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A method is presented for the quantum-mechanical problem of one particle moving in the
field of bvo identical fixed centers. An equation for the problem is derived in both position
and momentum space as a special limiting case of our general method for the three-body prob-
lem. When applied to the H2'problem, using the Coulomb-Sturmian set as an expansion basis,
the method gives an infinite secular equation for the energy eigenvalues vrhich can be solved
@goggly in the limits as the internuclear distance goes to zero and to infinity. Numerical
results are also reported for the energy as a function of internuclear distance for the loz,
10gs 20' s and 20'g states of H2

I. INTRODUCTION

It is well known that in the H3' problem with fixed
Duc16l the vRI'lRM68 may be sepRI'Rted by using
prolate spheroidal coordinates'; an approximate
solution along those lines has been worked out.
It ls lDtex'estlng to Qote that eveQ though the vRrlR-
bles separate, an exact solution in the strictest
sense of the word is not obtained by that method.
This comes about because the energy eigenvalues
for the problem, which depend on the distance d
between the two centers, are the roots of an equa-
tion involving an infinite continued fraction. The
roots can be found exactly by that method for d= 0,
and a numerical solution is necessary for d4 O.

The solution by Bates, Ledsham, and Stewart has
come to be called "exact" because it separates the
variables„we also, with the above qualification,
will x'efeI' to lt lD that wRy. TheI'6 hRve Rlso been
a Dumber of other methods reported in the litera-
ture for H~'. '

The purpose of this paper is to present a general
expansion Inethod for the quantum-mechanical
problem of one particle moving in the field of two
identical fixed centers with minimal conditions on
the pair potential. The variables need not sepaxete
for our method to be useM. In this paper, we

apply it to Hz' as the most obvious example at hand.
As a bonus, we obtain the exget energy eigenvalues
for Ha'in the two limits as d 0 and as d-~, as
well as finding some new, simple, useful, approxi-
mate solutions for the energy eigenvalues and
wave functions in both position and momentum Space
for nonzero d.

The use of Sturmian functions is central to our
method Indeed the U86 of Stul InlRD functloDS lD

atomic and molecular physics is by no means new.
Hylleraas invest gated them as an expansion basis
for the helium atom in 1928. ' More recently, they
have found application in e-H scattering calcula-
tions, in our method fox the thI'ee-body problem,

and in conjunction with the Faddeev equations for
three-particle problems. Sturmian functions
have also been used to obtain lower hounds for the
Ha' energy spectrum. This approach is based on
the method of truncated operators, which is simi-
lar to but actually different from our treatment of
the integral equation for the Hz' problem given in
Secs. IV and. V.

One may well ask, why spend time on Hs' P One
reRSGQ fol doiDg so wRs to 866 lf the H~ problem
with fixed nuclei was recoverable from our general
tI'6RtIDent of the three-body problem ' Rs R speclRl
limiting case. More importantly, the method pre-
sented here can be generalized in a relatively
straightforward way to treat diatomic molecules
with more thRD one electloD. BUt fll"st lt must be
thoroughly tested for H2'.

II. REVIEW OF SOME THREE-BODY RESULTS

It has been shown by Eyges' that for a system
of three particles having the same mass and inter-
acting through pair potentials, the wave function
decomposes as a sum of three parts. For a sys-
tem of three particles of ambit'any mass governed
by a Hamiltonian of the form

we have shown that the exact wave function for the
problem also decomposes as R sum of three
parts. '0 Separating out the center -of -mass mo-
tloQ, the wRve fuDctlon fol bound states 18

412( r12 & Ps) + AS(res & P1) + 431( rsl & Ps) o

where the |t,i are different functions of their argu-
ments and the following sets of center-of-mass
coordinates Rl 6 used:

r.
g

= I' rg



Ps = rs —(m)rg + m)ry) (m) + my) ~

The thx'ee sets of coordinates are generated by
allowing j,j, and k to assume the values 1, 2, and
3 i.n cyclical permutation, and M is the total mass.
The p, &

are shown to obey a coupled set of eoiua-
tloQS,

If two of the three particles are identical (say,
particles 1 and 3) so that the total potential for
the problem is

v= v„(r„)+v„(-r„)+v„(I r„I ),

we then show that there axe only two independent
g&~ (i. e. , g&a= gss) and the wave function for the
problem is~'0

+'"=Cia (ria Ps)+AY(-ras, Pg)+&sf'(rsg, Pa),

where we have either symmetric (upper sign) or
antisymmetric (lower sign) solutions upon exchange
of particles 1 and 3. Note that the e and 0 super-
scripts of g» denote evenness or oddness of P»
with respect to its first argument. For bound-
state solutions, g, a and gs, obey the following set
of coupled equRtlons ln posltloQ space '

41K (r1a Ps) f fd

saba

d Ps s ls( (a)GG( r1a r1a Ps Ps) I. 4k (rla Ps) + Pll ( rss Pl) + gal ( rsl Ps)] (la)

