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The fourth-order radiative correction to the slope at q =0 of the Dirac form factor of the
free-electron vertex is calculated using computer techniques. The result m M l (0)/8 q
= (o.'/&) (0.48 +0.07) disagrees with previous calculations and implies a new theoretical value
for the order n (&&) mc contribution to the Lamb shift. The new values for the 2$()2-2Pl(g
separation in H and D are increased by 0.35 +0.07 MHz and are in good agreement with the
results of recent experiments.

I. INTRODUCTION

The calculations and measurements of the Lamb
shift have had a profound influence on the develop-
ment of quantum electrodynamics (QED). The first
measurements of the 2S,~~-level displacement from
the 2P«2 level in hydrogen by Lamb and Retherford'
stimulated the concept of mass renormalization and
led Bethe to carry out the first finite calculation
of the self-interaction of the electron with the quan-
tized electromagnetic field. The relativistic theory
that emerged has met all of its experimental chal-
lenges with great quantitative success; the agree-
ment is better than 10 ppm for the hyperfine split-
ting of hydrogen and muonium and better than 0. 1

ppm in the total magnetic moments of the electron
and muon.

Ironically, the only tests of QED which show a
serious disagreement (~200+70 ppm) between the-
ory and experiment are the 2S,~z-2P, ~2 separations
in hydrogen and deuterium. The disagreement has
become more acute with recent measurements by
Robiscoe and Cosens and others of the Lamb in-
terval in H, D, He', Li", and three measure-
ments of the 2P3~~-2$»~ interval in H. The latest
experimental results are shown in Table I. The
theoretical predictions have become more precise
over the years with the development of new calcula-
tional techniques by Layzer, ' Karplus, Klein, and
Schwinger, and Erickson and Yennie for the eval-
uation of the rodre-n (second order in perturbation
theory) self-energy expression for the Coulomb-
bound electron. In addition, the nuclear recoil cor-
rections (m/M contributions beyond reduced-mass
effects) originally evaluated by Salpeter' from the
Bethe-Salpeter equation have now been checked by
Grotch and Yennie~' using an effective potential
technique. The various contributions to the the-
oretical prediction of the 2S«2-2P»~ separation in
H are shown in column 1 of Table II. The total re-
sult 1057. 56 + 0. 09 MHz ("limit of error") is in
clear disagreement with the experimental numbers
in Table I. The corresponding result for D, 1058. 82
+0. 15 MHz is in similar diagreement. The only

experimentally relevant contribution in the table,
not checked by independent methods, is the fourth-
order electron self- energy correction proportional
to the slope of the Dirac form factor at q = 0, la-
beled I"&(0). This contribution was first estimated
by Weneser, Bersohn, and Kroll'2 and calculated
completely analytically by Soto. '~

In this paper we present the details of a new cal-
culation" of this fourth-order I na(Zu)4m j radiative
contribution to the Lamb shift. Our result differs
from the previous calculation of Soto' and, when
added to the other contributions of Table II, leads
to new theoretical values for the Lamb shift in H
and D of 1057.91+0.16 and 1059.17+0.22 MHz,
respectively, an increase of 0. 35+0.07 MHz over
the previous compilation of Taylor et al. . A tab-
ulation of the various contributions to the theoretical
result for H, including the revised fourth-order con-
tribution of E', (0), is given in Table II. The com-
parison of the revised theory with experiment is giv-
en in the last column of Table I. The majority of
the experimental results are within one standard
deviation of theory, leaving only one high-precision
measurement' which uses the nonatomic beam "bot-
tle" method, in serious disagreement. The one-
standard-deviation error limits used in the com-
parison of theory and experiment were computed
by combining the standard-deviation experimental
error assigned by Taylor et al. with one-third of
the limit of error (LE) of the theoretical result.

II. DESCRIPTION OF CALCULATION

In principle, one must compute radiative correc-
tions to atomic energy levels using bound-state per-
turbation theory. Instead, for the terms of interest
here, the n (Zo. ) m contribution, we can use the so-
called scattering approximation' ' which is calcula-
tionally simpler. In this approach, one calculates the
radiative corrections to the scattering of a free elec-
tron and then infers from this a modified interaction
potential from which the level shifts can be calcu-)
lated.

