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Two approaches to the analysis of level crossing are presented. A theoretical approach
utilizes values of the hyperfine coupling constants to predict the entire level structure of a
system, including all level-crossing data of interest. A second approach suggests a procedure
for determining hyperfine parameters with reasonable accuracy, based on three or four
measured quantities. Results of this procedure in 2 P lithium give the contact, dipole, and
orbital hyperfine coupling constants as —9.806 + 0.117, —1.909 + 0.034, and 8. 638 + 0.039
MHz, respectively. This work reemphasizes the fact that an accurate determination of mag-
netic hfs requires three parameters to fully define the three independent magnetic hyperfine
interactions.

I. INTRODUCTION

Level crossing is one of the most widely used
techniques for investigating the fine and hyperfine
structure of atoms. It is based on the fact that of-
ten, when an atom is placed in a variable magnetic
field, two levels may be tuned to the same energy
or "crossed" and that the magnetic field value of

the crossing may be detected experimentally. The
level structure and thus the crossing fields are
clearly related to hyperfine interactions in the par-
ticular atomic system. Thus, in theory this tech-
nique may be used to determine hyperfine constants.
In practice, however, experimentalists have ac-
curately determined the level-crossing data and
then obtained values for hyperfine constants from



THEORE TICAL ANALYSIS OF LE VE L C ROSSING ~ ~ ~

it in a rather crude way. Theorists, on the other
hand, have been content to calculate hyperfine con-
stants when in fact they could have gone on to pre-
dict in detail the level-crossing data.

The situation is illustrated quite clearly in the
case of the 2 P state of lithium. Accurate level-
crossing data for this system have been obtained by
Brog, Eck, and Wieder. ' However, their calcula-
tion of hyperfine constants from the measured data
is based on a two-parameter theory which is not
strictly justified from the form of the hyperfine
Hamiltonian. Recently, accurate values of the hy-
perfine constants have been calculated by two dif-
ferent many-body methods. " These papers, on
the other hand, made no attempt to relate their
results to quantities which are measurable in a
level-crossing experiment. Thus the accurate
analysis necessary to make a detailed comparison
of these results has not been presented.

It is the purpose of this paper to carry out the
theoretical analysis of level crossing in two ways.
First, it is possible to obtain all information about
level structure and crossings from first principles.
Thus based on values for the fine-structure splitting,
hyperfine constants, and quadrupole coupling con-
stant, all level-crossing data may be predicted.
In the second approach, a procedure is developed
to predict hyperfine constants of a P state quite
accurately based on three or four experimental
parameters. These two procedures are demon-
strated by application to the case of 2 P lithium.

II. THEORETICAL APPROACH

A. Matrix Elements

In order to reproduce theoretically the level-
crossing structure which is observed through ex-
periment, it is necessary to include a number of
interactions in the Hamiltonian. The terms required
are the spin-orbit interaction, electronic Zeeman
interaction, the three magnetic hyperfine interac-
tions, the nuclear Zeeman interaction, and the nu-
clear electric quadrupole interaction. This may
be written symbolically

K Xso +Knez +KC+Xop'b+X Qg +Xmz +KQ (1)

where X'„X'„„,and Xd1, are the contact, orbital,
and dipolar hyperfine interactions, respectively.
The explicit expressions for these interactions are

X.'.=gL S, (2)

BC z= p.~L H+ psS ~ H

PsPr
1 ~ 8(s&'rg)

5= 1

&Nz = —~rI'H ~

(6)

Ne NP 2

K(o= — Z Z s Ps(cos~)p) (8)
5=1 p=1 &f

Here f is the fine-structure splitting, p.r. = p. r, L is
the electron orbital magnetic moment, p. s = p, sS is
the electron spin magnetic moment, p. r = p.rI.is the
nuclear magnetic moment, a is the Bohr radius in
the appropriate system, and N, and N~ are the
number of electrons and protons in the atom, re-
spectively. These quantities may be further ex-
pressed in terms of fundamental constants. If the
angular momenta are measured in terms of 5, then
the magnetic moments expressed in terms of Bohr
magnetons p, ~ or nuclear magnetons p.„are

~L gN ~B

Ps= gsWa ~

~r=(lrN/1)I . ,

(10)

(11)

a =(1+m, /Mr)ao ~ (12)

For an atom in a magnetic field, the quantities
L, S, and I are constant and independent of the
field. Thus the eigenfunctions of K' can be ex-
pressed as linear combinations of MI„Ms, Mr
states for any value of the field. Therefore, it is
necessary to know the matrix elements of the in-
teractions in K' in the M~, Ms, Mr representation.
These matrix elements may be obtained by expres-
sing each of the operators in terms of irreducible
tensor components and applying the Wigner-Eckart
theorem. The reduced matrix elements may then
be expressed in terms of commonly used physical
quantities by evaluating the general matrix element
in the special case M~=L, Ms=S, Mr= I.