4si' (rsi~ Pa) = —f fd sssd Pcs'si(rsvp)Go(rs~ -ran~ Pa Ps) Ik-h (r(ai Ps) + 4&S ( rss~ PD+4si' (ra&~ Pa)l

whel6 the Green s function for bound stRtes ls the solution to the following differential equatloQ'

fl( /;+ / )~,', ,+l[ /(;+ )+ / ]v.', -I'f']Go =-~( - l )~(P P.'), -

Rnd where

za=mIEI/aa, s„=mI'„/Ns,

and the choice of m sets the mass scale. It is easy to show that~

&r», Psl G.Ir(. , Ps, &=-&r~, Pil GoIr4, Pl&=-&rsi, PsI G.Ir4, »&

and that Go in the fraBle (res, Ps), for exaBlple, ls given ln integral forsn by

1 3 3 exp Qr. r13-rl3 +i& p3-p3
(2v)s f n )ts+ p tp+K'

n;q = a(m/m; + m/m~); P„=s[m/(m) + m, ) + m/ma] .

III. SPECIAL CASE v/3, :—0 AND

In this section, we derive Rn equation for the
wave function of a particle moving in the field of
two identical fixed centers a distance d apart. We
do this as a special case of our general formulation
of the three-body problem where the Pauli principle
on exchange of particles 1 and 3 has been included,
and where we set e3& to zero and take the limit as
ms/m~- 0. This special case represents the hy-
drogen molecular ion in the fixed-nuclei approxi-
mation, if we choose particles 1 and 3 as protons
Rnd pRrtlcle 2 Rs Rn electron.

We see immediately that if we turn off the inter-
action between the two nuclei by setting e» to zero,
then from Eq. (lb), Ps, is also zero, and for the
remaining equation we have

Ka (ria Ps)= ff d's'ls-d'Pseia(r fa)

wys
p

~ ~ g«o(ria-rsa Ps Ps)

X[4la (rla, Ps)+0'll ( r'as, PD-]

We set the mass scale by choosing m = ms and note
that the mass ratio ma/ms in Eq. (3) only appears
in Go and in the second term of the total wave func-
tion under the integral sign. Taking the limit as
ma/mg» Oq we get for Go as ma/ms~ 0 ~

»~Go(ria —r fa, Ps -») = &(rss Pl)go(r-„rs )-
(,)

1, xp[k ( „-,',)]
Zo la la (2 )s g (~a ~a)

Here, we have evaluated the integral on g in
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Eq. (2) explicitly, taken the limit as nz3/m, - 0, and

used the following representation for the Dirac 5
function:

(exp[ —(li&a) l 3 p' t j -)
4m& I p -p'I

Using the relations between the three sets of center-
of-mass coordinates, we also see that

P ~ P ~ I

11111p3= r 31 as iri3/3311~ 0;
p

WgP P»my, =-r31 as m3/m, -O.
Utilizing the above results, we obtain the equation

6 (r13i d)= f & r13V13(r13)z3(r13 r13)

x[rt)11-(r,'3 d)+pe (r,' +d —d)] (4)

where we have defined r,1 =d. Equation (4) is an
equation in position space for a function of one vec-
tor variable and a constant vector d as a yaram-
eter. It is important to note that in setting v» to
zero and taking the limit as m3/m, -0, the problem
loses much of its three-body character. Physically,
we now have a situation where one particle is moving
in the field of two noninteracting potentials a fixed
distance apart.

We find it convenient to transform Eq. (4) into
momentum space. Let us then define the following
Fourier -transform pair:

111" (r d) -=[1/(2m)"'] f d'kg"'"(k d) e'"'
y', -(k; d)-=[1/(2 )"']fd' q', -(;d) -'" '.

Performing the Fourier transform of Eq. (4), we

get

gati'e (k; d)

= —[(231)3(3' k3+E3e)] ' f f d'rd'f3'v1, (r)

xei3'(f ~ 3) [y+, (kl, d) ~ ei 1~ ~ dp+, (kP, d)]

In the equations of this section, we have used the
subscript and superscript B to denote the special
case of a three-body problem where v3g= 0 and

m3/m1 0. Equation (5) is the basic equation we
wish to investigate.

Some comments are in order concerning Eqs.
(4) and (5). The conventional treatment of the iden-
tical two-center problem is to apply the Born-Op-
penheimer apyroximation by first writing the Schro-
dinger equation for the motion of the less massive
particle in the field of the two identical fixed cen-
ters, imposing center-of-inversion symmetry or
antisymmetry on the wave function, and then solving
for the bound-state energies as a function of inter-
nuclear separation. We have adopted a different
approach. We started with the three-body problem
where the Pauli principle on exchange of the two
identical particles (the two centers) was incorpo-
rated. We then obtained an equation in either posi-
tion or momentum space for the first step in the
Born-Oypenheimer approximation procedure by
setting v31 to zero and taking the limit as m3/m1 0.
The two approaches to the problem are equivalent.

