2250 C.

fComputer time on the Louisiana State University
PDP-10 was supported in part by National Science Found-
ation Grant No. GJ-131.

Ic. E. Moore, Partial Grotvian Diagrams of Astro-
physical Interest, Natl. Bur. St. Report No. NSRDS
NBS 23 (U. S. GPO, Washington, D. C., 1968).

’C. E. Head and M. E. M. Head, Bull. Am. Phys.
Soc. 14, 1180 (1969).

5C. E. Head, Ph. D. thesis, University of Arkansas,
1965, pp. 54—65 (unpublished). Copies are available
from University Microfilms, Ann Arbor, Mich.

{C. E. Head and R. H. Hughes, Phys. Rev. 139, A1392
(1965).

°S. A. Chin-Bing, C. E. Head, and A, E. Green, Jr.,
Am. J. Phys. 38, 352 (1970),

SA. Denis, J. Desesquelles, and M. Dufay, Compt.
Rend. 266, 1016 (1968).

'J. P. Buchet, A. Denis, J. Desesquelles, and M.
Dufay, Compt. Rend. 265, 471 (1967).

8The treatment in this section is similar to that given
in Ref. 7 and in the paper by V. A. Ankudinov, S. V.
Bobashev, and E. P. Andreev, Zh. Eksperim. i Teor.
Fiz. 48, 40 (1965) [Soviet Phys. JETP 21, 26 (1965)].
Parts of the treatment are also given in Ref., 3 which
contains some experimental verification of some of the
equations derived in this paper. That work, however,
was done with a He® beam instead of a Ne* beam.

_ ®W. L. Wiese, M. W. Smith, and B. M. Glennon,
Atomic Transition Probabilities, Hydvogen thvough Neon
(U. S. GPO, Washington, D. C., 1965), Vol. I, pp.

E. HEAD AND M. E.

| Do

M. HEAD

130-137.

05, E. Hesser, Phys. Rev. 174, 68 (1968).

YA, Denis, Compt. Rend. 268, 383 (1969).

127, L. Oshirovich and Ya. F. Verolainen. Opt. Spec-
troskopiya [Opt. Spectry (USSR) 22, 181 (1967).

133, H. Koozekanani and G. L. Trusty, J. Opt. Soc.
Am. 59, 1281 (1969).

4p, Hodges, H. Marantz, and C. L. Tang, J. Opt. Soc.
Am. 60, 192 (1970).

510 the original version of this paper, the pressure
differential was reported to be approximately 2000 to 1.
Subsequent kinetic-theory calculations by us revealed that
this value appeared to be much too large. This suggested
a serious calibration error in the cold-cathode discharge
gauges used in the original measurement. We, therefore,
repeated the measurement with different gauges (hot-fila-
ment ionization type) and found that the pressure differ-
ential was approximately 150 to 1. This value is now in
good agreement with our rough kinetic-theory estimates.
We also note that the predicted rate of pressure decay
downstream from the exit aperture is in agreement with
measurements discussed in Sec. IV,

165, 7. Klose, Phys. Rev. 141, 181 (1966).

"'W. R. Bennett, Jr., and P. J. Kindlmann, Phys. Rev.
149, 38 (1966).

83, H. Clark and C. E. Head, Bull. Am. Phys. Soc. 15,
346 (1970).

871, Druetta and M. Poulizac, Phys. Letters 29A, 651
(1969).

PHYSICAL REVIEW A

VOLUME 2, NUMBER 6

DECEMBER 1970

Theoretical Analysis of Level Crossing in a 2P Atomic State

J. D. Lyons
IBM Research Labovatory, San Jose, California 95114

and

T. P. Das”
Department of Physics, University of Utah, Salt Lake City, Utah 84112
(Received 8 June 1970)

Two approaches to the analysis of level crossing are presented. A theoretical approach
utilizes values of the hyperfine coupling constants to predict the entire level structure of a

system, including all level-crossing data of interest.

A second approach suggests a procedure

for determining hyperfine parameters with reasonable accuracy, based on three or four
measured quantities. Results of this procedure in 2 ?P lithium give the contact, dipole, and
orbital hyperfine coupling constants as —9.806+0.117, —1,909+0,034, and 3.633+0.039

MHz, respectively.

This work reemphasizes the fact that an accurate determination of mag-

netic hfs requires three parameters to fully define the three independent magnetic hyperfine

interactions.

I. INTRODUCTION

Level crossing is one of the most widely used
techniques for investigating the fine and hyperfine
structure of atoms. It is based on the fact that of-
ten, when an atom is placed in a variable magnetic
field, two levels may be tuned to the same energy
or “crossed” and that the magnetic field value of

the crossing may be detected experimentally. The
level structure and thus the crossing fields are
clearly related to hyperfine interactions in the par-
ticular atomic system. Thus, in theory this tech-
nique may be used to determine hyperfine constants.
In practice, however, experimentalists have ac-
curately determined the level-crossing data and
then obtained values for hyperfine constants from
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it in a rather crude way. Theorists, on the other
hand, have been content to calculate hyperfine con-
stants when in fact they could have gone on to pre-
dict in detail the level-crossing data.

