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An approximation scheme for a Bose liquid is presented, based on small fluctuations in

density and currents. The method of obtaining the elementary excitations and theix inter-
actions in any order of the approximation is outlined. Also it is shown that the first-order
calculations are in agreement with the calculations of Feynman, Bogoliubov, and Pitayevski.
Second-order calculations agree with the improved results of Feynman and Cohen.

I. INTRODUCTION

In this paper, a systematic approximation
scheme for the interacting Bose liquid is derived.
The method used is based on the assumption of
small fluctuations of the density operator p(r) and

the current operator J'(r) from their averages. It
differs, however, in several important aspects
from Pitayevski's coarse-grained theory, which
is based on a similar idea. In Sec. II the Hamil-
tonlan is expressed in terms of the current and
density operators, and the commutation relations
of the Fourier transforms of these operators are
derived. Section III uses the assumption of small
fluctuations of p and 0 from their average values
ln order to approximate the commutation x'elRtlons

as well as the Hamiltonian. This first-order cal-
culation yields the results of three apparently dif-
ferent theories: the Bogoliubov microscopic
theory, the Feynman variational theory, and the
Pitayevski theory. In Sec. IV the commutation
relations and Hamiltonian are treated in a higher-
order approximation. The procedure for obtaining

the elementary excitations is discussed; it is
easily shown that the wave functions obtained, in
this order, are the Feynxnan-Cohen wave func-
tions. " Higher-order expansions are discussed
in Sec. V. The method for systematically de-
riving, the quasiparticle interactions without using
phenomenological models is outlined, though actual
calculations of this kind are postponed for later
publicatio. Some general results holding fox any
order of the expansion are also explicitly derived
in Sec. V..

II. HAMILTONIAN AND COMMUTATION RELATIONS

The Hamiltonian for a system of N identical
bosons contained in a box of volume 0 and inter-
acting via a two-body potential v(r) is given by
Eq. (I) (K=m= I):

a=-', J vy'vied'r+ —,
' j y'(r)g'(r') v(r r')-

x y(r) y(r') d'rd'r',

where g (r) and g(r) are creation and destruction
operators, respectively, of a particle at point z'



and obey the usual Bose commutation relations:

[q(r), q(~')] = [g'(~), 0'(v')] = o,
[I)(~), 0'(~')] = &(~- I") (2)

For our purposes it is more convenient to write
H in a less conventional form, in terms of J(I )
and p(x), the current and density operators, re-
spectively:

p$ 0
g lpga

pp Yp & (12)

mhere the operators J» q~ obey the commutation
relations

[~,».l=o, [n'. , n,']=o, [n.', ~,]=s., , (»)
We also use the definitions

Jf= —,
' r'(~) r(v)d'v

p(~)

+~ pt'8 f'-f' p Y dKdf' -&VOX, 3

r'(~) = ~(~)+ I' '&p(~) -.

It will prove convenient to employ the Fouriex
variables

(f'e d f'

pq= gyes p f'8 Q f'. (s)

(s')

Expressing I'~ and p, in terms of the creation and
destruction operators of a particle in the momen-
tum states, we obtain

r', = & "'Z, fIata„...
-l/3 ~

On substituting (11) and (12) into (10), we obtain

, = -—(n .'+n.)

Now it is easily seen that the commutation rela-
tions (12) hold if the operators n„nt obey the
usual boson commutation relations:

[n. , n, ]= [n'. , n,'1=o,

I:n„n,'-]= s

(ls)

(1V)

Now we focus our attention on the Hamiltonian.
If again we apply the assumption of small density
fluctuations, i. e. ,

p(~) = p+ sp &1,[apl
p

where p is the average density, we can expand the
Hamiltonian in the Taylor series:

Using expressions (5') and (6'), we have the com-
mutation relations q= -'. E (-1) fi'(v) "I'(~)q'~

n=0 p

[p„pp]=o

[r,",p ]=-& '"p p. .
(&)