Evaluating the matrix elements is trivial for the
two Zeeman interactions. Assuming the direction
of the z axis is defined by the external field H, the
only nonvanishing matrix elements are

&Mz Ms, MrlX.'zl M„M„M,&

=(Zsl sMi+g'susMs)H

(Mr. Ms~ Mrl XNzl Mr Ms» Mr)

(13)

where g„= 1 M, /Mr w-ith Mr the isotopic mass,
gs = 2. QP2319, and p,„the nuclear magnetic moment
in nuclear magnetons. Also, in terms of the Bohr
radius for hydrogen ao, we have

K'=
C (4) ( p g/I) lr, „MrH . (14)

J
orb

The nonvanishing matrix elements of X,', are also
easily shown to be
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&Mz, Ms MrlXs'.
I Mz~ Ms~ Mr)=M, Msk ~

&Mz s 1, Ms +1, Mr I X~ I Mr„Ms, Mr) =s L~sg,
l

(16)

I„=[(L+M, )(L~ M, + i)]"'
and likewise for 8».

The four remaining interactions are somewhat
more complex, each being a scalar product of
tensor operators. Using the %igner-Eckart theo-
16Dl Bnd the tensor px'oduct formula

(I i i lz i iI)(S l lH, I IS) I, +8
[(2I) (28) ]z/s 48 e, r, 5+s ' ( )

%ith this I'esult the nonvRQ1shing matrix 616IQ6nts
of X,' are given by

(Mz, Ms, Mz I
X',

I Mz, Ms, Mr)

= Ms Mr (I + 8)8 a, , r, r.,s,

(M„M, +1, M, +1 IX.'I M„M„M,)

~ /r ( 1)Js-rz~(ay+ 1)1/s =S,I, s(L+8)s a«, r, z+s ~ (27)

~ ~

J res p Niz ~ mls

m, nz, -M
toys 152

The corresponding procedure for Xorb and ey
gives

these interactions may be expressed in terms of
reduced matrix elements. In the case of X,' this
16Rds to

&M„M„M, I x,'„IM„M„M,)

= MMMM/ (L+ S)L a„«,r, z, s, (aa)

(I l i iz z l i I)(8 l l H, i i 8)
r s [(2I) (28) ] 1/s

(Mz„Ms +1, Mr+i I X,'
I Mz, Ms, Mr)

8 I (Il iiz, i lI)(s fiH. l ls)
[(aI),(28),jz/'

wbere Pockhammer's symbol (a)„ is defizzed by«

(a)0=1 (a)«=a(a+1) ~ ~ ~ (a+~ -1)
and X', has been expressed in the form

&c= WS Hc-

The reduced matrix elements are evaluated by using
the empirical hfs Hamiltonian

]-g) ~ ~IO J. (22)

Hex'6 the subscx'1pt $ designates oQe of the three
magnetic hyperfine interactions. IQ particular for
s=c we hRve

&Z=L+8, Mr =J', M/=I
I a, , r r$ ~ 8

I
J=L+8,

Mr =Z Mr=I)

{23)

&M, =L, M, =s, M, =IIx, IM, =L, M, =S, M,=I)

4 8 (I i I lz r i i I)(s l f H, l i 8)
[(2I).(28).]"'

M+z1, M, «Mr+1 IX «I M~, Ms,

-L,I, ,(I+8)L a„„,z,.s,

&Mz, ~ Ms~ Mr I X@« I Mz, Ms, Mr)

=[3M', -L(L+ 1)]M,M,

"(L+8)[L(2L —i)S]-'a„,„„,
(M, +1, M, +1, M, I x'„„

I M„M„M,)

x (L+ 8)[L(2L 1)S] ad~& r z s

&M, ~a, M, +1, M, ~i IX'„, I M„M„M,)
,'I.,'S,I,(I.+ S)[I,—(2I,—1)S] 'a„, ..., ,

-

&Mz+1, Ms Mr~i IX'di, IMz Ms Mr)

=-,'(2M, +i)L,M, I,
x,(L+ 8)[L(2L - i)8]-a, „„,

&Mz, Msa1, Mr +1
I x~« I Mz, Ms, Mr)

= --,'[3M,' -I,(I.+1)]

».I,(L 8)[L(2L-i)8]-'a„„,,,... .