The situation is illustrated quite clearly in the
case of the 22P state of lithium. Accurate level-
crossing data for this system have been obtained by
Brog, Eck, and Wieder.! However, their calcula-
tion of hyperfine constants from the measured data
is based on a two-parameter theory which is not
strictly justified from the form of the hyperfine
Hamiltonian. Recently, accurate values of the hy-
perfine constants have been calculated by two dif-
ferent many-body methods.?-* These papers, on
the other hand, made no attempt to relate their
results to quantities which are measurable in a
level-crossing experiment. Thus the accurate
analysis necessary to make a detailed comparison
of these results has not been presented.

It is the purpose of this paper to carry out the
theoretical analysis of level crossing in two ways.
First, it is possible to obtain all information about
level structure and crossings from first principles.
Thus based on values for the fine-structure splitting,
hyperfine constants, and quadrupole coupling con-
stant, all level-crossing data may be predicted.

In the second approach, a procedure is developed
to predict hyperfine constants of a P state quite
accurately based on three or four experimental
parameters. These two procedures are demon-
strated by application to the case of 2 2P lithium.

II. THEORETICAL APPROACH
A. Matrix Elements

In order to reproduce theoretically the level-
crossing structure which is observed through ex-
periment, it is necessary to include a number of

interactions in the Hamiltonian. The terms required

are the spin-orbit interaction, electronic Zeeman
interaction, the three magnetic hyperfine interac-
tions, the nuclear Zeeman interaction, and the nu-
clear electric quadrupole interaction. This may
be written symbolically

Jer=3Ct +3CL, +3CL 43 Ly +IC L + Kz +CG, (1)
where 3¢/, 3¢/ ., and JCj, are the contact, orbital,

and dipolar hyperfine interactions, respectively.
The explicit expressions for these interactions are

L =(L.§, (2)
Wly=u L-H+pgS-H, ®3)
87 pshy s 3¢
:}cc'=—3—7:-3—t1. . §;0(T) (4)
i=1
Ne 3
' Brbg 3, 1
Row=2"Ert 1 2 o (5)

Ne -u‘-b- . -
3Chsy = E_s_zl Z<3(_Sjs_£f_ r‘_ig.>, (6)

i=1 (@] vy
mﬁz=—ﬂ1i'ﬁ: (7
Ne N
Ho=- Z f ) ~£ Py(cosby,) . (8)

i=1 p=1 ¥

Here ¢ is the fine-structure splitting, ul, 7 LL is
the electron orbital magnetic moment, T s= uSS is
the electron spin magnetic moment, p;=p ,I is the
nuclear magnetic moment, a is the Bohr radius in
the appropriate system, and N, and N, are the
number of electrons and protons in the atom, re-
spectively. These quantities may be further ex-
pressed in terms of fundamental constants. If the
angular momenta are measured in terms of 7, then
the magnetic moments expressed in terms of Bohr
magnetons up or nuclear magnetons u, are

br=8ukp , ©)
Ks=E&skp, (10)
b=y /Dity (11)

where gy =1-M,/M; with M, the isotopic mass,

gs =2.002319, and uy the nuclear magnetic moment
in nuclear magnetons. Also, in terms of the Bohr
radius for hydrogen a,, we have

a=(1+me/M,)ao. (12)

For an atom in a magnetic field, the quantities
L% S%, and P are constant and independent of the
field. Thus the eigenfunctions of ¢’ can be ex-
pressed as linear combinations of M, Mg, M,
states for any value of the field. Therefore, it is
necessary to know the matrix elements of the in-
teractions in 3¢’ in the M, Mg, M, representation.
These matrix elements may be obtained by expres-
sing each of the operators in terms of irreducible
tensor components and applying the Wigner-Eckart
theorem. The reduced matrix elements may then
be expressed in terms of commonly used physical
quantities by evaluating the general matrix element
in the special case My =L, Mg=S, M,;=1I.

Evaluating the matrix elements is trivial for the
two Zeeman interactions. Assuming the direction
of the z axis is defined by the external field ﬁ, the
only nonvanishing matrix elements are

<ML, MS: MII:‘CGIZlMLy MS3 M!)
=(gukp My +gsip Mg)H , (13)
(Mg, Mg, My|3Chz| My, Ms, My)

== (uy/I)u, M, H . (14)

The nonvanishing matrix elements of ¥., are also
easily shown to be
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(M, Mg, MIIJC;o[ML: Mg, My)=My Mgt , (15)
(M1, Mg*1, My| 5l | My, Mg, M)=3L,Sit ,|
(16)

where
L,=[(L¥M.) (LM, +1)]Y2

and likewise for S,.