The matrix element of the electromagnetic current
between two free-electron states is given by'
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—ieu Q+-,'q) (y„E,(q')+(1/4m)

x[q', y„]P (q )}''~(p —-q). (2. 1) (2. 2)

The modification of the Coulomb interaction due to
Il, (q2) implies an energy shift, ' plus contributions of higher order in the binding

parameter Zo. . In second order,

TABLE I. Lamb shift in hydrogenic atoms (in MHz).

Bef.
(Old) theory"

(+I,E)

(Old)
'expt-theory

(+10)

Revised
Revised theoryI' ', expt-theory

(+ LE) {+1~)

H(m=2) d

1057.77 +0.06
1057.90 +0.06

(1057.65 +0.05)
(1057.78 + 0.07)
O.o5v. 86+o.o6)

1059.00 +O. 06
1059.28 + Q. 06

{a) Lamb shift in H and D

1057.56 + O. 09

1058.82+ 0.15

0.21+0.07
0.34 +0.07
0.09 +0.06
0.22+0.08
0.30+0.07

0.18+0.08
0.46+0.08

1057.91a 0.16

1059.17+0.22

—0.14+0.08
—0.01+0.08
-0.26+0.07
—0.13+0.09
—0.05+ 0.08

—0.17+0.09
+0.11+ 0.09

He'(n = 3)

He' (n =4)

14040.2+ l.8
14045.4 +l. 2

4182.0+1.0
(4184.0 a 0.6)

1776.0+7.5
1768.0+ 5.0

(1769.4 +1.2)

63031.0+327. 0

(b) LaInb shift in other atoms

14038.9+4.1
1.3+2.2
6.5+1.8

4182.7 + 1.2
—0.3+1.1

1.3+0.7
1768.3+0.5

—2.3+7.5
—0.3+5.0
+ 1.1+1.3

6273.0 +45.0
288.0 + 333.0

14044, 5+ 5.2

4184.4 + 1.5

1769.0 + 0.6

62771.0 ~ 50.0

—4.3 +2.5
1.0+ 2.1

2.0+1.1
— 0.4+0.8

3.0+7.5
1.0+5.0
0.4+ l.3

260.0+ 333.0

The values for g ~& listed in parenthesis are computed from experimental measurements of the large interval AE-g
= 4E (2'«2- 28~I&) and the theoretical fine structure (See Table III).

B. N. Taylor e&,a&. ) Re
'Corresponds to corrected result for the fourth-order contributions discussed in this paper. We use conventions of

B. N. Taylor et aE. , Bef. 4, and thelimitof error (LE) is three standard deviations.
The experimental results for H and D are from Befs. 1-3.
Reference 1(b).
Bobiscoe (unpublished). This includes a correction for the non-Maxwellian velocity distribution of the atoms in the

beam [Bef. 4(a); see note added in proof of Ref. 4{b)j.
~Reference 6(a). (&E-g)~q =9911.38+0.Q3.
"Reference 6 (b) . {&E-g) ~& ——9911.25 + Q. 06.
«Reference 6(c). {&E-g) f, = 9911.17+O. 04
~Reference 1(b).
B. L. Cosens (unpublished). This includes acorrectionfor thenon-Maxwellian velocity distribution of the atoms in the

beam IBef. 4(a); see note added in proof of Ref. 4(b). ].
E. Lipworth and R. Novick, Phys. Bev. 108, 1434 {1957).
M. A. Narasimham, Ph. D. thesis, University of Colorado, 1968 (unpublished).
D. Mader and M. Leventhal, International Conference on Atomic Physics, New York University, 1968 (unpublished).

'B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys 41, 375 (1969).
~Ref. O' AE-g = 47843. 8 +0.5
~L. L. Hatfield and R. N. Hughes, Phys. Bev. 156, 102 (1967).
~R. B. Jacobs, K. B. Lea, and%'. E. Lamb, Jr. , Bull Am. Phys. Soc. 14, 525 (1969).
8Bef. o; ZE-g=20179. 7+1.2.
~C. Y. ran, M. Garcia-Munoz and I. A. Sellin, Phys. Bev. 161, 6 (196V}.
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TABLE II. Tabulation of the theoretical contributions to the Lamb interval g=&E(2S&/2 —2P&/2) in H.
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Description

2nd-order self-energy
2nd-order vacuum polarization
2nd-order remainder

4th-order self-energy'