{29)

(32)

(33)

Since these two matrix elements must be equal, the
leduced matx'1x elements Rre found to be

where

L', =[(L+ M)(I, + M+i)(I, +M-1)(L~ M+2)]'».
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The same pxocedure may be followed in evaluat-
ing matrix elements of the electxic quadxupole in-
teraction. The I'educed matrix elements may be
evaluated by comparing with a matrix element of
the spin Hamiltonian

. 5'= as(as-i)z(az-i) [
(a5)

in the special case /=I +8, Mz=J, MI=I. The
resulting matrix elements are

&Mz Ms Mz I zc I Mz Ms Mz)

[sM,'-s. (s, + i)] [aM', -s{s+i)g
s, (aL, —i)s(as —i)

(Mz +1, Mg, Mzai I 3."oI Mz„Ms, Mz)

.&(aM, +i)(aM, +i)s„s,
s, (as. —i)s(as- i)

(Mg, +a, Mg, Mz Ta
I

3'-a'I Mz;, Ma, Mz}

I Piila

s.(as. —i)s(as- i)

In general, the theoretical calculation of level
structure is quite straightforward. The K' matrix
in the Mz„, Mz, MI representation is calculated and

its eigenvalues obtained as a function of the magnetic
fieM H. From this data any quantities of interest
may be deduced or the entire level structure may
be plotted. %hen carried out on R cornyutex, this
i8 R trivial proMenl requiring Qlalnly the diRgoQRl-

ization of an 18xj.8 or 24~24 matrix for the ~P

states of Lis and Li~, respectively.
A simple computer program has been written to

carry out this plocedure. This program requix'68

as input the yaxameters t;y pr, ~ p'sy pI~ ac, z, r,+8

uates a d diagonalizes the X' matrix. The program
will produce either a taMe of eigenvalues of X' as
a function of magnetic fieM or it will determine R

crossing ox' anticrossing field value to a specified
RCCUX'RCy

The level structure of a P state is mell. 1mown at
zero magnetic field, very low fieM, or very high

field. The region of interest, however, is the area
in between whex6 hyyerfine levels become reax-
ranged into different groups and crossings occur. By
plotting all eigenstates Rs a function of II, the entire
level structure may be displayed. The over-RQ pic-
ture is shown in Fig 1. This is a plot of the fine-
structure levels from zero field out to the stxong-
field region. Incorporating the hfs into this picture

for the most part simply replaces each of the fine-
structure lines by a closely spaced group of 2I+ j.
lines» IQ other words' lf one wex'6 to exRmlne ln
greatly expanded scale the actual structure of one
of the lines in Fig. 1 at almost Rny point, one would
observe a Set of 2I+ I lines either converging lin-
early toward or divex ging linearly from the fine-
Stx'uctux'6 line Rs l equired by @Nz ~

The points of particular intexest, then, in Fig. 1
are those places where the hfs behavior is different
from this; all such points are indicated on Fig. l.
There are three classes of situations. The first is
the weak-fieM area including the low-field transition
from (F, Mr) states to (Mz, Mz) states. These re-
gions are from 9 to about 10 0 for the J= ~ level
and up to about 1,00 6 for the J= 3 level. These re-
glonsp marked TI and T2~ l espect3vely~ on Flg»
have been examined in detail in the paste and the
weak-field level Structure of a 3P state is well un-
dex'stood. The 8econd type of special case ln Flg.
1 is a point where the hyperfine levels within a fine-
structure line axe interchanged. There are three
instances of this in a P state and they are marked
I I., I2, and IS in Fig. l. An example of this be-
haviox' is shown in detail in Fig. 2 for I= ~ where
the deviations of the hfs levels from the fine-struc-
ture line are plotted against II near the yoint IL
The final points of intex est are the actual cxossings
of fine-structure levels. There are two of these
in R I Rtomlc state as shown on Flg. I at C1 Rnd

C2 and examples of these are pictured in detail in
Figs. 3 Rnd 4. As seen in Fig. 3, the levels cross
uneventfully at C1. However, at C2 there are
several pairs of levels which interact, resulting
in the anticrossings seen as deflected pairs of line~
in Fig. 4. Expeximentally observable quantities
are indicated on Figs. S and 4»