IV. SECULAR EQUATION FOR THE 0 STATES:
USE OF STURMIAN FUNCTIONS

In this section, we derive the secular equation
which results when Qe' (k; d) of Eq. (5) is expanded
in an infinitely denumerable, complete set of func-
tions in the Hilbert space I.'. We also show how
the pair potential can be eliminated from the in-
tegrations. In this paper we restrict our attention
to the o states of the diatomic molecular ion, since
a secular equation for the other states may easily
be derived using the method presented here.

For bound states, the total wave function is an
element of the Hilbert space L,3. It follows imme-
diately that &f&e' and g~' are alSO elementS in I,3.
For cr states we may, therefore, expand &t&'e' as
follows:

y"-(k d) =Z a"-(d)(-i)'& (k)(431)-'

Evaluating the integral over the potential gives'

y', -(k; d) = —[(2v)'(-,' a'+X', )]-'f d3u '~(k' -k)

@[ye-(k'; d)+ e'3"~y'e (k'; —d)),

where

3v(y)= f d'rv„(r)e"".
The total wave function in both position and momen-
tum space is

4'e' (r13, d)= pe' (r13,' 'd)age (r13+d; -d), (7)

e'"(k d) = y"-(k d)+ e'" ' y"-(k -d)
(8)

&& (2l +1)P, (cos8),

where the phases (-i)' are introduced as a matter
of convenience; the set $E „,f is any infinitely de-
numerable complete set of functions on the interval
[0, ~); 8 is the angle between k and d, and the
a"„', (d) are unknown coefficients which depend im-
plicitly on d as a parameter. Since we have set e»
to zero, the total potential for the problem is

v 3
= v12( r13) + v, 3( —r33) =—8"( r13) + ~31( r33) &

(10)

where u(r) is the shape of the potential and S is its
strength. Here, ej3 is quite general but must satisfy
the same conditions imposed by Kato. '
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The conventional way of finding a secular equation
for the problem would be to substitute Eq. (9) for

in Eq. (6), multiply through by

(+f)'E~...(k)P,.(cos8),

and integrate with respect to k. This would give
an integration over the Fourier transform of n&3.

Such an integration is often undesirable for singular
potentials, and how this can be avoided by using the
properties of the Sturmian set14 6 for the analogous
pair problem will be shown below.

Let our pair potential be nonzero and everywhere
attractive and let S„, (k) denote the Sturmian set
for it, then"

S:&"(y) = —[»„&/(2~)'(y'+ o")]

f dkk S„., ~ (k)(k +a )S„,.(k)=s X„., 5„e„, (IS)

to obtain

=a(S/4sX„...)ga'„', (i)'"(2l+I)I'„P;„,(d). (14)
ng

In Eq. (14), we have defined the following
expressions:

chosen along the e axis. Equation (12) is the secular
equation for the problem using our method, where
the set JLE~, }is arbitrary. If we so choose, we

may use the Sturmian set itself as an expansion
basis, set P = &, and make use of the orthogonality
condition in momentum spaces'':

& f f d'kd'ru(r)S„(„(%)e"" "', (ll) I'"„Fp«. —= f dkk S„, (k) S"„r(k),
0

(15)

where o.'~ is a positive number; the (X «}is a set of
positive numbers; a(r) is the shape of the pair po-
tential; and s is its strength. It can be shown that

for a given s there will be, in general, a countably
infinite set of positive numbers (X„,] (possibly de-
generate) for some positive number a~. If we now

imagine the family of Sturmian sets generated by

regarding + as a continuous variable, we see that
o' will depend on s and (X„,}through the solution
of Eq. (11):

n'= f{e,(X„, }) .
For most applications, the set (X«}is chosen such

that its smallest member (&,0) is 1.
The secular equation we propose, which elimi-

nates the explicit integration over se, is obtained by

multiplying Eq. (5) by ( —,k +Ke), substituting Eq.
(9) in (5), multiplying through by {+i)'S"„P,, (k)

XP;(cos8) and integrating with respect to k, and

using Eq. (11) to eliminate the explicit appearance
of the pair potential. Vie obtain the result

3 NB
Gage gg Cflsgt+gs +KB D+s gs+ge

—(S/2sz„. , )(Crikey «'+~ Dn'i «}1

= +(S/4ez „,)f dk' f, de k" "'"e[Z a'„', (i)'" '
ng

x(21+1)(k"+~'}S"„., (k')P'„, (k')P, (e)P,(e)],
(i2)

where the following families of integrals have been
defined:

C„"~..„,.—= f dk k S„'., ~ (k) E~, .(k),

+eel tnV f dk k SNa ft (k)E «~ {k}

In Eq. (12}, the Fourier transform of the pair po-
tential does not ayyear and the vector d has been

6'„P;„p =— f dkk~S'„. r (k) S"„,.(k),

I„;,.„,= f f, dkd~k'(k'+~')S„„, {k)S„",{k)

& [(k' —a') j(k'+ n')],

= 2"""[o'(n -I —1) I/v{n+I) t]~'nf to. "'.
The L~ are the associated Laguerre polynomials,
and the C~ are the Gegenbauer polynomials. The
functional relationship between &, s, and the set of
numbers fX»}is especially simple for the Coulomb

potential and glen by'

@PJ 2 (2O)

(21)

Closed-forQl expressions for the ~ n' g ng'~ ~f1' g'ngt ~

and I„eg.„, may easily be found and are given in the
Appendix.

