J'r, the error could be
reduced arbitrarily if a nongraphical method of
determining the intensity curves were used but
the accuracy of the experimental data w'as not
great enough to require greater theoretical accu-
racy here.

Also shown in Fig. 9 is nJnc versus $s derived
from the third-order iterative solution, ez, of Eq,
(76), for t) = 0.05 and vl =0. 10. The most impor-
tant difference between the present and the itera™
tive results is that e+no tends to saturate with

(see Appendix A). (xr,, or the fu11ct1011

g2

I + n'/(5'+ vI') '

l. 2

l4

which is equivalent to n~ at low intensities, is the
intensity function of Refs. 1 and 2. Although Eq.
(44) was not meant to be applicable except at very
low intensities, ' its range of applicability has not
been clear. Since Eq. (44) has been used exten-
sively in the analysis of experimental data, it
seems useful to compare quantities calculated

(,
FIG. 9. egno as a function of $0 and u, for a Max-

w'ellian velocity distribution. The solid lines represent
the present work; the dashed lines are from the third-
order iterative solution, Eq. (76). The numbers on the
curves denote values of Tj =y+Rh.
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increasing $20 in the present work. %e shall see
later that this saturation is also a feature of the
experimental curves, one which makes them im-
possible to fit with the iterative results except at
very small $z~. It can also be seen that the value
at which nJ(2() tends to saturate is a sensitive
function of p and thus provides a good way of mea-
suring g.

Figure 10(a) shows &2() as a function of $22 for 2)

=0.05 and for q=0. 20. The same plot for Q.~ is
also shown; in this case, the curve of no versus
(0 is independent of g. All the curves are linear
up to about @=0.1. The departure from linearity
exhibited by the present results, toward larger
no, is the direction seen experimentally; the
iterative solution departs from linearity in the
wrong direction. The purpose of Fig. 10(b) will
be discussed presently.

VI. EFFECT OF PHASE-CHANGING COLLISIONS

Several authorsv ' have considered the effects
of collisions on the intensity-versus-tuning curves
of gas lasers, using intensity functions equivalent
to ()tr, [Eq. (44)]. The purpose of this section is
not to present a complete calculation of all the
effects of collisions, but merely to show how

phase-changing collisions can be taken into account
when the present method of calculating the inten-
sity is used. The final results should not be taken
very seriously, since velocity-changing collisions
are completely neglected.

Suppose that the collisions are such that ar„be-
comes a)„+g(f). Then Eq. (25) becomes

fab-2[~ —e)ab g(t)+tyab]f-ab =(Paa Pbb)(e *"--e'").
(45)

Substituting

&&'&-&eb+ ~&ab&t &-~t't'J b-J b~ (46)

where g(t) = dy, t

then, from Eq. (45),
4

f = (p —p )(v i v ~ab4&"ab teil t (e &K-g e(Kg)

and f„=f ' [p„(t')—pbb(t')]

& [
(Kg(t-') (Kz&tI)]dfI (4V)

Now suppose that p, (t) —p, (f') depends only on f —fI
=—T and not on t or t', and replace e & t~ t-
its average value over atime T. Also suppose, for
now, that there is only one kind of collision, re-
sulting in a phase change p; this is generalized in
Appendix E to include many different kinds of col-
lisions. Then, if there are N collisions in time T,
the phase change in time T is Np. The probability
of having N collisions in T is

(I/x! )(T/7. )K e

where v', is the average time between collisions.
The average value of e ' " ' ' ' is then

g ON ~&: N=ON ~c

-rim~ l~&la~4 '"j -y~r &-cosy+&siny &

where y, -=l/v, . Equation (47) becomes

x [
i(v aIabstvab)t~ ta t~

][e (Kz(t —e&Kg t ]

Using Eq. (46),

[p (fl) p (fl)][ i &v aIabat-rab) (t t' ) --i(a(t ) a&t'-))]

.20

, l 5

.10

.05

(b)

l4

08

06

04

02

f f [p (fI) p (fl)](et(v alabat'Yab

x e-ra()-aosvvis(sv)&t-t'))
(

&Kg&t') -&Kg&t'))dfI

= J „[p..(f ) - pbb(f')][e"" "'"'"""'
)

X [8-iKz&t') e&Kz&t')]dfI

where &ab = &ab+ 4 in

and y,'„=y„+y, (1 —cosy) .