0 %000 8000 I2000 l6000 20000

MAGNETIC FIElD (GAUSS)

FIG. 1. Fine 8trO.Ctgre Of Li 2
~he 8t101lg-field 1'egioll ~ith poiDt8 of iDt;el'e85 iDdlcRfed»
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C. Application to 2 2P Lithium

As aJl exexample of a calculation of level-structure
results in a8 in a P state, we have carried out the anal-

2 P
ysl8 descl lbed Rbove fol the cR86 f 1 the o l lum in the
2 P state. The values used for the hfs parameters
are those previously obtained by th 8 kn6 ruec ex'-

Rnd the v
o stone many-body perturbation theor .3 Th

e values used for the other parameters re-
quired by the computer program are listed for
reference in Table I. Based on th ' ton ese input values
we have calculated all quantities which might be
obsexvable in 2 P lithium.

The quantities of experimental interest at hfs
level crossings such as those at H~, are the field
intervals between crossings of hyp f' e
nents with the same M value Th ex'6 Rx'6 foux' such
crossings at H&& ln Liv Rnd three in Li:. Our cal-
culated field intervals between theen 686 cl osslngs
axe given in Table II. The measured intervals of
Brog, Eck, and Wieder in Li~ corrected f6 ox' ovex'-

p o e signals are listed for comparison. As
seen in Table II, all calculated results agree with
experiment to within 1%, the stated accuracy of
the hyperfine constants used. 2

At H~~, where a number of anticrossings occur,
the quantities of interest are the field int al

etween Rnticrossings as well as the interaction
matrix element V which causes th t6 Rn lcx'088lng

I ie Th
There Rre three antlcrosslngs at H L dcpln l Rn two ln
Ll . The cox'x'espondlng fleM lntervRls RIll matrix
elements are given in Table III. Th 6 Rn lcx'osslng sig-
nals ax e not well resolved experimentallyin 2 Plithi-

6 6 an lcrosslngum, making it difficult to determin th t'

~ 13
fleM lntex vR18 Rnd matrix elements» Bes. cen ly Eck
and Smith have developed a sophisticated computer
analysis of the measured data which will yield

ll 8 68 lIIlRte froIQvalues for these quantities. A f' t t'
this analysis indicates that the field ' t 1 b

Q
O
Q.

4776 4784

MAGNETlC FlELD (GAUSSj

4792 4800

plG. 4. Crossings and anticrossings of h8 0 /per 1ne levels
in Li at C2. Observable anticrossing interaction
matrix elements V& and crossing field 'nte val dA
are indicated,

baleen the twwo Rnticrossings in Lie is about 3-4
This is somewhat larger than our calculated value
of 2. 9 6 but could easil ci y come into good agreement
Rs their px'ocedux'6 ls pex'fected
vRlue fox' the Rvel Rge lnte

6 ~ ell' prellnllnRl
ex'Rc ion mRtrlx element

appears to be fairly stable at (6 763 +0.069) MHz.
ls 18 in quite good agreement with our aver

value of 6.703 MHz.
%1 Our RVera.ge

In Tableable IV we have given the fieM values of the
hyperfine crossings in the th hfree 8 lnversions in-

in lg. . It would bedicated at/I, I2, andrs in Fi . l. It
very interesting if an experimental t hn'ec lque could

e evised to observe these crossings. The c
a e ln provldlng additional checks on the de-

termined magnetic hyperfine and quadrupol li
constRnts.

6 coup ng
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TABLE I. Parameter values used in calculation of
level structure of Li 2 2P.

Units Ref. I=—32

PL pg
pg pg
Pl I"n

MHz

+c,y, 3/2 MHz

+ggy I 3/2 MHz

+org J 3/2 MHz
b MHz

a 0.999 908 8 0.999 921 8
b 2.002 3193 2.002 3193
c 2.170 903 0.822 019

6701.84 6702. 16
—3.6269 —9.5788
—0.7180 —1.8964

e 3.2838 8.6727
—0.003 8541 —0.20276

pi, =g~p~, where gz —-1—m~/Mi. m~ and p~ values used
are from Ref. 9 while isotopic mass values are from
Ref. 10.

pg =ggp~, where g~ and p~ values used are from Ref. 9.
'Pl= (IjtN/I), where p,„ is from Ref. 9 and pN values for

Li and Li' are from Ref. 11.
Values used are from Ref. 1.