The four remaining interactions are somewhat
more complex, each being a scalar product of
tensor operators. Using the Wigner-Eckart theo-
rem and the tensor product formula®

ng(_ 1)12-!1W(2J+1)1/2

Xy < J1jed

my, my mymy -M

)T'}'i T 17

these interactions may be expressed in terms of
reduced matrix elements. In the case of 3/ this

leads to
<ML, MS5 MI: IZC{: ‘ ML’ MS: MI)

(LI LLI)(S]IHI1S)

= 4MIMS [(2 I)3 (28)3] 172 E) (18)
(M, Mg+1, M;¥1 IZC,;[ My, Mg, M;)
- 25,1, (Il 1 II)SIIHIILS) (19)

[(21)4(2S); ]2

where Pockhammer’s symbol (a),, is defined by6

@)=1, (a)=ala+1)...  (a+k-1), (20)
and ¥C/ has been expressed in the form
st=T, H,. (21)

The reduced matrix elements are evaluated by using

the empirical hfs Hamiltonian
(22)

’ -
36,=a,' I'J'I"J .

Here the subscript 7 designates one of the three
magnetic hyperfine interactions. In particular for
i=c we have

(J=L+S, My=d, M;=I|aq ;;1-3|J=L+S,
My=d, M;=1I)

=a., I,L+SI(L+S) (23)

and
(Mg =L, Mg=S, M1=1’36cl Mp=L,Mg=S, M;=I)

(LIELI1I)SIIHIS)
[(21)5(28);]"/2 :

Since these two matrix elements must be equal, the
reduced matrix elements are found to be

=41IS (24)
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(LG LIS IIEIIS) _L+S
[(2D)5(25),] Y2 4S
With this result the nonvanishing matrix elements
of 3¢} are given by

(25)

c, I, L+S *

(Mg, Mg, M/|3C0| My, Mg, M)

= Ms M’ (L+S)S'1ac, ILL+S » (26)

(Mg, Mgx1, M, %1 [ZCC'I My, Mg, M;)

= S*I$ %(-L + S)S’lac, I,L+S * (27)

The corresponding procedure for 3¢;,, and 3%,
gives

(My, Ms, My|3t,| My, Mg, M,)

=My Mp(L+S)L™ Qoep 1,2 5 » (28)

(MLil’Ms: MI:FI ]gcz'u‘bl ML: MS, MI)

=L I 35(L+S) L ayrp, 1, 1o s s (29)

(My, Mg, M;|3l, | M,, Mg, M,)
=[8M% -L(L+1)]MsM,

X(L+9[L(2L ~1)S] agy, 1,745 (30)

(Mp+1, Mg¥1, M;lﬂcéulML, Mg, M;)
=3 @My 1)L, S M,

X(L+S[LERL -1)S] gy 1, o5 » (31)

(MLizg Ms:Fl: ]MI:F1 lscéllv I ML’ MS: MI)

= %LES$I¥(L + S)[L(ZL - l)s]-ladip, I,L+S » (32)

(Mp+1, Mg, M;%1| 3k, | My, Mg, M;)
=2@ML 1)L, Mgl

X(L+S)[LRL-1)S]"a gy, 1145 (33)

(Mp, M1, My¥1|3c%, | My, Mg, M,)
=-1[3M%-L(L+1)]
XS I(L+S)[L(2L =1)S]  a gy, 1,105 5 (34)

where
Li=[(L=M)L+M+1)(LFM-1)(L+ M+2)]V2.
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The same procedure may be followed in evaluat-
ing matrix elements of the electric quadrupole in-
teraction. The reduced matrix elements may be
evaluated by comparing with a matrix element of
the spin Hamiltonian’

st = b
QT 2IRI-1)J(2J-1)

[3(-32+3({-D(E-T)]

(35)
in the special case J=L +S, M;=J, M;=1I. The
resulting matrix elements are

(Mg, Mg, M| 34| My, Ms, M;)

b[3M§ -L(L+1)][3M2-1(1+1)]

-1

=% 1@L -2 =1 o (38)
(M1, Mg, My£1 IC‘C'QI My, Mg, M;)

s, @M x1)2M,F1)L,I,

S 0TI GL-DIRI-1) (37)
(Mp+2, Mg, M;¥2 |3€6‘ My, Mg, My)

L2s2
=3 57 (38)

L(2L - 1NI(2I~- 1) °
B. Level Structure

In general, the theoretical calculation of level
structure is quite straightforward. The 3¢’ matrix
in the My, Mg, M, representation is calculated and
its eigenvalues obtained as a function of the magnetic
field H. From this data any quantities of interest
may be deduced or the entire level structure may
be plotted. When carried out on a computer, this
is a trivial problem requiring mainly the diagonal-
ization of an 18X 18 or 24X 24 matrix for the 2P
states of Li® and Li’, respectively.

