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also indicate that in each of these instances the en-
ergy correction 5E', does not have an especially large
effect on the estimate of the kinetic energy of the
ejected electron. Consequently, the results given
in Ref. 4 for the ng e and nK e atoms should be
essentially unaffected, since the Auger rate for an
energetically allowed transition from a circular
orbit was shown there to be relatively insensitive to
even fairly large changes in the kinetic energy of the
ejected electron. However, in the case of the ape
atom, the results shown in Fig. 1 indicate that it is
likely that the values of I &n I „for the circular or-
bits with n= 32 and 35 are, respectively, 4 and 5

instead of 3 and 4.
The other reason for estimating E, -E"," is to ob-

tain corrections to the energy difference &",". It has
been noted that a relatively large energy splitting
inhibits the rate for Stark transitions between two
states with the same principal quantum number and

with angular momenta differing by one unit. In the
instances that are listed in Table II, the corrections
to &"," are only a few percent at most. Partly be-
cause of the relatively large change in linear mo-
mentum that probably must accompany an inelastic
collision with a He atom during which an nn e or
nK e atom loses orbital angular momentum, and

partly because of a number of other uncertainties
inherent in the methods of calculation presently
available, the corrections to &"," listed in Table II
are therefore not large enough to cause any mean-
ingful change in an estimate of the rate with which

circular orbits of these particular principal levels
can be depopulated by Stark mixing.
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Linked-cluster many-body perturbation theory is applied to study the stability of the ground
state of the H ion. A diagrammatic approach is made to analyze the role of various polariza-
tion effects. A complete set of states obtained in the V ~ potential is used to evaluate the dia-
grams. The total energy of H is calculated to be —0.027 66 a.u. , leading to the binding energy
0.527 66 a.u. , in good agreement with the most accurate value, 0.02775 a.u. , due to Pekeris.
The result of our investigation shows conclusively the crucial importance of monopole and

dipole polarization effects for the stability of this ion in particular and negative ions in general.
A comparison with the results from earlier work is also made.

The binding energy of negative ions provides a
good testing ground for the adequacy of many-body
theory. The reason for this is that these ions are
rather weakly bound, the binding energy being a
small fraction of the total energy of the atom, simi-
lar to the situation of the dissociation energy in dia-
tomic molecules. In most of the negative ions stud-
ied to date, Hartree-Fock theory is unable to explain
the stability with respect to the ionization into the
neutral atom and an electron. ' For the H ion, which

is the simplest example of a negative ion, Pekeris,
by his extension of Hylleraas's technique, has been
able to demonstrate its stability. However, Peker-
is's treatment utilizing the wave function involving

r» is too complicated to provide insight into the role
of various types of correlation effects between the
electrons, which could be generalized to heavier
systems. In particular, the role of instantaneous
polarization effects in contributing to the binding of
ions has recently been questioned. ' Using various
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approximations involving open-shell wave functions
similar to those employed earlier by Lowdin and
Shull, Goddard' has shown that it is possible to ob-
tain a part of the binding energy and has concluded
that the instantaneous polarization effects are not
"crucial" to the stability of H . On the other hand,
Oberoi and Callaway, ' in their recent variational
calculation involving polarized orbitals, have been
able to obtain a binding energy comparable to that
of Pekeris. However, it is difficult to assess the
relative importance of various ordersofpolarization
on the binding energy from their work because of
the sensitivity of their results to the variational
functions and various approximations they employed.
To settle definitely the question of the role of polar-
ization, it is therefore necessary to utilize an ap-
proach in which various types of polarization effects
are handled explicitly. The Brueckner- Goldstone
(BG) many-body perturbation theorys' is such a pro-
cedure, where various physical correlation effects
are represented by appropriate diagrams. In addi-
tion to this aim, the present work, being the first
application of many-body perturbation theory to the
study of negative ions, is also of considerable inter-
est since it exhibits certain general features unique
to loosely bound systems.