The total wave functions in both position and mo-
mentum space are given by Eqs. (7) and (8), where
we have the following explicit expansions for the

x /eM8 P (e )P (e )

Equation (14) is the final secular equation for the

o-like states of the problem of one particle moving
in the field of iwo fixed centers when Qe is expanded

in the Sturmian set for the analogous pair problem.
If'we now specialize to the Ha'-like problem, our

pair potential is

n„(r) = Su(r) -=(Ze'm, /k')( —I/r),
and the Sturmian sets for the Coulomb pair potential
in position and momentum space are

S„,(r) = N„', r 'e ""L„-".", (2 -r)o, (Ig)
~ =(~(n-& -i) I/2[(n+I) i]'}"'(2a)"'~

S„",(k) = X„,[k'/(k'+ n')'"]C"', ,
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-I. I 0—

H2 la9 (d=2)

"EXACT" ENERGY

f" { i &) +ii ~ i fs' (ki' (-'u' A' ) (-'u' A' ) '

-I.08

-t.06

CL'
-too

LLI

-1.02

-{.00
0 I 2 3 4 5 6 7 8

a

FIG. 1. Energy as a function of o.2 and the order of
truncation for the &{7~ state of H~' for d=2. Distances
and energies are all in a. u.

H2' proble:
P" (r d)=Z a" (d)R (r)(4v)-'(2l+l)P (cos&)

(22)
y';-(k; a)=Z a „; (d')-( i)' S„,(f)(4,)

where the analytic properties of f'„' are unknown

and the subscript N denotes the set of negative-
energy solutions. We can say from Eq. (24) and
our knowledge of the asymptotic form of the wave
function in position space that if we extend the k
variable to the complex plane, the exact wave func-
tion must have a singularity where the energy de-
nominator vanishes. If we now demand that our
truncated wave function have this property, we ob-
tain the condition

2
+K&N Oe

Let's look at the implication of this choice for
o'. in the equation for Hz'. Using —,'n =K& and Eq.
(13), the secular Eq. {14)becomes

a„', (-,'&„., s'--,'Ss)=+ Za„", (i)"
48&„.)

x (2l + 1)I„,"„,(d) . (28)

x (2l+1)P, ( co8s) .

The a„i {d) and the K s(d) are founcl as implicit func-
tions of d for each o-like state from the secular
Eq. (14).

V. CHOICE OF o. AND EXACT SOLUTION FOR
d+0 AND d+ ~

In this section, we give a prescription for choos-
ing the parameter o.'in Eq. (14). We also show that
for the specific case of Hz', this choice of a gives,
in a very transparent way, the exact eigenvalues
to the infinite secular Eq. (14) in the limits as d- 0
and as 0~ ~.

The method presented in Secs. III and IV depends
on one arbitrary parameter a. All L expansion
methods have an inherent arbitrariness about them
in that, generally, an infinite number of different
sets of complete orthonormal functions can be used
which will all converge in the mean to the exact
eigenfunctions and eigenvalues for the problem. It
is therefore important to examine, for each value
of d, the dependence of the energy spectrum on u
for successive orders of truncation of Eq. (14). We
have done this for a few of the lower-lying negative-
energy states of H2' for several values of d and
found that, in all cases, the energies rapidly be-
come more and more independent of the choice of
& as more terms in the expansion of the wave func-
tion are taken. A typical example is shown in
Flg. 1.

From Eqs. {5) and (8), we see that the exact
wave function has the form

The roots of the polynomial in K~ other than the
trivial solutions are"

If,„(d- )=S/Eon

and the associated energy levels are given by

E„(d-~) = ——,'(m, Z'e'/8'n') . (29)

These are just the exact energy levels of the hydro-
gen atom for m, /m~ 0 with the correct degeneracy
on /, which is what we expect for the o~ and o„
states of H,

' vhen ~-~.
For d-0, we may not use Eqs. (AB) and (A9) of

the Appendix, since in deriving them @re made the
assumption that d4 0. Instead, we see directly
from Eq. (17) that

lim I„.",;„,(d) = t2/(2l+1)] 5,, , f,
"

dpi Ii'(ti' + o') S"„, (&) 3'„(&)
4"0

Using Eq. (13), we have

For d- ~, we get from Eqs. (A8) and (A9) of the
Appendix

limI„, "„,(d) =0 asd-~.
The secular equation for both the o~ and the 0„
states is

a„) (2 ~„(s —~g Ss ) = 0 .
Using the functional relationships for the Coulomb-
Sturmian set given by Eqs. (20) and (21) together
with our choice of n = 2K~, and setting the deter-
minant of the coefficients to zero, gives an infinite-
order polynomial for K~ in factored form:

g[nA', - (1/&2)SIC, ]= 0, d- (2V)
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TABLE I. Energies and coalescence constants for H2'(10~) at d =2.