'Values used are from Ref. 2.
fb=qQ, where q is from Ref. 2 and Q is from Ref. 12.

III. EXPERIMENTAL APPROACH: PERTURBATION
THEORY ANALYSIS

TABLE II. Field intervals between hfs crossings at
H&& in Li and Li .

Mr~=H~MI- 1) -H~MI~ {G

MI Present calculation Expt

Experimentalists could utilize the same procedure
described above to obtain values for the hyperfine
parameters from measured data. In this case they
would start with some trial values of a, I~ and b and

employ the procedure iteratively to obtain the best
fit to the level-crossing data. Good trial values
might be from Hartree-Fock calculations or more
sophisticated results where available. Alternative-

ly, an experimentalist can utilize an approximate
analysis to make a direct calculation of the hfs pa-
rameters. These may be either for use as trial
values for the above procedure or if the approximate
analysis is reasonably sophisticated they would be of

value in themselves.
We present here a perturbation procedure which

is a generalization of that utilized by Brog, Eck,
and Wieder' and is expected to yield hfs parameters

TABLE III. Field intervals and interaction matrix
elements of anticrossings at H&2in Li and Li',

Ll Li

V(

V2

V3

2.8686 G

6.6996 MHz
6.7067 MHz

7.7571 G
7.6116 G

21.5542 MHz

25.0273 MHz
21.7941 MHz

TABLE IV Field ~~l~~~ of hfs
and H13 in Li and Li in G.

of useful accuracy. The error introduced by the
analysis should not be more than a few percent.

The fact that three independent parameters are
required to characterize the three magnetic hyper-
fine interactions dictates that at least three equa-
tions relating the hfs parameters to measured quan-
tities must be known. The electric quadrupole in-
teraction requires a fourth independent parameter;
however, the procedure for treating it depends on
its relative magnitude. If the quadrupole interac-
tion is comparable to the three magnetic hyperfine
interactions, then four equations must be obtained
and solved for the four unknown parameters. In
cases such as Li 2 ~P where the quadrupole inter-
action is significantly smaller than the magnetic
hfs, a stepwise procedure may be used to obtain b

after first solving for a fiJ.
The analysis will be developed here as specifical-

ly applicable to the current experimental situation
in 2 3P lithium. It should be emphasized, however,
that the same approach is generally applicable in
any atomic system. Some measurable quantities
which derive from the hfs parameters are the hy-
perfine coupling constant in a specific J state, the
interaction matrix element between two anticrossing
hyperfine levels, and the average field interval be-
tween hyperfine crossings or anticrossings in a fine-
structure crossing. The theoretical quantities
which are used here and which fully define the hfs

c,3/2, 3/8& orb, 3/8, 3/8) diy, 3/8, 3/8]
In the 2 P state of lithium the two allowed J

states are J=-,' and J =&. In the J= —,
' state, a~~ has

3
2
1
2
1
2

av

av

7.6003
7.6490
7.7107

7.6533

2.9111
2.206

2.9159

7.5416 + 0.0078
7.5957 + 0.0070
7.6379 + 0.0127

7.5916+0.0164

See Ref. 1. The values quoted above are those from
Ref. 1 less the "off-diagonal hfs corrections" quoted there-
in.

Li
Li
Ll
Li
Li
Li~

Li'
Li'
Li

Hg

H2
H3

H4

Hg

H,

Hg

H2

H3

320.3027
338.5100
356.5468
356.9958
375.0787
393.4256

355.7966
359.8517
363, 9010

I2

2458. 5962
2510, 2758
2562. 6140
2563, 0157
2616.3140
2670. 8920

2535.5376
2548.4474
2561.4609

I3

18797.5097
18 810.1120
18 822. 6596
18 824. 3199
18 837.6418
18 852. 5679

18 816.9852
18 817.9094
18 818.8349
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@q~p, 3/2, »2 = —~0+mp, 3i2, 3i2 ~

aox b, 3/2, »2 2 0»s3/2s3/2 '

And the desired relati, on is

(39)

(40)

(41)

not been measured. However, the value of az»2 is
known experimentally, so it can serve as one of the
three measured quantities. The relation between

a&,3/2»2 and the a$ 3/2 3/2 can be found simply by
evaluating the diagonal matrix elements of the ap-
propriate hyperfine interaction in both the J, M~
representation and the Mz, M~ representation and

equating them. Thus we find

+(gs -gs) Ps& ] ]Mr/2 . (4'f)