4th-order vacuum polarization
Reduced-mass corrections
Recoil
Proton size

a ~=137.03608

Order

~(Z~ ) 4m (lnZ0. , 1)
0. (Zn)'m
n(ZO, ) 'm
e(ZO. ) m(ln Zn, lnZe, 1)

0. (Zn) m ()
4 ~/(0)

2o
n2(Zm) 'm
Q (ZQ) m
n (Zn) (m/M) m {1nZo, 1}
(Z&) (m/M) m {lnZ+, 1}
(Zn) 4(mZ„)' m

g = AE{2Sg/2 —2Pf/2)
AE(2P3/2 —2Sg / g)

E(2P3/2 —2P(/2)

Old
tabulation

1079.32+ 0.02
27. 13
7.14
0.38 +0.04
0.10+
0.10

+0.02
0.24
1.64
0.36+0.01
0.13

1 057. 56 + 0.08
9 911.47'+ 0.15

10 969.03 + 0.12

New
tabulation.

1079.32+0.02
27. 13
7.14
0.38+0.04
0.45+ 0.07
0.10

+0.02
0.24
1.64
0.36 +0.01
0.13

1057.91+0.16 {L.E.)
9 911.12 a 0.22 (L.E.)

10 969.03 +0.12 (L.E.)

References to the various entries may be found in G. W. Erickson and Q R. Yennie (Ref. 9) and B. N. Taylor et
al. (Ref. 4). The dependence on nuclear charge is retained to distinguish binding and ratiative corrections. Column
1 gives the former theoretical result which includes the order-n2(Zn) 4m contribution to the energy shift from the
slope of the Dirac form factor in fourth order as given by M. Soto (Ref. 12). The revised theory, corresponding to the
corrected value for this contribution as given by Eqs. {2.5) and (2. 2), is listed in column 2. Note that fourth-order
contributions to the Lamb interval also arise from the fourth-order anomalous moment and vacuum-polarization correc-
tions.

g y(4) ~2
m ', =—

~ [0.1076" ],
~

q2 p
'll'

(2. 4)

which yields the contribution 0. 102 MHz to the 2Sy/2
—2P, /2 separation in H and D. Other fourth-order

, () Ff" (q') n &m 3
m '

z
=—ln

~

——— (&«m) (2. 3)3
&

8

is infrared divergent for a free electron. This di-
vergence reflects the fact that the scattering approx-
imation is i.nvalid for. the order-n contribution. In
the correct bound-state treatment of the low-fre-
quency region, the photon mass X is replaced by an
appropriate energy difference, the Bethe energy
1E„—E I„, and Eg. (2. 2) with (2. 3) gives the domi-
nant contribution to the Lamb shift. Photons of
wavelengths much larger than atomic dimensions do
not contribute to the energy shift, since they contri-
bute equally to the self-energy of free and bound
electrons.

The order-n' contribution to the slope of the Dirac
form factor was first shown to be convergent in the
infrared by Weneser, Bersohn, and Kroll (WKB). '

This result was verified by Mills and Kroll' start-
ing from the fourth-order self-energy expression
for the energy shift of the bound electron. These
authors have also given an explicit proof that the
scattering approximation is correct in fourth order.
Soto' was able to perform the required integrals
analytically (including those only bounded by WBK)
and found some small errors in WBK's work. His
result was

contributions to the Lamb shift from F2 (0) and vac-
uum polarization corrections are included in the
tabulation of Table II. Contributions of order q
from F, (q') and vertex-vacuum polarization cross
terms yield corrections one order of Zn smaller.

The Feynman diagrams which are required to
calculate the fourth-order contribution to the slope
F', (0) are shown in Fig. 1. The calculational and
renormalization techniques are similar to those
used in the magnetic-moment F,(0) calculations of
Karplus and Kroll ~ and Petermann, ' although the
slope calculation involves more complicated numer-
ator structures and contributions from differentia-
tion of denominators with respect to q~. Further-
more, in the standard gauge, individual graphs
have ln X and ln X behavior in the infrared re-
gion of photon integration, although the complete
fourth-order result is infrared convergent. ' In the
calculation presented in this paper, all traces, pro-
jections, and reduction to Feynman parametric in-
terals are done automatically by REDUCE, an al-
gebraic computation program written by Hearn. "
The definitions of the required subsidiary variables
in terms of the Feynman parameters are obtained
by alternate methods, the standard technique given
in Ref. 15 and the method developed by Nakanishi
and others. The integrals over the Feynman
parameters (up to five dimensions) are performed
numerically (often to 0. 1%% precision) using a pro-
gram originally written by Sheppey and modified
by Dufner. In this method of multidimensional in-
tegration, more fully described in Ref. 21, one cal-
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8 Z'4&
m~ '2 =~ [0.48+ 0. 07]

eq (q2 0 7T
(2. 6)