Orders of truncation of gB labeled by n ~
2 3 5 6

Energy
(- K~B)

&(- K2B)

Coalescence
constant' (g ')

A(g ')

—0. 8148

—l. 1844

—0. 1844

0. 0844

—0.7952

0.2048

—1.0756

0. 0270

—0, 9630

0. 0370

0.0140

—1.0392

—0. 0392

0. 0082

—1.0300

—0. 0300

—1.0974

0. 0052

—0. 9987

0, 0013

0. 0037

—0. 9817

0. 0183

—1, 1000

0. 0026

—0. 9839

0, 0161

(G. = v 2 KB) 1.2766 1.4795 1.4815 1.4825 1.4832

KneI'gles aI'e I'epoI'ted ln a. u.
"Exact" energy to five figures is —l. 1026.

'Exact value for g+ is —1 0

where g" is given by

g" = Qa„"' (4w)
' —S„"(r) (@'")', (39)

Bt

O' '"=pa" (4') 'S (0)

+ Z (- I)'a„", (4tt) 'S"„,( )d( l2+1).

VII. RESULTS FOR H~+

We have examined all of the truncations of the
secular Eq. (14) for a maximum n from 1 through
7, and the results for the energy as a function of
d for the four lowest a -states are shown and com-
pared with the "exact" results in Figs. 2-5. For
each n ~ we kept all terms whose indices run from
(1, 0) through (n ~, n ~ —1). The total number of
terms kept in the expansion of &f&s for a given n

ls

total number=Z, n= —,'n ~{n,„+1).
In all cases examined, the energy improves as more
terms in gs are included. A large number of more
excited o -states were also found which are not

reported here. ' In general, as more terms are
included in the expansion, more o states appear,
and in the limit as n ~- ~, we would expect to see
all of them converge in the mean to the exact re-
sults. In all the calculations for each state, the value
of d and order of truncation n was chosen such
that

N=A Bn

For example, setting the determinant of the coef-
ficients to zero for the first truncation {n ~= 1) of
Eq. (14) for the o, states gives

Ks= See '(1+ ad)+ Sn--,'na. (42)

Imposing Eq. (41), we get a transcendental equation
for KB in terms of d:

2~a= SvYff, s &"s"{I+WZIf, d)+-SWZZ, . (43)

A numerical solution yields the roots for the first
truncation as a function of d shown in Fig. 2.

In Tables I and II, we give the energies and values
of the coalescence constants for the la~ and lc„
states at d= 2 for truncations labeled by n,„from
1 through 8. Note the gray in which the energies
converge as opposed to the oscillatory way in which

TABLE II. Energies' and coalescence constants for H&'{log at d=2.
Orders of truncation of g& labeled by n~~

Energy
(-EB2)

—0.4830

0. 1845 0. 0496

—0. 6410

0. 0265

—0.6514

0. 0161 0. 0099

—0.6609

0. 0066

—0. 6627

0. 0048

Coalescence
constant'(g )

4(g )

—0. 9178

0. 0822

0. 9829

—0.8610

0. 1390

l. 1117

—0. 8067

0. 1933

—0, 8047

0. 1953

—0, 8316

0. 1684

1.1468

—0.8601

0. 1399

1.1497

—0. 8774

1, 1513

Energies are reported in a. u.
"Exact" energy to five figures is —0.66754.

'Exact value foI g is —1.0.



TABLE III. Normalized coefficients a'„I for H2' (la~)

(o+,/g~) xlo for orders of truncation of $e labeled

3 5

10 + 2.8462
20
21
30
31
32
40

42
43
50
51
52
53

60
61
62
63
64
65
70
71
72
73
74
75
76
80
81
82
83
84
85
86
87

+1.7539
0+ 3151

—0. 1831
+ Q. 0427
+Q. 0455
+0. 0490

+1.76498
—0. 302 83
—0, 17851
+0.035 99
+0.04496
+0, 05144
+0.013 97
+0. 00873
—0. 002 16
—0. 017 18

+ 1.77165
—0.296 02
—0. 176 37
+ 0.03404
+0. 04622
+0, 05130
+ 0.013 11
+0, 00774
—0.001 83
—0. 01726
—0, 00080
—0. 002 92
—0.00607
—0. 005 43
+0.005 V2