A simple computer program has been written to
carry out this procedure. This program requires
as input the parameters §> Kg, Hsy, Br, @er,1+5s>
Qorv, 1,245 s Raip,1,0+ss 0» L, S, and I. It then eval-
uates and diagonalizes the 3¢’ matrix. The program
will produce either a table of eigenvalues of 3! as
a function of magnetic field or it will determine a
crossing or anticrossing field value to a specified
accuracy.

The level structure of a P state is well known at
zero magnetic field, very low field, or very high

~field. The region of interest, however, is the area
in between where hyperfine levels become rear-
ranged into different groups and crossings occur. By
plotting all eigenstates as a function of H, the entire
level structure may be displayed. The over-all pic-
ture is shown in Fig 1. This is a plot of the fine-
structure levels from zero field out to the strong-
field region. Incorporating the hfs into this picture
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for the most part simply replaces each of the fine-
structure lines by a closely spaced group of 2 +1
lines. In other words, if one were to examine in
greatly expanded scale the actual structure of one
of the lines in Fig. 1 at almost any point, one would
observe a set of 2I+1 lines either converging lin-
early toward or diverging linearly from the fine-
structure line as required by ¥yy.

The points of particular interest, then, in Fig. 1
are those places where the hfs behavior is different
from this; all such points are indicated on Fig. 1.
There are three classes of situations. The first is
the weak-field area including the low-field transition
from (F, My) states to (M;, M,) states. These re-
gions are from 0 to about 10 G for the J=3 level
and up to about 100 G for the J=% level. These re-
gions, marked T'1 and T2, respectively, on Fig. 1,
have been examined in detail in the past® and the
weak-field level structure of a %P state is well un-
derstood. The second type of special case in Fig.
1 is a point where the hyperfine levels within a fine-
structure line are interchanged. There are three
instances of this in a 2P state and they are marked
I1, I2, and I3 in Fig. 1. An example of this be-
havior is shown in detail in Fig, 2 for I=% where
the deviations of the hfs levels from the fine-struc-
ture line are plotted against H near the point /1.
The final points of interest are the actual crossings
of fine-structure levels. There are two of these
in a 2P atomic state as shown on Fig. 1 at C1 and
C2 and examples of these are pictured in detail in
Figs. 3 and 4. As seen in Fig. 3, the levels cross
uneventfully at Cl. However, at C2 there are
several pairs of levels which interact, resulting
in the anticrossings seen as deflected pairs of lines
in Fig. 4. Experimentally observable quantities
are indicated on Figs. 3 and 4.

60000

30000

ENERGY LEVEL (MH2)
N

-30000

o 4000 8000 12000 16000 20000

v
MAGNETIC FIELD (GAUSS)

FIG. 1. Fine structure of Li 2 P from zero-field to
the strong-field region with points of interest indicated.
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005 087 1,70

ENERGY DEVIATION (MHz)

-0.77

-160

150 230 310 390 470 550
MAGNETIC FIELD (GAUSS)

FIG. 2. Hyperfine structure of the J=%, M;=— 3 level
in Li’ 2 °P at I1 of Fig. 1 plotted as deviations from the

fine-structure line.

C. Application to 2 2P Lithium

As an example of a calculation of level-structure
results in a 2P state, we have carried out the anal-
ysis described above for the case of lithium in the
2 2p state. The values used for the hfs parameters
are those previously obtained by the Brueckner-
Goldstone many-body perturbation theory.? These
and the values used for the other parameters re-
quired by the computer program are listed for
reference in Table I. Based on these input values
we have calculated all quantities which might be
observable in 2 2p lithium.

The quantities of experimental interest at hfs
level crossings such as those at H, are the field
intervals between crossings of hyperfine compo-
nents with the same M; value. There are four such
crossings at Hg, in Li” and three in Li% Our cal-
culated field intervals between these crossings
are given in Table II. The measured intervals of
Brog, Eck, and Wieder! in Li" corrected for over-
lap of the signals are listed for comparison. As
seen in Table II, all calculated results agree with
experiment to within 1%, the stated accuracy of
the hyperfine constants used.?

At Hg,, where a number of anticrossings occur,
the quantities of interest are the field intervals
between anticrossings as well as the interaction
matrix element V which causes the anticrossing.
There are three anticrossingsat H,,in Li’ and two in
Li®. The corresponding field intervals and matrix
elements are given in Table IIl. The anticrossing sig-
nals are not well resolved experimentally in 2 2P 1ithi-
um, making it difficult to determine the anticrossing
field intervals and matrix elements. Recently Eck
and Smith'® have developed a sophisticated computer
analysis of the measured data which will yield
values for these quantities. A first estimate from
this analysis indicates that the field interval be-

J. D. LYONS AND T. P. DAS
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-5555 -5515

ENERGY LEVEL (MHz)
-5595

-5635

5675

70 3180 3i180 3200 3210 3220
MAGNETIC FIELD (GAUSS)
FIG. 3. Crossings of hyperfine levels at C1 in 2 2P
Li" with crossing field values H(M) of observable crossings
indicated.

tween the two anticrossings in Li® is about 3-4 G.
This is somewhat larger than our calculated value
of 2.9 G but could easily come into good agreement
as their procedure is perfected. Their preliminary
value for the average interaction matrix element
appears to be fairly stable at (6. 783 +0. 069) MHz.
This is in quite good agreement with our average
value of 6. 703 MHz.