The contributions of the individual graphs are tab-
ulated in Table III. The discrepancy with the re-
sults of Ref. 12 originates in an over-all sign dis-
agreement and in the calculation of the constant
terms in the crossed and corner graphs [see Figs.
1(a) and 1(b)]. In the case of the corner graph, this
discrepancy is quite large. The revised theoretical
values for the Lamb shifts in H, D, He', and Li"
are shown in Table I.

III. VACUUM POLARIZATION AND FERMION SELF-
ENERGY INSERTIONS

The contribution of the graph with the second-or-
der vacuum polarization insertion [Fig. 1(c)] is
easiest to calculate, and we start our discussion
here. The effect of second-order vacuum polar-
ization is summarized by a modification to the pho-
ton propagator, 2

z~ (I —~ z~)

k —~ +it k —X +i&2 2, 2 2, + dZ 21 —z

culates the usual Riemann sum, taking the central
value of the integrand from an average over two
random points within each hypercube. The differ-
ence of the function values is used to compute a
variance and error for the integration; on succes-
sive iterations the computer readjusts the grid to
minimize the variance. Many of the techniques
used in this paper are similar to those by Aldins
et a/. ' for the calculation of the photon-photon
scattering contribution to the sixth-order electron
and muon magnetic moments.

Qur numerical result for the fourth-order slope is

TABLE III. Comparison of the results of this calcu-
lation and that of Ref. 12(a) for the Feynman graphcontri-
utions to a4 ——m4d+i/dq (q'= 0)/(~'/?t').

~cross [Fig. 1(a)]

[Fig. 1(b)]

Bef 12(a)

+ln&2
36

—2. 314

n—+ ln2&"

+ „ln X-2

+2.432

This
calculation

—~36 ln &-2

+2.37+0.2

2g-2n

?2 ln&2
—1.91 + 0.02

~vacttttm -yolarimation

+self-energy

[Fig. 1(c)] —0.0316

[»g. 1(d)] 1 2g 2n

?2-+in~ 2

—1.688

+0.0316 + 0.0002

+~?2 ln ~-&

+1.68 +0.01

~ Iadder [Fig. 1(e)] —„ln V'
+1.710

+36 ln &
—1.69 +0.02

0.108a4

Note that the second-order contribution to the slope
of the Dirac form factor

ex"' n
2 VdV

Bq ~2 0 m

0.48~0. 07

'Corner and self-energy graph results include the con-
tribution of mirror graphs. The infrared behavior is ex-
pressed in terms of a photon-mass parametrization for
~ «m . The infrared convergent ladder plus cross con-
tributions (0. 68 + 0. 04) as well as the corner plus self-
energy contribution (- 0. 23 + 0. 03) could be obtained without
knowledge of the infrared divergent behavior of the indi-
vidual graphs, which were, however, found to be consis-
tent with the negative of the asymptotic behavior (P « ~n )
given in Ref. 12. The individual noninfrared remainders
given in the last column were determined from fits with
the logarithmic terms constrained to those values plus
"background" terms multiplying WA, , v A, ln ~, and

n

CROSS

(a)

1
k —4m /(1 —z )+i&

CORNER

(b)

VAC-. POL

(c)

(3. 1)
„-,'v'+1 —v+-,' v'+ (X'/m') (1 —v) (1 —v+-,' v')

[v'+ (Z'/m') (1 —v)]'
(3. 2)

is positive for all X . Insertion of (3. 1) is effec-
tively a sum over various & with a positive weight
function. The vacuum polarization (VP) contribu-
tion to a4 is thus of the same sign as the second-
order slope and hence gives a positive Lamb-shift
contribution. (Thus, as is usual, the VP modifi-
cation strengthens the contribution of one-photon
exchange. ) Upon numerical integration, we obtain

a4 (VP) = 0. 0316+ 0. 0002 (3. 3)

SELF-ENERGY

(d)

LADDER

(e}

in contrast to a negative Lamb-shift contribution of
the same magnitude in Refs. 12 and 13.