Eo(s, -s, Mr) =$-&/2- gs us&

[9-~'/4-~(g, -g.) ~.~
+ (gs —g's)' Irs &']"s)Mr/2,

(48)
and the eigenvectors C's(Z, Mr, M,) may be expressed
in terms of M~, M~, M, basis states as

e,(-,', -'„M,)= ~1, —.', M,), (49)

e,(-,', —.', M, ) = a(z) ~o, —,', M, )
~3/2, »2 +0, 3/2, 1/2+ @dip, 3/2, lI 2+ ~orb, 3/2, 1/2

C, 3/2, 3/2 ~o~dip, 3/2, 3/2+ o b, 3/2, 3/2 '
+&(&)~1, --,', M,), (50)

(42)

This relation between a3/2 &/2 and the a& 3/2 3/2 is
exact. Unfortunately simple algebraic relations
between other measurable quantities and the hfs pa-
rameters can only be obtained approximately. In
this approach the two approximations used are (a)
treating the hyperfine interactions as perturbations
to the spin-orbit and electronic Zeeman effects and

(b) neglecting the effect on the wave function of vari-
ation in the magnetic field over the range of hfs
crossings in a fine-structure crossing. Both of
these approximations are well justified since they
represent changes of not more than l%%uo.

The perturbation procedure requires the com-
plete analysis of the spin-orbit and electronic Zee-
man level structure which is a straightforward
problem. Solving for the eigenvalues and eigenvec-
tors of this zero-order Hamiltonian requires at
most the diagonalization of a 2x2 matrix. The
eigenvalues Eo(J, Mr, Mr) thus obtai'ned are

Eo( ~s~ k~ Mr ) = [t/2+ (gjg + gs /2) Ir s & ]Mr p (43)

(E-„o-„M)r( L/2+g„—mrs-a

+[9&'/4+&(gs -gs) Vs&.(g, -g.)'I".ff']"' jMr/2,
(44)

—s Mr ) = ( —&/2 —gs lr a
[9~'/4-~(g. —g. ) ~.ff

+ (gs gs) OBE ] j™'r/2i

Eo(a
' Mr) = g/2 (gjr+gs l2) P sa] Mr

Eo(s, a, Mr) ( &/2+g u &ss— —

—[0&'/4+&(gs -gs) ~s&

y, (-'„--,', M,) = c(a)
~

—1, -'. , M, )

+D(H)~0, —s, Mr),

4s(—'„-s, Mr) =
~

—1, —s, Mr),

e, (-,', -'„M,)= -E(a)~0, —,', M, )

+X(a)~1, --,', M,),

y, (-'„--.', M,) =-&(&)~ -1, -', Mr&

(54)+C(H)i 0, -s& Mr) .
At zero magnetic field these coefficients are easily
found to be

A. (o) = D(o) = (-,')"',
E(0)= c(o)= (-,')"' .

(55)

(56)

1gs + 2gs
C2 g g B o

The fieMs at which these fine-structure levels
cross may be determined by equating the eigenvalues
for the appropriate levels and solving for H. The
crossing at H~& is between the J= —,', Mz= --,' and
the J= -,', M& =

& lines. Thus we have the crossing
equation

Es(s, —2, Mr) -Es(s, s, Mr)=0,

and solving for Hz& we obtain

~N + Rgb. .

grr(gjs+gs) Ps

In the same way, the crossing field at C2 is obtained
from

Es(L -s, Mr) -Eo(s, —~, Mr)=0,

resulting in
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To the accuracy inherent in this approximate pro-
cedure, these two expressions may be replaced by

in the hfs level-crossing equation to first order in
the perturbation

Hc1= 2&/sos ~

Hc2= &/us .
(61)

(62)

1

Z [z,(-;, --;, M,)-z,.(-,', —,', M,)]=o.
i "-0

{ve)

The coefficients in the eigenvectors are found at
these field values to be

A(Hc1) = v 'dml'

H{Hn) = &i'z

c(H„)= 6/[vs-(vs)"']'"

D(H ) [3V (Vs)1/2]1/2/[V3 (Vs)1/2]1/8

A(H„) = 2/[1V-3(1V)"']"',
~(H ) [13 3(1V)1/2 ]1/2/[1V 3(1V)1/2 ] 1/2

c(H„)= g-', ,

o(H„)= 4-', .