In Table IV we have given the field values of the
hyperfine crossings in the three hfs inversions in-
dicated at I1, 12, andI3in Fig. 1. It would be
very interesting if an experimental technique could
be devised to observe these crossings. They could
be valuable in providing additional checks on the de-
termined magnetic hyperfine and quadrupole coupling
constants.

~100I0

-10040

ENERGY LEVEL (MHz)

~10070

~10100

g

4768 4776 4784 4792 4800
MAGNETIC FIELD (GAUSS)

FIG. 4. Crossings and anticrossings of hyperfine levels
in 2 2P Li% at C2. Observable anticrossing interaction
matrix elements V; and crossing field interval AH;
are indicated.
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TABLE 1. Parameter values used in calculation of TABLE III. Field intervals and interaction matrix
level structure of Li 2 2P, elements of anticrossings at Hg,in Li® and Li’,
Units  Ref. I=1 I=3 Li® Li’

(57 3] a 0.999 9088 0.9999218 AHy 2.8686 G 7.7571 G
Hs 3] b 2.0023193 2.0023193 AH, 7.6116 G
Ky My c 2.170903 6700.232019 v, 6. 6996 MHz 21.5542 MHz
¢ MHz d 6701.84 ;‘ 5788 Vs 6.7067 MHz 25,0273 MHz
@e,1,3/2 MHz e —3.6269 -9. v, 91.7941 MHz
adlpJ':;/Z MHz e —0.7180 —1.8964
Gorn, 1,372 MHz e 3.2838 8.6727
b MHz f -0.0038541 —0.20276

3 =gk, where gy=1—m,/M;. m, and pug values used
are from Ref. 9 while isotopic mass values are from
Ref. 10.

bus=gsitg, where g and pp values used are from Ref. 9.

°ur=(uy/I), where p, is from Ref. 9 and py values for
Li® and Li’ are from Ref. 11.

dvalues used are from Ref. 1.

®Values used are from Ref. 2.

1h24Q, where g is from Ref. 2 and @ is from Ref. 12,

III. EXPERIMENTAL APPROACH: PERTURBATION
THEORY ANALYSIS

Experimentalists could utilize the same procedure
described above to obtain values for the hyperfine
parameters from measured data. In this case they
would start with some trial values of a;;; and b and
employ the procedure iteratively to obtain the best
fit to the level-crossing data. Good trial values
might be from Hartree-Fock calculations or more
sophisticated results where available. Alternative-
ly, an experimentalist can utilize an approximate
analysis to make a direct calculation of the hfs pa-
rameters. These may be either for use as trial
values for the above procedure or if the approximate
analysis is reasonably sophisticated they would be of
value in themselves.

We present here a perturbation procedure which
is a generalization of that utilized by Brog, Eck,
and Wieder! and is expected to yield hfs parameters

TABLE II. Field intervals between hfs crossings at

Hey in Li® and Li'.
AH(MI) =H<MI— 1) —H(M]) (@)

of useful accuracy. The error introduced by the
analysis should not be more than a few percent.

The fact that three independent parameters are
required to characterize the three magnetic hyper-
fine interactions dictates that at least three equa-
tions relating the hfs parameters to measured quan-
tities must be known. The electric quadrupole in-
teraction requires a fourth independent parameter;
however, the procedure for treating it depends on
its relative magnitude. If the quadrupole interac-
tion is comparable to the three magnetic hyperfine
interactions, then four equations must be obtained
and solved for the four unknown parameters. In
cases such as Li 2 2P where the quadrupole inter-
action is significantly smaller than the magnetic
hfs, a stepwise procedure may be used to obtain b
after first solving for a;;;.

The analysis will be developed here as specifical-
ly applicable to the current experimental situation
in 2 2P lithium. It should be emphasized, however,
that the same approach is generally applicable in
any atomic system. Some measurable quantities
which derive from the hfs parameters are the hy-
perfine coupling constant in a specific J state, the
interaction matrix element between two anticrossing
hyperfine levels, and the average field interval be-
tween hyperfine crossings or anticrossings in a fine-
structure crossing. The theoretical quantities
which are used here and which fully define the hfs
are @.,3z,32; @orv,3/2,3/2) Faiv,3/2,3/2 and b.