The fermion self-energy correction [Fig. 1(d)] is
accomplished by substituting

FIG. 1. Feynman diagrams for the fourth-order ver-
tex of the electron required to compute the anomalous
magnetic moment E2(0) and the slope Ei (0).

I/(p/- m+is) -Z, (p) (3.4)

in each leg of the second-order vertex. Here Z& is
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the twice-subtracted part of the self-energy inser-
tion:

Z (p) =~+(p'-m)a+(p' -m)'Z, (p),
n ' ' (o (x, z) [f(+SR (x, z)]

2p „p'—r (x, z) m'+fe

where

&u = s (1 —x) z,
x (1 —x) z + (&'/m') (1 —x) + x'

x(1-x) z

m [s (1 —x) —(1+x)]SK-
s (1 —x)

z(1+x)x
x'+ (1 —x) X'/m'

(3. '7)

It should be emphasized that great care must be
used in extracting Z& to keep all terms in X .

The method of calculation is similar to that for
the graph with VP insertion. The second-order
contributions to EI(0) with one fermion propagator
replaced by'

&+Sg (» z)/[p —r (x, z) m +ie]

is

and we see that, apart from an over-all sign, ex-
cellent agreement is obtained.

The common feature that the actual dependence
of the integrals pulls appreciably away from the
asymptotic formula even at A,

' as small as 10 ' m'
reflects the fact that Eq. (3.9) is a negative function
of X for all positive A. and does not cross the axis
as do the extrapolated asymptotic formulas.

IV. CORNER GRAPH

In calculating the contributions from the graphs
with vacuum polarization and fermion self-energy
insertions, we followed the procedure of first cal-
culating the renormalized amplitudes for the sub-
graphs, inserting their spectral integral represen-
tations into the second-order vertex graphs, and
then doing the over-all renormalizationsubtractions.

It is also possible to use a similar procedure
for the corner graph of Figure 1(b) (and the ladder
graph to be treated in Sec. V). However, the in-
tegral representation for the renormalized vertex
subgraph is much more complicated than that for
self-energy graphs, requiring, in general, a dis-
persion representation in the three off-shell vari-
ables. We have used instead a different approach,
which is simpler, at least when the computer is

F. (,.K,) d d dZi Z2 Z3
a/' 2 277 0

xn (1 —z, —z, —z, )

z, z, +(1 z,)(1,,)
~ (1-z&)'+z, (X'/m')+(r-l)z,

[(/m) —4z, +z', ] z, z,
[)) —z,)' ~ z, )Z'/zz') ~ (» —))z,]'). ' (s. 8)

LLI
O
QJ

J 2
U
LL

0
IO

The»& /sq l,z is given by

sp(4d) )'&,
I

1

0: 0

, 8 FP'(q', Sg, r)
BQ'

e =0

(S. 9)

where a factor of 2 is' included for the mirror
' graph. This integral is easily carried out numeri-
cally for various &2 and can be compared as X2-0
with the analytic result of WBK and Soto, 3

8 y (4d)
m2

q =Os X«m

=
~qz ln' (m /X ) —

~vs ln(m /X ) —1.888

(s. 10)
The result for our calculations is shown in Fig. 2,

OJ

6
N

LL
I 2

0
2

log

I

4
I

5

FIG. 2. Contribution to the slope of the Dirac form
factor in fourth order from fermion self-energy inser-
tions in the second-order vertex I,Fig. 1 (d)]. The solid
curve is the result of numerical calculation for various

(in units of the electron mass squared). The results
of this calculation agree asymptotically with Soto's
analytic result of X 0 (dashed curve) except for over-
all sign. The top graph gives the difference between the
two curves. The error bars represent approximately
10 in the numerical integration.
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p 5 4 ~ 2 4 $1 4 E2
.4 4

corner= ( f )
'

( ')
(2 )4 (2 )e (pj mf)]

&&s(p+ nq) [r((p'4+m)

xr "(p'~+ m)r. (p'2+ m)r'(p'i+ m)r ]s(p -
n q)

L8S(P+ nq)cl tnrners(P nq)

The factor of 2 is included for the mirror graph.
We can automatically determine the contribution

to the form factors [see E(l. (2. 1)] through

FJ (q ) = e Tr [(g+ n g+ m) P' (P —
n g+ m) AO~, (4. 2)

where24

(4. 3)