Since the BG many-body perturbation theory has
been discussed at length several places in literature,
only the barest essentials will be given here. The
basic aim of many-body theories is to obtain the ei-
genfunctions and the eigenvalues of the total atomic
Hamiltoriian

~=+ 7', +Q 1/r„,

where T, is the sum of the kinetic energy and nu-
clear attraction energy; N, being the number of elec-
trons in the atom, is equal to 2 for H . In applying
the perturbation approach, one utilizes a neighbor-
ing Hamiltonian Ko for which one can obtain a com-
plete set of states. Using this basis set, the per-
turbation energy is evaluated to various orders in
K' =K- Ko through the linked-cluster perturbation
approach. For an atom, a convenient choice of Ko
is the Hartree-Fock Hamiltonian, the corresponding
lowest eigenstate 4o being the determinant composed
of the N lowest solutions y„of the equation

(&+ V)9'n =en pn (2)

through the linked-cluster expansion

E =Eo+Z„(CO jx'[(E,-xo) 'x']"
i Co)z, (4)

where V is the one-electron Hartree-Fock potential.
It has been shown that one can obtain the actual en-
ergy E of the system from the zeroth-order energy
Eo defined by

Ko Co =Eo 4'o

where the subscript i. indicates that only linked dia-
grams have to be included in a diagrammatic expan-
sion of E. From an experimental point of view, the
important quantity for H is the electron affinity

A(H) =E(H) —E(H ),
E(H) and E(H ) being the energies of the ground
states of H atom and H ion. Atomic units (e /ap)
are used throughout this work. For the stability of
H it is necessary that A(H) be positive. The corre-
lation energy for the ion is related to A(H) through
the equation

n. E~ =E(H ) —E„v (H )

=E(H) —A(H) —E„v(H ),
the Hartree-Fock energy E„v(H ) being given as usu-
al by the sum of Eo and the first term in the summa-
tion in Eq. (4).

As in earlier calculations on bound states of at-
oms, ' the V" ' choicewas utilizedfortheone-elec-
tron potential. In the present case, because wehave
only two electrons in a 'S state, V(r) reduces to the
form

(7)

For the initial choice for p„ in Eq. (7), we utilized
an analytic form for

(8)

obtained by Green et al. Using this V(x), p„was
obtained from Eq. (2) by numerical integration and
iterated by the use of the calculated p„ in Eq, (7)
for self-consistency. The final value obtained for &„
was —0. 04592a. u. as compared with Green's value
of —0. 049 12 a. u. Using the calculated value of e„
and computing the Coulomb interaction energy be-
tween two electrons, one obtains the Hartree-Fock
energy E» = —0. 48812 a. u. , which is larger than
that of the hydrogen atom by 0. 011 88 a. u. , indicat-
ing instability with respect to ionization. In con-
trast to neutral atoms, no bound excited states were
found. This is because the V ' potential in the
present case leads essentially to zero effective
charge for large distances in the same way that the
choice of V" potential does for the neutral atoms.
The radial components of the excited continuum
functions with energy —,'k are admixtures of Bessel
and Neuman functions j,(kr) and n, (kr). Normaliza-
tion was accomplished by noting that at large dis-
tances

R(kl; r) =A [cos(kr + 5,.»
——,

'
(l + 1)v) ]/r .

The amplitude A was chosen to be unity in keeping
with the convention for integration of the diagrams
over k. The lowest-order contribution to the corre-
lation energy is given by Fig. 1(a). This figure de-
scribes the mutual polarization of the two electrons
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Of these, Figs. 1(b) and 1(c) can be shown to form a
geometric series leading effectively to a change in
the energy denominator in Fig. 1(a), namely,

D(e„, e„.) = 2e„—e)) —e„.—(ls ls j 1/x, z ~

isis)

Equation (10) is thus modified to

(c)

IS& ----—.(ilS

(e)

FIG. 1. Correlation-energy diagrams for H: (a)
lowest-order diagram, (b) hole-hole interaction, (c) and

its various time orderings, the rearrangement diagrams
(d) and (e) hole-particle interactions and (f) particle-parti-
cle interaction.

in the ion. The contribution to the energy from
multipole order l in the mutual polarization is given
by

E, (l) (
')' f d(

=gf
-dl

(lsls( 1/x, s )k, k&) (k(k,' [1/t, z ( lsl's)
X—

2f ~ —6p —Cps

(10)

Numerical integrations in k space in Eq. (10) were
performed by a 12-point Gauss-Laguerre procedure,
while in coordinate space Simpson's rule was util-
ized. The contributions from l = 0, 1, 2, 3, 4 are
shown in column 2 of Table I. From the observed
convergence of these values with respect to l, con-
tributions from higher multipoles are not expected
to be more than 10 'a. u. The monopole and dipole
contributions in Table I are comparable in order
with the former somewhat larger in magnitude,
On combining the contribution from Fig. 1(a) with

E», the total energy up to this order is given by
E(H ) = —0. 54261 a. u. , and A(H) =0.04261 a. u.
Thus, while the correlation effects considered so
far have explained the stability of H, they lead to
an overcorrection, since presumably the most accu-
rate value of A(H) is 0. 027 75 a. u. This discrepancy
can be resolved by a consideration of the higher-
order diagrams in Figs. 1(b)-1(f). Figure 1(b) and

its higher-order counterparts are the so-called
hole-hole ladder diagrams. Figure 1(c) and itsvari-

10ous time orderings are the rearrangement diagrams.
Figures 1(d) and 1(e) represent hole-particle ladders,
and Fig. 1(f) represents particle-particle ladders.