, I .2 .05 . 10 .l5 .20 Assume, as before, that

F&G. 10. (a) nb, the in&eneity parameter at (v —a)ab)

=0, as a function of (p for a Maxwellian velocity dis-
tribution. The solid lines are from the present work;
the dot-dashed lines are from the third-order iterative
solution, Eq. (76). The dashed lines are straight lines
drawn with the same initial slopes as np. (b) The quan-
tity O. pq as a function of q from the present work, at two

values of $p. The dashed lines are straight lines with
the same initial slopes as epQ.

p (t I
) p (t I

) h + Q [It e2I\ i Kg &t ' )+ It2I 8 2n iKz (t ' )]—
1

Then

X Q [(!„@)
e&2nal)&Kg&t')
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n+i n e

z. L'2tf1

bn
&

12n+1)tKntt) bn 12n+1)tKntt)

, ,
(~.)' (~„')'

where (&„)'= v —o),'2 —(2n+ I)Ev, +iy,'b

(5'„)'-=v —&u,'b +(2n+ Igv, +iy,'b

and &.=h. -&"i ~

Substituting f„into Eqs. (23) and (24) as before,
we find

Ito = no 212 ' Re(boBo )
yab'

and It„=—u ', (b„R„'—b„,B„'))p„, n &0
yah'

1 1
Where Rn=tyab

( -)I ( +)sg
ff n

1
v —td,'b —(2n + 1)Kv, +i y,',

1

v —o),'b + (2n + 1)Kv, —iy,',

Using b„-=n,B„',the recursion relations are

B'=1 —& ", [2Re(B'B')+(B'8'-B,'B,')p, ]
yah

yab
n t ( n+1 n+1Pn+1

4b
-B„'ft„'(p„+p„„)+B„',If'„,p„], n &0 .

Except for the p„'s, Bo is the same function of

Yb and '+ = '2 (y b/y b)

as +0 was of & b and y,b. However, the pres-
ence of the p„'s, in which y, and yb are the zero-
pressure values, changes the shape of the intensity
curve from the zero-pressure shape. The p„'s
become more important at higher intensities, how-
ever, so that for R ' greater than about 0.85 and
for low pressures, one can expect the shape of the
intensity curves to be approximately the same as
the zero-pressure shapes, with &- &', +„-&,'b,

and y„-y,'b. Since t„the mean time between
collisions, is proportional to the reciprocal of the
density of atoms, one expects y,'b and ~,'b to be
linear functions of the density, at least at mod-
erately low pressures.

Figure 10(b) shows that the quantity no)) is a
linear function of q for q smaller than about 0.1.
(For the iterative solution, &o is independent of
t), so that uot) is automatically proportional to 1). )
In the case of pressure broadening, &0- &0, so
that &Oq' should be a linear function of g'. Since
the absolute height at the center of a pressure-

broadened intensity curve is proportional to &o
= 12p y,',/y„=&o' ti'/ti, the height should a,lso be
proportional to g', for g' less than O. l.

Of course, these conclusions are valid only for
the case of pure I orentz broadening, or if the
velocity-changing collisions affect the intensity
curves in the same way as do the phase-changing
collisions. Nevertheless, in Sec. VII experimental
curves taken at different pressures are analyzed
under the assumption that only v,» y,» and the
magnitudes of the curves change with pressure,
not the shapes. The fact that this turns out to be
a good assumption indicates that either velocity-
changing collisions are not important at these
pressures or that they have the same effect on the
intensity as the phase-changing collisions.