In the 2 2P state of lithium the two allowed J
states are J=% and J=3. Inthe J=3$ state, a,; has

TABLE IV. Field values of hfs crossings at Hy, Hp,,

I M; Present calculation Expt?* and Hyg in Li and Li" in G.
3 3 7.6003 7.5416£0.0078 I 12 I3
2 1 7.6490 7.5957 +0,0070 K]
3 -1 7.7107 7.6379+0.0127 Ll..7 H, 320.3027 2458.5962 18797.5097
Li H, 338,5100 2510.2758 18810.1120
3 av 7.6533 7.5916+0.0164 Li' H;  356.5468 2562,6140  18822.6596
1 1 2.9111 Li’ H, 356,9958 2563,0157  18824.3199
1 0 2.9206 Li’ H 375. 0787 2616.3140  18837.6418
Li’ Hg 393.4256 2670.8920 18 852.5679
L = 2.9159 Li® H, 355.7966 2535.5376 18 816.9852
aSee Ref. 1. The values quoted above are those from Li® H, 359. 8517 2548, 4474 18 817. 9094
Ref. 1 less the “off-diagonal hfs corrections” quoted there- 16 H, 363.9010 2561.4609 18 818.8349

in.
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not been measured. However, the value of a;, 4, is
known experimentally, so it can serve as one of the
three measured quantities, The relation between
@;,33,172 and the a; 3, 5/» can be found simply by
evaluating the diagonal matrix elements of the ap-
propriate hyperfine interaction in both the J, M,
representation and the My, Mg representation and
equating them. Thus we find

Qe 3/2,1/2= = 0c,3/2,3/2 5 (39)
Qaip,372,172= = 1084ip,3/2,3/2 » (40)
@orb,3/2,1/2= 20orn, 3/2,3/2 * (41)

And the desired relation is

A3/2,172= Q¢,3/2,1/2 + Cdip,3/2,1/2 + Forn,3/2,1/2
= =g 52,52 = 105,372,352 + 2 orn, 52,32 +
(42)

This relation between ag/, 1/, and the a; g5 32 is
exact. Unfortunately simple algebraic relations
between other measurable quantities and the hfs pa-
rameters can only be obtained approximately. In
this approach the two approximations used are (a)
treating the hyperfine interactions as perturbations
to the spin-orbit and electronic Zeeman effects and
(b) neglecting the effect on the wave function of vari-
ation in the magnetic field over the range of hfs
crossings in a fine-structure crossing. Both of
these approximations are well justified since they
represent changes of not more than 1%.

The perturbation procedure requires the com-
plete analysis of the spin-orbit and electronic Zee-
man level structure which is a straightforward
problem. Solving for the eigenvalues and eigenvec-
tors of this zero-order Hamiltonian requires at
most the diagonalization of a 2X2 matrix. The
eigenvalues Ey(J, M;, M;) thus obtained are

Eo(3, 3, Mp)=[¢/2+(gy+gs/2) upHIM;, (43)
Eo(%, 3, Mp)={-t/2+gy upH

+[982/4+8(gs —&gu) L H

+(gs —gu? LR H? V2 M, /2,

(44)
E(3, =2, M) ={~¢/2 - g, usH
+[98%/4-t(gs —gu) ua H
+(gs —gu) LR H?] V2 IM, /2,
(45)
Ey3, -3, M;)=[t/2 - (gy+8s /2) ppH M,
(46)

Eo}, 5, Mp)={-t/2+gyupH
'-‘[9§2/4+§(gs -gy) bpH
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+(gs —gu)? WG HE )2 M, /2. (47)

Eo%, -3, Mp)={-t/2-gyusH
-[9¢%/4~-t(gs —gu) hpH
+(gs —gu? uGH2 Y2} M, /2,
(48)

and the eigenvectors ¥y(J, M, M,;) may be expressed
in terms of M, Mg, M, basis states as

‘I’O(%’ %: MI): [1; %, M), (49)

‘I’o(%: %, M1)=A(H)IO, ‘é‘, M)

cB@|L, -5, My,  (60)
(&, -3, M)=CH)| -1, 3, M;)
+D(H)l09 _%, MI) s (51)
\IJO(%5 —%’ Mt)zf -1, _é_: M), (52)
\I’o(}é, %, MI)=_B(H)!09 %9 MI)
+A(H)‘ 1’ _%’ Ml) s (53)
Wy, =%, M)=-DW@H)| -1, 3, M;)
+c@lo, -3, Mp) . (54)

At zero magnetic field these coefficients are easily
found to be

A(0)=D(0)=(3)%, (55)
B(0)=C(0)=(3)"2 . (56)

The fields at which these fine-structure levels
cross may be determined by equating the eigenvalues
for the appropriate levels and solving for H. The
crossing at Hg, is between the J=2, M,;=-$% and
the J=%, M;=% lines. Thus we have the crossing
equation