(63)

(64)

(65)

(66)

(ev)

(68)

(69)

(vo)

Kith these zero-order eigenvalues and eigen-
vectors, it is possible to calculate simple relations
between measurable quantities and the a& I z using
first-order perturbation theory. In the case of lith-
ium 2 2P there are two additional quantities that
have been measured to good precision. These are
the average interaction matrix element of the anti-
crossing in Lie and the average field interval be-
tween hfs crossings at H&1 in Li . Using the ap-
proximations stated above, expressions may be ob-
tained relating these two quantities to the theoreti-
cal parameters.

The average anticrossing interaction matrix ele-
ment at H&2 in Lie is defined by

The subscript i here refers to the order in the per-
turbation. For each value of M/ Eq. (Ve) may be
solved for the crossing field H(M/) by the same
procedure and approximations used for E11. (V1).
The average field interval between crossings is
found from

(~H)„= (1/2I ) [H(M, —1) -H(M, )], (Ve)

/So 3/213/2 (40C1+ 14CS+ 15 C,)/69

&d1„3/2, 8/2 = {—VC1+ CS+ 6CS)/69

a„„S/2 8/2= ( —5C1+4CS+CS)/23,
(78)

giving

(~H)
ss So/2. 8/2 15 /sd 31, 3/ 2, 8/8+ 15

carbo, 23,/3 2/

(10g//+PS)&2
(VV)

It should be noted here that the field interval be-
tween crossings depends only on the hfs param-
eters and the quadrupole interaction. In the aver-
age over Ml the quadrupole contribution vanishes.
In other words, the average field interval is depen-
dent only on the magnetic hfs parameters while de-
viations from the average are dependent also on the
quadrupole coupling constant.

E1luations (42), (V4), and (VV) comprise three
equations in the three unknowns a, 3/& 3/2 for i
= c, dip, orb. Inverting these relations gives

1/„= (1/2I) Z

.{e(-;--,, M, +1)~ Z:~e{-,', --,', M,)).
(vl)

C1 = (-')"'(I1—,'/u &) 1', .
C, = (log„+ g, ) Ps(/2 H)„/3

3 3/2, 1/2 '

(v9)

This may be evaluated using the zero-order wave
functions and the MI, M~, MI matrix elements given
above, and reduces to

V»= 0 3 ( /So, 1,8/2+ 2Sdi8, 1,3/2 Sorl41sS/2) ~

to the approximation used here,

+f, 1,3/2 gkPN / PNJ ~i, 3/2, 3/2

so that E11. {V2) may be rewritten

(&z/u «)( so, S/2, 3/2+ 2&d18, 3/2, 8/2
3 3/2 6 7

++or'b, S/2, 3/2) '

In order to obtain an expression for the average
field interval between crossings, it is necessary
to first determine the crossing fields. Hyperfine
crossing field values may be found by solving for H

Measured values for the three experimental param-
eters are '

V„=6.783~0. 069 MHz,

(b,H)„=V. 5916d:0.0164 0,
and'4

a3/2 „,= 46. 17~35MHz .
Substituting these values into Eq. (Ve) yields the
results shown in the first column of Table V.

If these values are used in the procedure of Sec.
II as a test of consistency, the results obtained for
V„and (/S H)„are not in very good agreement with
experiment. However, following Brog, Eck, and
Wieder, we can improve this procedure further.
The most precise of the experimental quantities is
{/SH)». However, the relation obtained for (/S, H)»



TABLE V Hgpelfine coupling constant results from
experimental approach expressed in MHz.

Eq. {78)

a 3~2 3~2
—9.890 + 0.117

Eq. {78)
with 2nd order
—9.806+0.117

LPD

a~ 3)2 3(2 —1.915+ 0.034 —1.909+ 0.034 —1.869 + 0.019

ao~b 3)2 3(2 8.566 + 0.039 8.638 + 0.039 8.728 + 0, 087

a3g g 3g 2
—3.240 + 0.128 —3.077 s 0.128 —3.029 + 0.133

~See Ref. 2.

This equation is solved for the crossing field in the
same approximations as used for Eq. (V5). Using
g„= 1 and gz =2 the change in H(Mz) resulting from
the addition of second-order terms to the level-
Crossing equRtion is

The calculation of E2(J', MJ, Mz) is straightforward,
requiring again the use of the zero-order eigenfunc-
tions and eigenvalu68 Bnd the M~, M~, Ml xnatrix
elements given above.