VII. EXPERIMENTAL RESULTS

Figure 11 shows typical curves of intensity (I)
versus cavity tuning (x) obtained using a 31-cm-
long hemispherical He'-Ne laser, operating at a
wavelength of 1.15 p, m and a pressure of 0. 2 Torr
pure neon. The different curves correspond to
different levels of excitation, i. e. , to different
values of the relative inversion density%. Both I
and x are in arbitrary units. The cavity length was
was changed by means of a piezoelectric crystal
(PZT) on which the flat mirror was mounted. In

general, this method of changing the length intro-
duces several kinds of distortion into the intensity
curves. These are discussed in Appendix F. The
curves of Fig. 11 have not been corrected for I'ZT

FIG. 11. Experimental intensity-versus-tuning curves
taken at a pressure of 0.2 Torr pure neon. I is the in-
tensity and x the nominal cavity length, both in arbitrary
units. The different curves correspond to different
discharge currents, and thus to different values of the
inversion density 9E .
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distortion except that their centers have been
shifted slightly to coincide with one another. They
are typical of all the data used here in that there is
no detectable difference in the heights of the two
maxima, but the abscissa is distorted by the non-
linear dependence of the PZT length on applied
voltage.

The order separation is c/2L= 485 MHz. The
temperature was obtained by measuring the Dopp-
ler width of spontaneously emitted 6328-A light
with a Fabry-Perot interferometer; Ku/2m for the
1.15-p, m line was 580+30 MHz, corresponding to
a temperature of about 250 'C. (In this and in sub-
sequent cases, stated uncertainties represent an

Q/Ip

l. 2

'g = .05

.06'- 005

~ .068

.IO ~ 20
(2

FIG. 13. Points are experimental values of Io as a
function of $o, in arbitrary units. The solid line is no
versus $0 from the present work, and the dot-dashed2

curve is 0.'0 versus $0 from the third-order iterative
solution. The theoretical curves have been normalized
to have the same initial slope as the experimental points.

(b
.06

.2

Im /I,

I.2

—.IO

I,O

1.0
.IO (p

0

I

.20

FIG. 12. (a) Points are experimental values of IDIO
as a function of (0, for three different pressures of pure
neon: 0.1 Torr (circles), 0.2 Torr (triangles), and 0.3
Torr (squares). The solid lines were drawn through the
experimental points. The dashed lines are ngno as a
function of $0 from the present work, for /=0. 05 and

0.06. The dot-dashed line is e~/no from the third-order
iterative solution, for g = 0.05. The other numbers indi-
cate the experimental values of vf deduced by matching
and theoretical |'dashed) curves to the experimental ones.
(b) These curves represent the same quantities as those
of (a), for He-Ne mixtures. Here, the neon pressure is
fixed at 0.1 Torr, and the helium pressure varies from
0.1 to 1.2 Torr. The error bars indicate experimental
errors. The numbers on the experimental curves are
the experimental values of g'. The helium pressure in
Torr are at the ends of the experimental curves. The
theoretical values of g are at the ends of the theoretical
curves.

estimated 90% confidence level. ) The temperature
actually changes slightly with pressure and with
discharge current, but sufficient accuracy was ob-
tained by using an average temperature. For each
intensity curve, three quantities were measured:
I, the intensity at the maximum; Io, the intensity
at the center (both in arbitrary units); and 2x„the
width of the curve at the bottom. 2xo, Ku, and the
known order separation determine $o.

The agreement between the present theory and

experiment is shown in Fig. 12, where experi-
mental values of I /Io are plotted against $sa, for
several different pressures. (Each curve in Fig.
12 corresponds to a set of intensity curves such as
those shown in Fig. 11.) Theoretical plots of
n /o. , taken from Fig. 9, for several values of il,
are also shown. The shapes of the curves of Figs.
9 and 12 agree quite well, to within the errors;
this constitutes a good test of the theory. Also
shown in Fig. 12 is the third-order iterative re-
sult. It can be seen that, although a fit can be
made to experiment at any particular value of (~0

(or for all t'a from 0 to about 0.075), there is no

way of adjusting g to make the entire curve fit an
experimental one. Figure 12(a) is for pure neon
in the pressure range 0. 1-0.3 Torr (the only
pressure at which laser action could be obtained
in pure neon). In Fig. 12(b), the neon pressure
is held fixed at 0. 1 Torr, and the helium pressure
is changed from 0. 1 to 1.2 Torr. Also shown are
the values of g' deduced by comparison with curves
such as those in Fig. 9.

Figure 13 shows I, versus $, for the case of



THEORY OF GAS LASERS AND APPLICATION TO EXPERIMENT

0. 1-Torr pure neon. The solid line is the pre-
dicted behavior, taken from Fig. 10(a) for
g= 0.05. The theoretical and experimental re-
sults mere normalized to the same initial slopes,
so that the only reason for showing this curve is
to show that the theoretical departure from lin-
earity ls ill tile saIIle dil'BctloI1 as the BxpBI'IIIlelltal.
Also shown is the third-order result, which devi-
ates from linearity in the wrong direction above
$0=0. 1.