EO(%s _%’ MI)_EO(%’ %; MI):O ’ (57)
and solving for H,; we obtain
, +1 ¢
H 1= _.g_M__z.&S_ = . (58)

gu(gu+8&s) us

In the same way, the crossing field at C2 is obtained
from

EO(%’ _%, MI)—EO(%’ —%’ MI)=0 ’ (59)
resulting in
1
Hep= S4X28s ¢/, (60)

8u&s
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To the accuracy inherent in this approximate pro-
cedure, these two expressions may be replaced by

Hey=2¢/3up, (61)
Hep=8/up . (62)

The coefficients in the eigenvectors are found at
these field values to be

A(Hey) =V fr, (63)
B(Hy) =V, (64)
C(Hgy)=86/[13-(73)V2]1 /2 (65)
D(Hm) - [37 _(73)1/2]1/2/[73_(73)1/2 ]1/3 , (66)
A(Hg,)=2/[17-3(17)V2 V2 | (67)
B(Hg,)=[13-3(17)V2]¥2/[17-3(17)*2]V2 | (68)
C(ch) = ‘/-% s (69)
D(Hep)=V'% (70)

With these zero-order eigenvalues and eigen-
vectors, it is possible to calculate simple relations
between measurable quantities and the a, ; ; using
first-order perturbation theory. In the case of lith-
ium 2 %P there are two additional quantities that
have been measured to good precision. These are
the average interaction matrix element of the anti-
crossing in Li® and the average field interval be-
tween hfs crossings at Hg, in Li’. Using the ap-
proximations stated above, expressions may be ob-
tained relating these two quantities to the theoreti-
cal parameters.

The average anticrossing interaction matrix ele-
ment at H, in Li® is defined by

I-1
Vie=(1/20) 2
Mp=al
x(¥ (G -5, Mp+1)| 5w (G, -3, M) .
(71)
This may be evaluated using the zero-order wave

functions and the M, Mg, M; matrix elements given
above, and reduces to

Var=VE(=ac,1,52+28ap,1,572 +Qorn,1,52) 5 (72)
to the approximation used here,
ay,1,92= 3 (L5 /1Y) @i, 32,92 » (78)
so that Eq. (72) may be rewritten
Var= G2 (0% /0 (= ac 52,32+ 2@asg, 372, 372
+Aor, v2,3/2) - (74)

In order to obtain an expression for the average
field interval between crossings, it is necessary
to first determine the crossing fields. Hyperfine
crossing field values may be found by solving for H
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in the hfs level-crossing equation to first order in
the perturbation
1

g [Ei3, -3, M))-E(3, 3, M)]=0. (75)
The subscript ¢ here refers to the order in the per-
turbation. For each value of M; Eq. (75) may be
solved for the crossing field H(M;) by the same
procedure and approximations used for Eq. (71).
The average field interval between crossings is
found from

I

(AH)u=(1/21) 2

[# (M, -1)-H(M,)], (76)
MI= I+l

giving

(AH),,= 332,32 =15aap, 52,372+ 15 Aorn, 372,32 .
v (10gy+gs)kp
(77)

It should be noted here that the field interval be-
tween crossings depends only on the hfs param-
eters and the quadrupole interaction. In the aver-
age over M, the quadrupole contribution vanishes.
In other words, the average field interval is depen-
dent only on the magnetic hfs parameters while de-
viations from the average are dependent also on the
quadrupole coupling constant.

Equations (42), (74), and (77) comprise three
equations in the three unknowns a; s/5 3/2 for ¢
=c¢, dip, orb. Inverting these relations gives

@o,3/2,32=(40C;+14C,+ 15 C,)/69 ,

@aip,3/2,372= (= 7C1 +C5 +6C,)/69 , (78)
@orv,3r2,372= (= 5Cy +4C5 +C3)/23
where
Cr== G2 (uf /u8) Vay
Co=(10gy + gs) hp(AH), /3 (79)

Cs=~ay, ;-

Measured values for the three experimental param-
eters are*

Vay=6.783£0. 069 MHz,
(AH)yy="7.5916+0. 0164 G,

and14
a3,2,1/2= 46.17+35 MHz .

Substituting these values into Eq. (78) yields the
results shown in the first column of Table V.