The results for the second-order "corrections, "
Eq. (81), to be removed from H(M~) are given in
Table VI. These values were obtained by using the
results in the first coluxnn of Table V for a&»2 3&3.

Also lnclUded ln this tBble are slnlllRI results Ob-
tained by Brog, Eck, Bnd Wieder by their two-pa-
rameter calculation. It is seen here that the effect
of using only two parameters to describe the hfs
represents a major change. In addition, the pro-
cedure of Sec. II was used to calculate approxi-

is the least Bccurate since neglected effects are
largest at Hz&. In view Gf this a significant improve-
ment can be made by considering the second-order
perturbation effects of the magnetic hyperfine in-
teractions on (hH)„. The straightforward approach
might seem to require solving a level-crossing
equation to second order for the crossing fields;
however, the resulting equation for (I,H),„is too
complex to be useful. An alternative approach
which preserves the simplicity of Eq. (VV) is to cal-
culate the changes in the crossing field values due
to second-order perturbation terms and remove
these increments from the measured field values.
Thus the remaining part of the measured value of
(EH),„should be a more appropriate quantity to sub-
stitute into Eq. (VV).

These second-order "corrections" to the mea-
sured field values may be derived starting with the
second-order level-crossing equation

V~~=6. 781 ~z,
in very good agreement with the measured values
used to obtain the u&, 3», 3». Also, if these new
values are used to repeat the calculation of second-
order terms, the results are identical to those ob-
tBlxled lnltlRlly 80 thRt lterRtlve proceduI'6 18 cleRx'ly
convelged. IQ RddltloQ cRlculRted values of 0] 3» 3Ip
are Usted in Table V to show that agreement is
within assumed errox ranges.

The procedure given by Brog, Eck, Bnd lieder
for the determination of b is quite adequate. Using
oui secoQd-oldeI' col rectlon8 Bnd their measured
values of the crossing fieM intervale at H~, in 2 3P
lithium, we obtain 5= —0.25+0. 20. This corre-
sponds to their result of b= —0.18+0.12, the only
difference being the choice between the use of col-
umns I or 2 in Table VI in the calculBtion. This
emphasizes the fact that the experimental precision
is really not adequate to determine the quadrupole
moment in lithium. However, in systems with
slgnlflcBntly 1Rx'gex' electric qUBdlupole lQtex'Rctlon
there should be no difficulty.

IV. CONCLUSIONS

We have discussed two alternative ways to link
experimental level-crossing data with a theoreticBl
BQRlysls. From the theoretical point of view Gne
can utilize ca1culated values of the hyperfine coupling
constants to calculate the entire level structure in-
cluding all crossing data of interest. The experi-

TABLE VI. Comparison of second-order changes in
crossing-field values at H~~ in G.

BEW Eq. (81) Sec. II"

6a(-,')
5a(-,')
aa(--,')
6a(--,')

0.085

—0.056

—0.136

—0.148

0.0713

—0.0735

—0.1477

-0.1512

0.0624

—0.0718

—0.1642

—0.1780

See Ref»
"Total effect on crossing field values of leaving out off-

diagonal hfs matrix elements in level-structure calculation.

mately these second-order effects of the magnetic
hyperfine interactions. This was done by eliminat-
ing off-diagonal hfs matrix elements from the calcu-
lation. These results are also given in Table VI
fol comparison.

The second-order effects mere removed from the
measured (d H)„, Eq. (VB) reapplied, and the
resulting values given in the second column of
Table V. These values are much more self-con-
sistent. That is, when these values for a, 3» 3~3

are used in the complete procedure of Sec. II, the
results for (bH)„and V,„are

(A, H)„= V. 5902 G,
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mental approach, on the other hand, offers two pos-
sibilities. One procedure is to obtain three or four
equations relating the appropriate hyperfine param-
eters to observable quantities and solve them as in
Sec. III above. If this procedure does not yield
adequate values for the parameters, then the results
can be used iteratively in the procedure described
in Sec. II until values are obtained which produce
level structure consistent with that observed. Of
course, this iterative approach could be used with
any initial set of hyperfine parameters available
for the system of interest. It should be stressed
again that the perturbation approach of Sec. III may

be easily modified for any system in which three or
four experimental quantities are known. Also, as
theorists calculate hyperfine constants for new sys-
tems, they might be encouraged to provide, in addi-
tion, the predicted level-crossing data to assist
future experimental work.
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