+1.77567
—0.291 90
—0. 175 75
+0.083 89
+0.04649
+ 0.051 38
+0.01194
+0.00790
—0.001 83
—0.01731
—0.000 73
—0. 003 40
—0. 006 18
—0.005 28
+0.00573
—0. 002 68
—0. 002 79
—0. 002 38
+0.000 16
+0.003 83
—0. 001 78

+1.778 161
—0, 289 417
—Q. 175 276
+0.084 048
+0. 046671
+ 0.051 42 0
+0.011460
+ 0. 007 966
—0. 001 786
—0. 017 383
—0. 001067
—0. 003 544
—0, 006 112
—0. 005 329
+ 0. 005 764
—0. 002 560
—0. 002 914
—0.002 532
+0.000243
+0.003 859
—0.001793
—0. 001 134
—0. 000 729
+0.000186
+ 0.001 511
+0.001661
—0. 001 837
+0.000517

+ l.779 902
—0.287686
—Q. 174976
+0.084303
+0.046 816
+ 0. 051407
+0.011209
+ 0. 008 058
—0, 001821
—0.017 409
—0.001 856
—0, 003 570
—0. 006 107
—0. 005343
+0.005785
—0. 002 570
—0, 003 075
—0. 002 492
+ 0. 000227
+0. 003 887
—0.001805
—0.001087
—0.000 720
+0.000 080
+0. 001528
+ 0.001698
—0. 001860
+0, 000522
+0. 000161
+0.000462
+ Q. 000953
+0.00115l
+0.000255
—0. 001399
+0. 000717
—0. OQQ 14Q

~Values of (a'„&/4x) x10 are denoted in this column by the indices (g, l).

g' and g converge. The relatively poor values for m'ave function. Table IG shows the coefficients of

g are not surprising since the coalescence condition the normalized grave function for the la~ state at
constitutes a very severe test for any approximate d=2 for values of n ~ from 1 through 8. Tables I

"Exact"
VRlue

of
wave function"

Distance from
center along
internuclear

RxlS

TABLE IV. Truncated wave function compared to "exact" wave function for H2 (10~), 4=2.

Our VRlue of the wave function in posltlon spRce
for orders of tluncRtlon lRbelecl by gm~

0. 0
0. 5
l. 0
l. 5
2. 0
2. 5
8. 0
4. 0

0.267
0.826
0.516
0.275
0.144
0.076
0.040
0.011

0.819
0.340
0.381
0.187
0.090
0.044
0, 021
0.005

0.312
0.335
0.415
0.219
0. 116
0.063
0.034
0.010

0.817
0.339
0.434
0.226
0. 117
0.061
0.030
0.007

0.317
0.341
Q. 441
0.228
0.117
0.060
0. 031
0.008

0.317
0, 343
0.444
0.230
0. 119
0.061
0.032
0.008

0.316
0.844
0.446
0, 232
0, 120
0.062
0, 031
0. 007

0.316
0.345
0.449
0.233
0. 120
Q. 061
0.030
0.007

0.315

0.458

0.120

0.030
0. 007

Distance given in a.u. ""Exact"values taken from Ref. 2.
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FIG. 6. AVRve fUQction for H2+ (la~) in position Rnd
InornentUIQ space fox' several vahles of intex'QUclear sepR-
ration (4).

FIG. 7. Wave function for H2+(1(T„) in position and
InonmntUIQ space fol several vRIU68 of interQUclear Sep-
RX'ation (4)»

and DItogether with Egs. (7), (&), (22), and (23)
specify the eave function for the la~ state vpith d'=2
in both position and rnomentuIn space for various
Gx'der8 of RpproxlInatlon» TRM68 IV Rnd p coInpare
the truncated grave function to the "exact" one for the
lo'~ and lo'„States at d= 2, Figures 6 and V shoe the
value Gf the grave function Rlong the line between the
two centex"8 1n both posM1on space Rnd nMIHentum

spRce fox' the log Rnd 3.0'g 8tRtes fox' 86verRl values Gf

d,

Ne have given a new method for the problem of
one particle bound to tyro fixed centers. We have
shorn how to apply this method by treating Ha' Rnd

obtRlnlng the exact 6ne1gy levels 1n th6 liIMts
0 Rnd d~ '+p Rs @fell Rs soIIle siInple Rppx'oxl-

rnate wave functions in both momentum space and
posltlon spRc6 for d& O.