If these values are used in the procedure of Sec.
II as a test of consistency, the results obtained for
Vo and (A H),, are not in very good agreement with
experiment. However, following Brog, Eck, and
Wieder, we can improve this procedure further.
The most precise of the experimental quantities is
(AH),,. However, the relation obtained for (AH),,
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TABLE V. Hyperfine coupling constant results from
experimental approach expressed in MHz.
Eq. (78) LPD?
with 2nd order

Eq. (78)

—9.890£0.117 —9,806+0.117 —9.888+0.099

%,3/2,3/2
Gaip, 372,372 —1.915£0.034 —1,909+0,034 —1.869+0,019
8.638+0.039 8.728+0,087

—3.029+0.133

8.566+0.039
—-3.240+0,128 —-3,077+0.128

Qorb, 3/2,3/2
a3/2,3/2
2See Ref. 2.

is the least accurate since neglected effects are
largest at Hyy. In view of this a significant improve-
ment can be made by considering the second-order
perturbation effects of the magnetic hyperfine in-
teractions on (A H),,. The straightforward approach
might seem to require solving a level-crossing
equation to second order for the crossing fields;
however, the resulting equation for (A H),, is too
complex to be useful. An alternative approach
which preserves the simplicity of Eq. (77) is to cal-
culate the changes in the crossing field values due
to second-order perturbation terms and remove
these increments from the measured field values.
Thus the remaining part of the measured value of
(AH),, should be a more appropriate quantity to sub-
stitute into Eq. (77).

These second-order “corrections” to the mea-
sured field values may be derived starting with the
second-order level-crossing equation

2

IEO[EA%, -3, M) -EG, 3, M)]=0. (80)
This equation is solved for the crossing field in the
same approximations as used for Eq. (75). Using
gy=1 and g5 =2 the change in H(M,;) resulting from
the addition of second-order terms to the level-
crossing equation is

SH(M;)=[Ey(3, -3, M)-E,G, %, M)]/

[@C+BEHP) 1p]. (81)
The calculation of E,(J, M;, M,) is straightforward,
requiring again the use of the zero-order eigenfunc-
tions and eigenvalues and the M, Mg, M; matrix
elements given above.

The results for the second-order “corrections, ”
Eq. (81), to be removed from H(M,) are given in
Table VI. These values were obtained by using the
results in the first column of Table V for a; g2, 3/2-
Also included in this table are similar results ob-
tained by Brog, Eck, and Wieder by their two-pa-
rameter calculation. It is seen here that the effect
of using only two parameters to describe the hfs
represents a major change. In addition, the pro-
cedure of Sec. II was used to calculate approxi-
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mately these second-order effects of the magnetic
hyperfine interactions. This was done by eliminat-
ing off-diagonal hfs matrix elements from the calcu-
lation. These results are also given in Table VI

for comparison.

The second-order effects were removed from the
measured (A H),,, Eq. (78) reapplied, and the
resulting values given in the second column of
Table V. These values are much more self-con-
sistent. That is, when these values for a; 3/3,3/2
are used in the complete procedure of Sec. II, the
results for (AH),, and V,, are

(AH),,="7.5902 G,
V.y=6.781 MHz ,

in very good agreement with the measured values
used to obtain the a; 45 52. Also, if these new
values are used to repeat the calculation of second-
order terms, the results are identical to those ob-
tained initially so that iterative procedure is clearly
converged. In addition, calculated values of a; sz 32
are listed in Table V to show that agreement is-
within assumed error ranges.

The procedure given by Brog, Eck, and Wieder
for the determination of b is quite adequate. Using
our second-order corrections and their measured
values of the crossing field intervals at H, in 2 2P
lithium, we obtain b= -0.25+0.20. This corre-
sponds to their result of 6=-0.18+0.12, the only
difference being the choice between the use of col-
umns 1 or 2 in Table VI in the calculation. This
emphasizes the fact that the experimental precision
is really not adequate to determine the quadrupole
moment in lithium. However, in systems with
significantly larger electric quadrupole interaction
there should be no difficulty.

IV. CONCLUSIONS

We have discussed two alternative ways to link
experimental level-crossing data with a theoretical
analysis. From the theoretical point of view one
can utilize calculated values of the hyperfine coupling
constants to calculate the entire level structure in-
cluding all crossing data of interest. The experi-

TABLE VI, Comparison of second-order changes in
crossing-field values at Hgy in G.

BEW? Eq. (81) Sec. 1P
6H(3) 0.085 0.0713 0.0624
6H(3) -0.056 ~0.0735 -0.0718
OH(~3) —-0.136 —0.1477 —0.1642
SH(-$) —0.148 -0.1512 -0.1780

2See Ref. 1.
PTotal effect on crossing field values of leaving out off-
:diagonal hfs matrix elements in level-structure calculation.
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mental approach, on the other hand, offers two pos-
sibilities. One procedure is to obtain three or four
equations relating the appropriate hyperfine param-
eters to observable quantities and solve them as in
Sec. III above. If this procedure does not yield
adequate values for the parameters, then the results
can be used iteratively in the procedure described
in Sec. II until values are obtained which produce
level structure consistent with that observed. Of
course, this iterative approach could be used with
any initial set of hyperfine parameters available

for the system of interest. It should be stressed
again that the perturbation approach of Sec. III may
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be easily modified for any system in which three or
four experimental quantities are known. Also, as
theorists calculate hyperfine constants for new sys-
tems, they might be encouraged to provide, in addi-
tion, the predicted level-crossing data to assist
future experimental work.
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