In Figs. 14(a) and 14(b), the values of II' from
Fig, 12 al e plotted against pressure' to within the
errors, g' goes up linearly with pressure, although
the errors are rather large, especially in the pure-
neon case mhere there are not many points. The
extrapolated zero-pressure value of g' in Fig.
14(a) is Ir, = 0. 04+0.01. Iro might be considered to
be II =—y, ~/Ku, but there is some question about
whethex or not q' is linear with pressure at very
low pressuxes. Also, it is not mell established by
the data that g' is really a linear function of pres-
sure at the higher pressures, and it is not clear
that it should be, since the theory is so approxi-
mate. In any case, if II+u -=(y„)„then

(y')' =(y"y')' =23+v mr .
2m 4m

The magnitude of the collisional line broadening
implied by Figs. 14(a) and 14(b) is equivalent to a
change in y,'J27I of 61+ 14 MHz per room-temper-
ature Torr of helium and of 107+35 MHz per
room-temperature Torr of neon.

Szoke and Javan' have also measured the effects
of collisions on the 1.15-p, laser intensity, but
it is not possible to compare our results directly
with theirs, because their theory is designed to
account for deviations from the third-order itera-
tive solution present in their tuning curves through

(c)

the use of two different y,'~' s, and a quantity 4"'.
That is, instead of Eq. (44) they use

@=K Q - Jexp I)' 1+- ~, z

where y' &y. Also, they were not able to measure
their temperature and therefore used the room-
temperature value of Ku/2lI, 450 MHz, which in-
troduces a large uncertainty into the conversion of
g' to y'„. Both the "hard" and "soft" line half-
midths used in their analysis extrapolate to about
11 MHz at zero pressure; this is different from
our (y„),by about a factor 2. 0+0.5. However,
there are many factors in both experiments which
could account for such a disagreement, as dis-
cussed above.

Figure 14(c) shows Io, the height at the center
of tile iI1'tellslty curve, fol' speclf led values of to)
plotted against the g" s obtained from Fig. 12.
For pure Lorentz broadening, Io should be pro-
portional to g', as discussed in Sec. VI. There
might be a small difference between the pure neon
data and the neon-helium data, but the errors are
too large to be able to tell. In any case, Io does
seem to be more or less proportional to g'. If it
mere true that no difference exists between the
pure neon and the neon-helium cases in Fig. 14(c),
this would be good evidence for the validity of the
intensity curve shapes given in Sec. VI; it would
show the shape to be independent of the specific
broadening mechanism, which must be quite dif-
ferent in the two cases, and only dependent on
some net g'.

Thus, there seems to be good agreement be-
tween theory and experiment, at least up to
@=0.2. It would be useful, howevex, to test the
present theory mith a shorter laser, in which even
higher single-mode intensities could be obtained.
On the other hand, the pressure would probably
have to be higher to obtain enough gain in a short-
er laser, so that unknown pressure effects might
become more important.

,08— "',0
6—

I0 VIII. SUMMARY OF RESULTS
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FIG. 14. (a) Experimental values of q' as a function
of neon pressure for pure neon. (b) The experimental
values of q' as a function of helium pressure for a fixed
neon pressure of 0.1 Torr. (c) Io in arbitrary units
versus q', for two values of $0. The crosses are for the
pure neon case, the circles for the He-Ne mixtures.

%'e have shown that the use of rate terms to
account for the production of atoms in the two
levels gives results equivalent to those obtained
by Lamb' and simplifies the calculation enough to
allow the iterative solution to be extended to higher
ordex'. With the higher-order terms, the itera-
tive solution could be seen to be asymptotic and it
was shown to be useful only for e of the order of
0- 0. 05. Then a noniterative solution was ob-
tained, in the form of a Fourier series, with coef-
ficients determined by recursion relations. A
method of solving the recursion equations was
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developed, and calculated laser intensities for
both flat and Maxwellian velocity distributions
were presented. A method of calculating the ef-
fects of phase-changing collisions was developed.
Experimental data for a 1.15-p, m laser were
compared to the theory and showed good agree-
ment, to within the errors,
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APPENDIX A: ITERATIUE SOLUTION

For n = 0 the solution to the recursion relations

Bp '=1, B„'=0, n+0.