The most i.mmediate extension of this grork is to

Distance from
centex along
internuclear

axis 5

0.000
. 0. 193
0.414
0.285
0. 193
0.128
0, 084
0. 033

6

0. 000
0. 197
0.426
0.293
0, 197
0. 129
0.081
0.030

0.000

0.453

0.199

0.000
0.200
0.434
0.298
0. 198
0. 127
0.080
0. 030

0. 000
0. 169
0.383
0.262
0.175
0.115
0.075
0, 031

0, 0 0.000
0.5 0. 161
1.0 0.407
1.5 0.294

0.207
2, 5 0. 144
3, 0 0.098
4. 0 0. 044

Distance giveQ ln R U»

Exact" valUes taken from Ref 2

0.000
0.187

403
0, 274
0» 184
0.123
0. 082
0. 036

0.000
0.202
0.439
0.300
0. 198
0. 127
0.079
O. 030

0.078
0. 029

TABLE V. Truncated wave function compared to "exact" wavefunction for H&'(loJ, d=2,

Our value of tile wave function 1n poeitlon "Exact"
spRce for orders of trgncation labeled bV g~ VRIU6

Of
3 4 7 8 %'Rve fUQCtlOll



see how large a truncation pre can manage on exist-
ing computers and how good an answerer vve can get.
We are at present attempting to stxeamline our
calculations so that large matrix equations can be
solved. We believe it is a].so possible to general-
1ze the method «n a straightforward way so t at
diatomic molecules involving two electrons can be
treated, It is interesting to note from Figs. 1-5
and from Table I that we get an upper bound to
each energy level of H~' which improves with in-

creRslng older of truncation fox' Rll states examined
including those not reported here. It is possible
to show that Eq. (14) is e&univalent to a linear vari-
ational cRlculRtion.

We acknowledge the capable effoxts of Dr. R.
Ring and N. Grossbard, who have done some of

the analysis and all of the numerical computations
for this paper.

WPVEXO&X: INTEGRAI. S a„', „, , I'„', „, , A» ~. & „&

In this Appendix, we derive closed-foxm expressions for the three families of integrals defined by Kqs.

(»)-(»)

&„"&.„v=N„'vN„"&. j"dxx Q„'v{x)Q„'&.(x), 1„.;.„v=N„'&.N„'& j dxx Q„"v(x)Q„'&.(x)
0 0

Qn&{X) (p 8)&+8 n & I p+ 8 & n&

and the C~ axe the Gegenbauer polynomials. I et

y = (x' —&x')/(x'+ n')

dx= liR/(l —V)']i(i —y)/(l+ V)P" dV

pan. (f&/n A&n //8&'+828&'+4) j'1 d (l. 8)&'+1/8(l )/V+1 ( )gV Hi
( )

F.""&"v = (f&'.
"

&
f&'."& /o'" '2" ') j ',dy (l - y') v'1"(i+ v) C'&,"&. , (v)C&';!,(v) .

Tile 01'thogonality relation for the Gegenbauer polynomials is81

j', dv {i—v')' '"~',(v)&'„(v) = 0, q «
j', d. (l —.')'-'"[C;(v)]'=I 2'-"(~ »-l)./~ 9 ~No —l) 1'k .

A useful x'ecux'sion formulR for the C~ 18

2(P+ e)v C', (V) = (2P+ 4'- l)&', 1(v)+ (e+ l)C',.1(V) .
For all values of n and n such that In —ni &l, we see from Eqs. (A2)-(A4) that

j ' dv {i- v') ""(l—v) C„' &,(v) &„' &' 1(v) = 0 .
Since a similar result holds for the I' family of integrals, we have

eu ae I I
+n'&'nV Fn' Vn&' 0& I&& &8~ ~ l ~

{A4)

Fr+1&v &
+&8 ~a+1»»&'=(2IV& .1»'A &'/o' 2 ) j 1 dy{l v ) C -&'(v)~ -&'-1{v) ~

This integral is just zero by orthogonality, so me have the following result;

The «ntegra]. fox' 4(~~«))8~)» ls

/&
nu (i&/n A&e /

8 v+528& +4) j 1 dy (l 8)l +1/8(l V)g& +~i(v)c& +1
(V)

Using the orthogonality and the recursion relation, we obtain
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A an
(1&/e A(n y

2l'+522 v+4) 1'l dV (1 V2)l'+&/2[(s f &)/2&l][c('+l(V)]2

l&l l = g f(&l f )(&5+ f + 1)]

Therefore, me have the result

(~+&&&'nl' (n+&&l' l' 4(2 [(&5 f )(&+ f + 1)l

For &5'= n, using E(ls. (A2)-(A4), we obtain

Aaa = [gu )2~ 2('+522('+4] j'l d (1 - 2)l'+l/2[el'+l (~)]

%e may also show that

therefore, ere obtain

~A 0/0 ~I% & 2Q n) n)' i ng'n) 2SQ (A7)

For the family of integrals denoted by I„';„,(d), we may write from E(l. (17)

I„,„,=f&/„. , f(/„,a„, , „, , G„;;,„,= J,
"

1-', dxdzx'(x'+(&(')q„", (x) q„,(x) P; (z)&, (z) e""'*

The CP which appear in the Q„, are given by '

c„' l(x)= Z c„',x'.
p-0

Expanding each term in q"„,(x), using the binomial theorem, we obtain

x' n»l»1

q„;(x)=
(& „„,, Q C(n, f, n, p)x",+Q j"

where we have defined the constants C(n, f, ((, p) as

n g»1 p I
C(n f ~ P) = ~2("-'-&-» Q C2' g { 1) '-2- P

pP 0 pt/+ P P P

Substituting E(l, (Al) for the q„", and noting that the integrations and the summations may be interchanged
for all n', l', n, and l gives the following:

n'-V-1 n-5-1 $'+ 2p'+j +2p

Cn(n&= + + C{&l', f', (2, p')C(&5&l& (2, p) (fx, l dzx'(x'+(22)»- 2 „. ,2 P;(z)p((z)e""" .
p=0 ~0 X+(2

First, considex the case when I+I' is even. Then we have

1 1

J, dz P; (z)P((z)e'"~ = 2 J, dz P(*(z)P,(z) cos{xdz).