A,"'=[m'p'r„—m (m'+-.'q') p„]q 'p ', (4. 4)

with

p = m —4 q, p'Q'=0 (4. 5)

After the traces and index contractions are per-
formed to obtain F, (q'), we have to consider inte-
grals of the form

used for the algebraic reduction and numerical
evaluation of the integrals. It will be helpful to
first outline the method and then present it in de-
tail. We first combine all the denominators of the
unrenormalized amplitudes and project out the
Dirac form factor E1. The internal momentum
integrations are then done and the result is ex-
pressed as a five-dimensional integration over

l

parameters. The ultraviolet divergences corre-
sponding tothe vertex subgraph and to the graph as
a whole will, of course, still be present in the
parametric integral. The subtraction necessary
to remove the internal logarithmic divergence is
,accomplished by recomputing this expression with
the vertex subgraph computed with the external
momenta which flow through it constrained to the
mass shell, again combining all six denominators
first. The integrands are then subtracted and the
resulting five-dimensional integral will contain only
the over-all divergence, which is subtracted auto-
matically at q'= 0, when we compute F((0). Once
the difference of integrands is differentiated with
respe"t to q,. and q is set equal to 0, the result
(for A. & 0) is a convergent five-dimensional inte-
gral for F,'(0), which we can evaluate numerically
by computer. We shall describe several checks
on the calculations of F((0), including the evalua-
tion of corner- and crossed-graph contributions to
F,(o).

The unrenormalized amplitude for the corner
graph is

~
2

~2

I ~~ I B
~

tI

6 -1
II (dt'-mt id) = it dd, - dd, tt t —k d)g~l 1=1

If we choose the 0& such that '

6

Q z~kqq)„= 0 (r= 1, 2) (4. 9)

then the 0& ~ l„cross terms in the denominator van-
ish. For convenience we define

U=det U„„.,
6

Urr' ~ ~tqJrqJr'
)=1

(4. lo)
6

D=Q s, (m', -k,')
(=1

(4. 11)

The basic integration over loop moment q then gives

5!f d lqd l2/[-D+Q U„„.l„ l„.+i(:] =i w /D U
Ft'*I

(4. 12)
The numerator also contains terms quadratic and
quartic in the loop momentum four-vectors. For
the l, ~ l, terms ' we replace

l, ~ ln —2Bnn(D/U) (4. 13)

where B,~ is the signed cofactor of U, ~ in U. Also,
we have

l ~ lnln ln [4BnnBn~+ Be~Be,+Bn+M](D /U )

x.[ln (A /D) + 1] (4. 14)

The dependence on the ultraviolet cutoff A is eli-
minated because of the over-all subtraction at q
=0, and we can in fact replace

1+in [A /D (q )]—1n [D (qn = 0)/D (qn)]. (4 15)
These substitutions can also be readily done by
~EDUCE, ' yielding the reduction of the matrix ele-

ment to an integrand for parametric integration (in
the form of a punched deck in FORTRAN form). '

As an alternate method to the above and as a
check we have also used the graphical method of
reduction to parametric form developed by Nakan-
ishi and others. A particularly valuable check
is obtained for the quantity

6
1=f (d'l, d't 1I(d', —I'; td))F(d ), (4. d)

where m, is the mass corresponding to line i and
2

P)=kq+Z q)„l„(j=1, . . . , 6) (4. 7)

Here q&„ is the projection (+1, 0) of p& along l„and
k& can be any choice of fixed momenta (independent
of f„, proportional to p, q) such that four-momen-
tum is retained at the five vertices. Feynman
parameters are now introduced:



FOURTH-ORDER ELECTRODYNAMIC CORRECTIONS

6

UQ @ghee
= Wqm + W, q (4. 16)

04

in mhich the parametric functions R~ and W, can be
read off very simply from the Feynman graph struc-
tux'e.