Through third order,

exp — " Re[1 —c.Fo] =K
Ku

or Q = 1 —N-iexp ab 1+ ab2
2 ~

This is equivalent to the first-order solution in
Ref. 1. (There is another factor of E in p, o so
that this solution is first order in the electric
field. ) The third-order solution is

Bo'« ——1 —n [2 Re(Bo «Ro)+ (Bo Ro B& R&)P&]

=1 —o.'[2ReRo+Rop«] =1 Q [Ro+Ro+Rop«] s

B«' ——& [B2 R2 po Bg R$ (p«+ p2)+ Bo Rop«]

+ROP1 s

B2 —B3 = ~ ~ ~ = 0 ~
(1) (1)

The fifth-order solution for Bp is

Bo ' ——1 —a (Ro+ Ro + Rop, ) + o' [Ro(Ro+ Ro + Rop, )

+Ro(Ro + Ro+ RoP«)

+ RoP«(Ro+ Ro + RoP«+ R«P«)] .

For a Maxwellian velocity distribution,

J=~ ReBR e
V 77 8

In the Doppler limit (y„/Ku- 0), and for small o.',

2
-(vg/u) - &( v- coab) / Ku]

This is the same as the results of Refs. 1 and 2
except for the fact that they have

eXp ab p( 1

in the numerator, which is not important because
(«« —o«,„)/Ku is supposed to be small.
If y, = yb and v= nab, then Ep= 2 and G1= 3 so that

J/Zr= 1 —2o. + 2o.'(3+ —', ) —.. . .

The series for J/Jr seems to be asymptotic. That

I.O

.8

.6

because of the factor Ro and
2- t:(v- cozy) / Ku]

Re(BoRo) dv,
v'mu

QQ

2
e - [(v- coab) /Ku]

v"(w)u
Re BoRo dv,

w 00

Using contour integration, one finds

V —(a) abZ=2fm y'" exp-
Ku Ku .2

I

.3

x Re[1 —nFo+ 2 n'Fo (3+ 2G, ) ~ ~ ~ ],
Zyabwhere I'o ——1+

+ab+& yab

~/~z as a function of 0. at ( =p {p—~„=0).
{a) is the fifth-order iterative solution; {b) is the present
work; and {c) is the third-order iterative result.
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is, it is divergent but, if a is very small, the
series can still represent Z/Jz, fairly well. Z/Jr
obtained here is compared to the solution obtained
in the present work in Fig. 15. Deviations of the
order of 10% in J'/Zr occur above o. —0. 1 in both
the third- and fifth-order solutions. Figure 15
also shows that n is in error by more than 20%
for n greater than about 0. 05, because of the way
(). depends on Z/J'z.

In the series for Z/Zr, the third term (the o('

term) equals the second one (the (t term) at n
= 0. 3, and subsequent terms are even larger, so
that no improvement results from including more
terms. The convergence is somewhat better for
large (v —(d„)/Ku, where Eo and G, are smaller.

APPENDIX B: CONVERGENCE OF SERIES FOR p g

APPENDIX C: SOLUTION TO RECURSION EQUATIONS
FOR CASE v =0

If vg=0,
2y'

~0 ~1 ~2 '''
2 2(v-~.t) +r.,

and p&=p2= = 1

then B()= 1 —()(R(SBo —B,)
B)——(tR(B2 —2B) + B())

or o(RB) —(1+So(R)Bo+ 1 = 0

o(RB2 —(1+2o'R)B) + o(RBo 0——

(Cl)

(C2)

and is thus the divergent solution. Case (a) is the
desired convergent evolution.