(s)

(9)

+~ pt'ef' —f' pK dxdy . 19

Retaining only the first term in the kinetic-energy
expanslony we obtain» RpRrt from the constRnt
terms,

where the indices i and j denote Cartesian compo-
nents of a vector. A further useful relation is &= q Zqrq' rq+ ~zZqP &(C)PqP qi- (2o)

I~= I„q—gp„q

III. FIRST- ORDER APPROXIMATION

In this section we propose approximations to the
commutation relations [Elis. (V) —(9)], which are
based on the assumption of small fluctuations of
the quantities rlt(I ) and p{x) from their averages.
We first note that for a stationary fluid the aver-
age of 1 t(r) is zero. The simplest approximations
to the commutation relations are given by

[p„pp]= o,

[r", p]=-p;8„, ,

[rit rit] = o

(s')

(9')

The operators 1"',~ and p~, for q, p 0, can be writ-
ten in this approximation as

wllel'6 5(q) ls tile Fourler tl'allsfol'111 of the 'two-

body potential e(r). On using (11), (12), and {15),
we flIld illat (19) transforms 111to

(21)

H, =kq'[n'p, +nt,'n, ]

+ p (e)I(n', n+,)(n', n,+) .
This Hamiltonian is exactly the one that appears
in the Bogoliubov theory, with the condensate
density No replaced by the total density. II, is
diagonalized easily by the well-known Bogoliubov
transformation

gq = QqRq+ 5qCL

The u's and p's are chosen so as to ensure that the
operators e and a obey the Bose commutation re-
lations and that the Hamiltonian is diagonalized in
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(o,"'=
q [p v(q)]"" . (27)

The wave functions of the first excited states are
given by

the n scheme. Under these conditions we obtain

~', = 20+ [a q'+ p v(q)]/[4 q'+ q'p v(q)l" f,
(24)

v', =4 E-I+ [a q'+ p v(q)]/(4 q'+ q'p v(q)l" 0f.

Apart from the constant terms, the Hamiltonian
can be written as

H=Z, [-'q'+q'pv(q)]"'n', n, = Z(o-,n', n, . (25)

If we compute the Fourier transform of the pair
correlation function S„we obtain

Sq = q /2(dq

This is exactly the Feynman result for the excita-
tion spectrum. ' The same result is also obtained
by Pitayevski. ' His treatment is based, however,
on coarse-grained operators, "i. e. , he uses the
hydrodynamical Hamiltonian describing a contin-
uous fluid. His result for the energy spectrum as
a function of q is also different:

compared to 1 and neglected them on the right-
hand side of Eqs. (8') and (9'). An obvious result
of (11) and (12) is that g, /N'~ and rP/N' a.re
also very small compared to 1. Hence, Eqs. (30)
and (31) constitute a solution of Eqs. (7")-(9")up
to first order in these operators. The uniqueness
of the solution in this order will be discussed else-
where. In order to obtain the improved elemen-
tary excitation spectrum, we have to use a higher-
order expansion of the Hamiltonian, insert ex-
pressions (30) and (31), perform a Bogoliubov
transformation, arrange the operators in normal
order, and require that the bilinear part of the
Hamiltonian be diagonal. This complicated calcu-
lation will be treated in a subsequent publication.
We may, however, obtain some general results
without going into the detailed calculations. The
wave function describing an excitation of momen-
tum q will be given by

g, =n, (0), (32)

where a, is the operator creating the excitation.
Using the same reasoning as in Eqs. (28) and (29),
we obtain, even now,

P, = n,
I

0) = ( n, + n, )
I

0) . (28) (33)

IV. SECOND-ORDER APPROXIMATION

In order to obtain a better physical picture we

must treat the commutation relations (5')-(7'), as
well as the Hamiltonian (18), more accurately.
The commutation relations can be improved by in-
serting on the right-hand side the approximate ex-
pression for the operators p„& and F,',&.