The internal vertex renormalization subtraction
must yet be performed. Thus me subtract from
M,",»„the corresponding amplitude mith the intex-
na/ loop calculated as if lines 3 and 6 [see Fig. 1(b)j
mere on their respective mass shell:

SELF- ENERGY + CORNER

d'l~ y (P,+m)y"'(P', +m)y
(2v)' g (P', —m,')

p&+ps=pz+p5=R and R =m2 2 (4. 18)

laglo X 2

Flo. 4. Sum of corner plus self-energy contributions
|Figs. 1(b) and 1(d)] to I'

t', (0) in fourth order as a function of
photon mass &2. The expectation that this sum of contri-
butions |Figs. 1(b) and l(d)] is finite in the infrared is
confirmed. The contribution (-0.23 +0.03) (e/~) can be
obtained without any knowledge of the infrared divergent
behavior of the individual contributions.
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FIG. 3. Numerical results for the corner-graph con-
tribution to Ef (0) as a function of photon mass &. The
dashed curve is the negative of Soto's analytic result for
the asymptotic region A. —0. The top graph indicates
that the two curves become parallel in the asymptotic
region rather than joining. This is the major source of
numerical discrepancy between the results of the two

calculations

This integrand is then subtracted from the above
before numerical evaluation of the five-dimensional integral. ' The subtraction is sufficient to remove

the ultraviolet divex'gence associated with the vertex
subgraph which appears as logarithmic singularity
as zg zp zg 0. The over-all divergence chal
acterized by the A in Eg. (4. 14), is removed auto-
matically when we compute Ef(0). Thus, an ultra-
violet cutoff is unnecessary and the integral can be
performed as a function of ms= me= A. .

Our result for the contribution to Ef(0) from the
corner graph along with the analytic result for the
asymptotic region (& «m) given by Soto is shown
in Fig. 3. After correcting for the sign discrepancy
the tmo curves become parallel in the asymptotic
(& -0) region rather than joining. The expectation
that the sum of corner plus self-energy contributions
are finite for X-0 is confirmed in Fig. 4.

In order to determine the constant term in the
corner-graph contribution, me have constrained the
coefficients of the lnX and lnX terms to be
the negative of Soto's and have performed several
types of least-square fits to the results of the nu-
merical integration using "background" terms mul-
tiplying VX2, ~X ink ink . The resulting
constant term from the corner graph, shown in
Fig. 1, column 2, differs substantially from the
constant term in Boto's expression. A consistent
value for the sum of self-energy and corner contri-
butions for A. 0 can be obtained directly from Fig.
4 without any detailed curve fitting or knowledge of
the infrared divergent behavior of the individual
contributions.

As another check on the calculation, we have also
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calculated the corner-graph contribution using in-
termediate xenoxmalization. In this method the
subtraction term is computed as in Eq. (4. 1V), but
the internal vertex is computed with its fermion and
photon legs all on the m= 0 mass shell. The sub-
traction term can be obtained immediately from the
unrenormalized amplitude by replacing k&, ka 0,
8~4-O„and keeping only the terms in U, D, k„and
k4 which are of lowest order in z~, z&, or zs. A

complete discussion of intermediate renormalization
in Feynman parameter space is given in Ref. 26.

The correction term which compensates for the
error made in renormalizing at m= 0 is simply

LLI

g os-
LLj

0 I I

(2)dE /dq
I

x
I
A( i(0, 0, 0) —A( '(m, m, 0)], (4. 19)

where the first factor is defined in Eq. (3.2) arid

where

iit"(o, o, o)-oto(m, m, o) &f =i*

1 (-2+2z+ s )",+(~'/m')(1-. ) "+(~'/ ')(1-s)

I I

p

log )o

l„s +(& /m )(1 —s)
+(&'/ ')(1- )

(4. 20)

FIG. 6. Numerical contribution to I f (0) from the
crossed diagram I,Fig. 1(a)] as a function of photon mass

The dashed curve is the negative of Soto's analytic
result for A,-O. The top graph shows that the two curves
become parallel in the asymptotic region, disagreeing
slightly in the value of the noninfrared remainder.

is calculated from the coefficient of y of the unre-
normalized vertex in second order. The numerical
results are consistent with that obtained using re-

I

5—
r&

OJ

ci 5 — ~~ ~PETERMANN

O
CV P

4
log o X,

FIG. 5. Numerical contribution to the fourth-order
magnetic moment of the electron from the corner dia-
gram [Fig. 1(b)] as a function of photon mass. The
dashed line is Petermann's result (Ref. 18), E2 (0)
= [)1n & —O ~ 5641 [&'/o(') derived from &—0. As in the
case for Ej (0), the infrared divergence is cancelled by
the self-energy contribution [Fig. 1(d)].

s, =vu, ss=v(l-u),
ds, dss= vdv du (0&u &1)

(4. 21)

improves the integration efficiency, since there is
slow dependence of the integrand on u. SimBar var-
iable changes were made in all of the numerical
calculations in order to check consistency and im-
prove the integration efficiency.