- ((Vt 4()4p, t = —i ~-4@ no e

00

)0 n
g+

n

().RB„„—(1+2(tR)B„+o(RB„)= 0
4

The solution to these equations is

(CS)

p, b converges if

(B /g )
(2n+1) irn

n n
(2n - ))(Kn

with a similar requirement for B„*/&„+,or if
t

B„[p-(o,t —(2n —1)Kv, + iy„]B„,[u —(o„-(2n+ l)Kv, + tr, t]

B„=lim " &1 .
Bn-~

For large n, the recursion relations give

&B )nR4n+)Pn+) Bnl1+ +Rn(Pn+Pn+))]

+ &Bn-i&n-iPn= o ~

Dividing by B„
Bn+~

n +lan+1
n n-&

B„[1+n R„(p„+p„,))]+((R„)p„=0 .
n«&

Except for the case p, = 0, which is considered
elsewhere, Bn-0 and p„-0as n- ~. Thus,

n„~Bn g Bn

8„=ah."+bA."

where ~, and &2 are solutions to

uR)(2 —(1+2(tR)X+ o.'R =0

and a and b are constants to be determined later.
Thus,

1
&2=1+2~8

Since X, is greater than 1, we must have a = 0 for
a convergent solution. Then

BJB„(=)(t& 1

as desired. The other constant b, is fixed by
Eq. (Cl):

()(Rb)(, —(I+ 3(rR)b+ I= 0,
2b= =81+4o(R+ (1+4oR)'"

The following will show that this solution is the
same as the exact one:

and either(a) lim " = 08„
~n-i

f — ((( r 8 ( ' 1&i&( - ( &I((

)~b
——MP ~- 8

0 n n

For v, =0, we have

or(b) lim n ""R„„p„„—1 =0.
n o Bn

)
5 B„sin[(2n+1)K~]

2np

&++&&ab p

Case (b) is B„1lim
n -- Bn -i ~~nPn

2np 2
( —(d„+(y„(+4 an+ ((+4((n)'(')



H E I.E N K. HOLT

x F~ Xa sin[(21) + I)Kz] B0=1- (x 2Re(B0R0)+B0Rop( —
(()) Bo

n RORg pg

Qy

5' )(a" sin[(2)1+1)Ka]=—.5 )(a[eN""' '
0 Q

q(1) q(0) (X ROR1P12 2

0 — 0 (0)ql

sinKz {1+Xa)

(1 —Xa) +4' sinai@

Then, we have

@no

v —&,q+ jy,g 1+4&8+ 1+4&3

(
sinxz(1+ xa)

o —I,)'+4zgsin'zz)

2@0slHKS
()) —(0„+sy„)(l+4(xR sin'Kz)

2)so sinKS(v —(d~a —fl'~)
(v -(0„)'+y,a, (I+ 8(x sin'Ks) '

Tllis 8olUtlon 18 also obtaxnable from Exis (22) (25)
(see also Ref. 1). If (),=0, then a=a, a constant,
and one can set p„=p»=f„=0 in E(18. (23}—{25).
The above result is then easily obtained.

e ~ e 0

&a) &0) &'~o~gP~wheX'e qo = 'qo — (0) a a, ((-)—(x R)RaPslqa

Hel'e we have

qa" =1+(xRaV a+Ps)

It can be seen that the qo"'8 and hence the differ-
ent cases, differ most for large ~ and for large
R0R(p) ())=(0,0 and(), =0). Also, if p, is small
(x), »rge), then we have

q(()" =-1+(xR, and Bo™[1+(x(R0+Rg)] '.

suppose that there are three kinds of collisions
1, 2, and 3, with cross sections 0&, o'3, and o3,
respectively. The total collision cross section o',
is

In case A B,=B = ~ ~ ~ =0. From E(I. (54), Bo
ls the solution to

Bo 1 —(x[2 H——e(B()Ro) +B0R0pl],
which is

The mean time between collisions of type 1,
proportional to 1/(x, , etc. The probability of n,
collisions of type 1, )aa of type 2, etc. , in time T
ls

Hex'e, we llave qo =1+QR0(1+pl ) ~

Then we obtaM

R [(qe' 0—(x Rg )Ro]
G (()g) = He(BO Ro) ~(0) m(0)e aR

1 T j P/g 1 T ~P/y 1 T P/)I
mqt 7') n3t v3 nsf

(E2)

In case B, I33=B3= ~ ~ ~ = 0, and Bj is the solution
to [E(l. (55)]