(7")

[I'*,', pp] =

[I *,', I,']=
1/2-P;5, p

—N P( yq, p,
N "'Iq;(q+P); P;(q+.P)~l n'„-&

N "'[q;q; -PJ;]n,'.,

(8 II)

(9 It)

Instead of the simple results (11) and (12), we

now obtain
q; ~ q (q L) L q-

~q ~f~q ~1 /2 ~ f L )2 + 2 ~L Y

+ 1/2 ~ L)0&YQ-I, ~

r, ~o, q

p~=~n+, ), ~ (& ~/&')r. ~~ ..
n ~&,0

As a result of the assumption of small fluctuations
in the quantities p(r) and I' t(r), we considered the

operators p, /N' a and I",~/N'~ to be very small

Now it is easily seen that, apart from a normaliza-
tion factor, we have

(29)

Iterating Eq. (30) and identifying the vacuum with

the ground state, we have

q =(p —qp'" Z (q pip')p, p, ,)qp. )qq)
klq, o

This expression is the one derived by Feynman
and Cohen for the first excited wave function of
the liquid. y'

V. HIGHER ORDERS

The method of obtaining systematically higher-
order corrections to the wave functions and ex-
citation spectrum must already be clear to the
reader. The expression obtained for the zth ap-
proximation for the operators I",'~ apd p~ is to be
inserted in the right-hand side of Eqs. (7)-(9).
Solving for the operators on the left-hand side we

obtain the (n+ 1)th approximation for these oper-
ators. Taking more terms in the density expan-
sion of the Hamiltonian (19) and obtaining the ele-
mentary excitations, the interactions of these ex-
citations may be derived without resorting to
phenomenological models. Since the elementary
excitations are to be found by the same procedure
as that described in Sec. IV, the wave functions
describing them will be given in any order of ap-
proximation by the same expression:

)t), = y, IO) ~

y, is related to the creation and destruction oper-



y, = - (u, + v, ) n', + n, ),
y,

~
O& = - (u, + v, ) ng O) .

Hence, (uq+ vq) =(O~ 4y-q~O) .
(37)

(ss)

For brevity we denote the ground-state expecta-
tion value of 1,y, , by I',. The equations deter-
mining the u's and v's will be

(»)
(4o)

The solutions are

u', = (Z, + i)'/4y, ,

v', = (Z, —i)'/4Z, .
(4l)

(42)

Hence, the I's and v's can be determined from
the ground-state properties of the system.

ators of the excitations, e~ and e„respectively,
by the folloming equations:

VI. SUMMARY

A systematic approximation scheme based on
the assumption of small density and current fluctu-
ations was presented. The operators p, and I'~ ap-
pearing in the Hamiltonian were expanded, using
the above assumption, in terms of simple oper-
ators. The possibility of obtaining the excitation
mave functions and spectrum to any desired order,
elthe1 by using known ground-state expectatlon
values or by using the procedure described in Sec.
Itt", is outlined. Hence, this method allows one
to obtain the interquasiparticle interactions. To
demonstrate the applicability of the method, it
mas shown that the first-order calculation yields
the mell-known Feynman results as well as the re-
sults of Bogoliubov and Pitayevski. It mas further
shown that second-order calculations yield the im-
proved result of Feynman and Cohen.
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The semie1assical theory of gas lasers has been reformulated by adding rate terms to the
density-matrix component differential equations. The solution to these equations, in the form
of a Fourier series, is applicable at high laser intensities. A calculation of the effect of
phase-changing collisions is also included so that the results can be compared to experimental
data taken with a He-Ne laser operating at a wavelength of 1.15 pm.

I, INTRODUCTION

Lamb's semiclassical theory of the gas laser'
accurately predicts many laser properties, such
as the power output and the frequency as a function

of cavity length. However, as Lamb points out,
the applicability of his third-order results is lim-
ited to lom laser powers. Bennett's hole-burning
theory is more heuristic and gives results equiv-
alent to those of Ref. 1 at low intensities. At-