The third column in Table I thus represents the con-
tribution to the correlation energy from various
orders of l in Fig, 1(a), but corrected for diagrams
of the types 1(b) and l(c). The relative contribu-
tions from various l's are seen to have the same
general features as those from Fig. 1(a), with l= 0
making the numerically largest contribution. The
corrections from these higher-order diagrams to
the electron affinity and correlation energy are seen
to be comparable to the respective quantities from
the unmodified diagram in Fig. 1(a). This feature
is a significant departure from the situation in neu-
tral atoms and is a consequence of diffuseness of
the negative-ion orbitals. The evaluation of hole-
yarticle and particle-particle ladder diagrams is
somewhat more involved, since they cannot be
summed analytically. However, an examination of
contributions from various orders of ladders indi-
cates that a geometric series is a good approxima-
tion. As a result one can express the sum of the
contribution from the bare diagram in Fig. 1(a) and
all the modifications in Figs. 1(b)-1(f) in the form

d E,=Q( b, E, (l),
&E, (l) =E2~(l)[1 —2a(l) —f(l)]

where a(l) and t(l) are defined by

(16)

(14)

TABLE I. Correlation energy of H (in a.u. ).

0
1
2
3
4
Othera
Subtotal

E (g)

—0.028 11
—0.02202
—0.003 30
—0.000 97
—0.000 09

—0.05449

E2 (g)

—0.01952
—0.015 32
—0.002 30
—0.000 71
—0.000 07

—0.037 92

—0.020 43
—0.015 82
—0.002 39
—0.000 64
—0.000 06
—0.000 20
—0.039 54

Hartree-Fock energy —0.488 12
Total energy —0.527 66

Contribution from the ladder-type diagrams with changes
in E values of excited states.
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TABLE II. Electron affinity of H (in a.u. ).
Method Results Ref. no.

Polarized orbital
Goddard function
Split-orbital
C.I.
r f2 coordinates (best value)
Present calculation

0.027 2

0.013 84
0.013 3
0.027 51
0.027 75
0.027 66

5
3
4
11
2

(15)

(16)

In Eq. (15) E,'" ~' is the contribution from either
Fig. 1(d) or 1(e). Similarly, in Eq. (16), E,'~ ~'(I)
represents the value of the modified diagram Fig.
1(f). The ratios a(l) and t(l) were evaluated by the
usual approximation procedures for hole-particle
and particle-particle ladder diagrams. The values
of EE, (l) incorporating all the corrections arelisted
in the last column of Table I. Combining all the
contributions, the net effect of hole-particle and
particle-particle ladders obtained from the differ-
ence of the correlation energies in columns 4 and

3 of Table I is 0. 001 62 a. u. , which is smaller than
the hole-hole ladder contribution but still sizable.

The results in Table I indicate clearly that s and

P polarizations are both sizable and comparable to

each other. Mutual polarizations of the d and f
types are smaller but by no means negligible.
Higher-order multipole polarizations are negligible
in effect. In Table II we compare our results of
the electron affinity with other calculations which
were a1.1 done by variational procedures, and with
Pekeris's results which are more reliable than the
existing experimental data. The small difference
of 0. 00009 a. u. between our result and Pekeris's
is perhaps a result of the approximation procedure
used in the evaluation of hole-particle and particle-
particle ladders. In neutral atoms, the correspond-
ing error is expected to be smaller because the or-
bitals are less deformable. The configuration in-
teraction and polarized orbital results are in good
agreement with ours. These calculations included
various multipole polarization effects through the
choices of the variational functions utilized. The
reason for the smaller electron affinities obtained
by Goddard and Lowdin and Shull is clearly due to
their inclusion of only monopole polarization in
their split-shell approach. The result of the pres-
ent analysis indicates conclusively that polarization
effects have important quantitative significance and
have to be incorporated in variational calculations
of energies and other properties, especially for
negative ions. In the many-body perturbation pro-
cedure, these -polarization effects are included nat-
urally through the appropriate diagrams.
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