Bl = (x[—B)R){(01+Ps)+B0RoP)]
E(I()ation (E2) becomes

eBopg~l
q {0) +0

1

where ql ' =—1+ (X Ra{pl+pa} .
Then Bo is the solution to

Suppose that a collision of type 1 causes a phase
change of y„etc. Then, if there are n~ collisions
of type 1, etc. ,



e -jhow(t) - p (t') 3 -kfnlyl+ "202+ "3~33

and the average value of e ' ~"' ~" "over time
T=t- t ls

n 0 n 0 n 0 +1'+2'~3'

«7/g «l[ny @y+ n2fp2+ ns{p33e ce
e-T/vc e l(e~ /ec) (T/vc) e "13eE(c2/m) (&/&c)8 +23

xe [(~/ m)(T/ vc) 8 +33

y/ycfg {c /cc) cos y (g /cc) cos y2 '+ $(cg/cc)sin@y '''
=e

-g/yc f(1, - Cos y)~„+i (sin e) „3= e

3 g
where (1-cosy)„=E —(1-cos y~),

i (rc

3

(sin y)„=Z —' sin y~,
1 ~c

or, in the case of N collisions,
S

(1 —cos y)„=Q —' (1 —cos y, ),
$= 1~c

(sin y),„=Q —'sin y& ~

i=t ~c
Thus, (u,', =(o„+y,(sin y)„
R11d pgg=p~g+p~(1 —cos y)~„.

APPENDIX F: PZT DISTORTION OF INTENSITY CURVES

One kind of distortion is due to tilt of the PZT
as it changes length; depending on the mirror
alignment and on the mode geometry, the tilt can
introduce loss changes as the intensity curve is
swept, so that the two maxima appear to have dif-

ferent heights. Such an asymmetry can sometimes
be distinguished from any true asymmetry in the
curve by its tendency to change with time, with
mirror alignment' and from one ol'del to another
(although the latter effect could be due to some-
thing else, such as gain at 3.39 pm). Since the
laser intensity is a complicated function of the
cavity loss, there does not seem to be a reliable
way of correcting for tilt. Fortunately there was
no detectable difference in the two maxima, of the
intensity curves obtained here over the pressure
range used, although such differences have been
seen at other times with different mirrox align-
ment.

Another kind of distortion is caused by the fact
that the length of the PZT is a nonlinear function
of the applied voltage; this distorts the horizontal
axis of the intensity curves, and can be detected
by measuring the change in order separation with
PZT voltage. This effect was about 10% per or-
der in the present work and was corrected for
approximately, although the results are not sensi-
tive to this kind of distortion. Another distortion
is due to hysteresis in the PZT; if one sweeps
through the same curve twice in succession, the
centers of the two curves will be displaced from
each other. Many of these problems can be avoid-
ed, either by using better crystals or by using a
pressure scan (which, however, may also intro-
duce loss changes). Since the distortions did not
affect the present work substantify, no attempt
was made to improve the sweep. It is evident,
however, that there is some difficulty in distin-
guishing true asymmetries in the intensity curves
from instrumental ones. For these reasons, any
small asymmetries in the heights of the two max-
ima were assumed to be undetectable, and all
asymmetries in the horizontal axis were attributed
to instrumental effects.

'W. E. Lamb, Jr. , Phys. Hev. 134, A1429 (1964).
%'. R. Bennett, Jr. , Phys. Rev. 126, 580 (1962); jn

Proceeding of the Third International Conference on
Quantum Electronics, Paris, 1963 edited by P, Gri-
vet and ¹ Bloembergen, (Columbia U. P. , New York,
1964).

3K. Uehara and K. Shimoda, Japan. J. Appl. Phys. 4,
921 (1965).

4Howard Greenstein, Phys. Hev. 175, 438 (1968).

'N, L. Balazs and I. Tobias, Phil. Trans. Roy. Soc.
London 264, 1 (1969).

S. Stenholm and W. E. Lamb, Jr. , Phys. Rev. 181,
618 (1969).

VH. L. Fork and M. A. Pollack, Phys. Hev. 139,
A1408 (1965).

8A. Sz6ke and A. Javan, Phys, Hev. 145, 137 (1966).
B. L. Gyorffy, M. Borenstein, and W. E. Lamb, Jr. ,

Phys. Hev. 169, 340 (1968).