V. LADDER AND CROSSED-LADDER GRAPHS

The two remaining contributions to the slope of

normalization on the mass shell.
As a final check on the corner-graph contribution

to Et(0) we have also projected out the contribution
of this graph to E,(0), the anomalous magnetic mo-
ment of the electron. Since the same parametric
functions that enter E, also enter Es (since the same
method of internal renormalization .is used) and since
the same integration program is used, this isa rea-
sonably good check on the calculation. The result
shown in Fig. 5 is in excellent agreement with Peter-
mann's result. ' The logarithmic dependence on the
photon mass, which cancels when the contributions of
all fourth-order graphs to Es(0) are added, arises from
the integration region z&, z2™0.The choice of vari-
ab1,es
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the Dirac form factor in fourth order are shown in
Figs. l(a) and l(e). The sum of the ladder and
crossed-ladder contributions is infrared convergent
and it is convenient to discuss them together.

The calculation of the crossed-ladder contribution
is quite easy, since there is no internal ultraviolet
divergence. The method of Sec. IV can again be
used, except that for this graph, no internal renor-
malization subtraction need be made. The result is
shown in Fig. 6 and again, apart from an over-all
sign, agreement is found with the ln A. term in
Soto's expression. However, as shown in Fig. 1,
we disagree sbghtly with Soto in the finite (non-
infra, red) term. We have also calculated the contri-
bution of this graph to Eg(0) and have again found
excellent agreement with Petermann's result.

The calculation of the ladder-graph contribution
is nearly identical to that of the corner graph. The
internal vertex subtraction is carried out in the
same way, and in this case we find complete agree-

LADDER+ CROSSED

0.7
IL

0.5
4 5 6 7

log Io
FIG. 8. Sum of ladder plus crossed diagram t,Figs.

1 (a) and 1(d)]contributions to Ef (0) as a function of photon
mass A,

2' The combined contribution (0.68 +0.4) (0./7t) 2

to Eq. (2.5) can be obtained without any knowledge of the
infrared divergent behavior of the individual contributions.

ment with (the negative of) Soto's result. The com-
parison is shown in Fig. V. The sum of ladder plus
crossed-graph contributions is shown in Fig. 8.

VI. CONCLUSION

I
/

log
I

FIG. 7. Numerical contribution to Ef (0) from the
ladder diagram tFig. 1(e)] as a function of photon mass

The dashed curve is the negative of Soto's analytic
result for the asymptotic region & Q. %'ithin errors,
the two curves are in good agreement as ~ 0.

The total contribution to the slope of the Dirac
form factor in fourth order is given in Eg. (2. 5).
The corresponding contribution to the n@~3-nPqga
level splitting is (0.45+ 0. OV MHz) &&[Z (2/n) ], an
increase of (0.35+ 0. OV MHs) x[Z'(2/n)~] over the
previous contributions. 2 3 6 Our result for the
fourth-order corner graph, which is the primary
source of the revision, has been confirmed by anew
partially analytic and partially numeric calculation
by de Rafael, Lautrup, and Petermann, and by a
completely analytic calculation of Barbieri, Mig-
naco, and Remiddi. It would be desirable, how-
ever, to have a completely analytic calculation of
the entire F& contribution in order to eliminate the
error limits introduced by the numerical calcula-
tions. A complete calculation of the order-o. (Zo)6m
contribution to the Lamb shift will also be required
in order to obtain a theoretical prediction with a
limit of error several times smaller than the er-
rors quoted for the experimental results.

The reconciliation of the @ED calculations with
the Lamb-shift experiments (see Table I) is very
gratifying. At the present time, not one of the
sensitive @ED comparisons of theory and experi-
ment is in serious disagreement. 3

Unlike the colliding-beam, (g-2), , and hyper=
fine-splitting measurements, the Lamb-shift mea-
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surements are not particularly useful for limiting
high-momentum tx'ansfex' modifications of @ED~
although the current agreement with experiment
does rule out speculations of the type discussed by
Barrett et al. 9 (long charge tails on the nucleus)
and Yennie and Farley (low-mass scalar particle
exchange). It is interesting to note that the magni-
tude and Z and n dependence of the px'oposed modi-
fications of the hadronic contribution to the Lamb
shift are the same as those caused by the reevalua-
tion of the fourth-order contributions discussed in
this paper.
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