I.et us also write for the Z,

~,(z)=2 C(f, p)zo.

Substituting for the P, gives
n'-g'-1 n-l-1

( 2)p'+P +&+( l'+l & /2

G„,.„,=2 Z Q Q Z C(n', 1', n, p')C(n, 1, (2, p)c(/', q')C(l, q) (fx dz, , „,—,,—cos(x(fz)z'''5.
p'=0 p=0 q'=0 @=0 0 x +(x

1&(/riting (x )' = (x + (2 —(2 )' and expanding this expression by the binomial theorem gives

n' V»1 n r 1

G„",",,„,=2 P g Q P 2 C(n', f', e,P')C(s, f, ~,P)
p=O q*-"0 (2=0 f/=0

&(Cp', q')C(/, q)(- 1)"(2'" dx dz +2 n'en+( (+r-
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where l = p + p+ 1+ —,'(l + l). Remember the following formula:

" cos(xdz) w(dz) -'e " -' (m+ s —1)!
Jc (x +n ) (m —1)!(2o.), c s!(m —s —1)!

Inserting this for the integral on x, we note that the resulting integral on z may also be done and for d co
has the form

w -uug as , (1 —e ')
„,(nd)"(to+ 1 —u)! '

(nd) '
The final result for I„,„,with E+E even and d WO is

~0! ~0! 'n'-f'-1 n-l-i l'

ln' vnl 3+/'+I ~ ~ ~ ~ C(n 1 l ~ +s p )C(n& lt +s p)
Q' u'=O P=o q'=O q-O

tn-1

'(~') " " '"""c(l ', q') c(l, q) + X (- 1)"
r=0 s=O

(AS)

Here, we have defined the following expressions:

m -=n'+n p' p- —,'—(l'+-l)+ r, tc =n + n —p —p —a(l + l) + q + q+ t —s —1

The family of integrals I„,„,for / + l odd and d Wo may be done in a similar fashion. The answer is

P 2 C(n', 1', ~, P')C(n, l, ~,P)
Q P'=O P=O q'W q=O

m'-1
+ (

2)-n-n'+l+t'+a+A+0' C(l q )C(l q) p p ( ] )
r=0 s=O y

where the following quantities have been defined:

l -=P +P+1+ —,'(l +l —1), m =n +n —P —P —a(l +l —1)+r-1,

I I I 1 I
tc =n +n —p —p ——,(l +l —1)+q +q+r s —1-
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where T is the kinetic-energy operator. The natural
linear variational equations, however, involve the total

wave function

8
. (@BgA (z p~2)@ syll+ (v + y ) @ BqlL)

'9an" t ~

%6 may show the variational equivalence of these two
sets of equations by first substituting (1+0)g" for 4' s'+,
where 0 is the operator which exchanges particles 1 and
3, by noting that (1+ 0) V~&

4' s' = (V&2+ V23) + s'+, and by
using the transformation which relates an integral about
one center of the molecule to that about the other.
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The mean lives of six 3p levels of singly lonizedneon hRvebeeQ measuredusing the ionic beam
method with a gas target. Relative line intensities in two of the strongest multiplets have also
been measured. It was found that the levels were populated according to the weight 2J +1,where
4 is the quantum number for the total electronic angular momentum. The levels and the mea-
sured lifetimes in naQoseconds are 3p D A/2 (7.8+ 0.5), D5/p (7.6+ 0. 1), Ply (10.1+0.4),
P 3~2 (10.6+ 0.4), 2D

3~2 (8.43+ 0. 07), and 3p'2E
7~2 (8.5+ 0.3). The indicated uncertainties are

the standard deviations from the means; however, an additional uncertainty of approximately
10%should be added to each value in order to account for possible systematic errors. The re-
ported lifetimes were obtained by fitting appropriste line intensities with the sum of two expo-
nentials and a constant. Such fits adequately described the decay of the level populations of the
fast Ne' ions downstream from the exit aperture of the differentially pumped collision cell.

INTRODUCTION

The Atomic and Molecular Collisions Laboratory
at Louisiana State University has been engaged in
the study of some of the atomic and ionic multiplets
of RstrophyslcRl interest which have been tabulRted
by Moore. ' In this paper me report the measure-
ment of the mean radiative lifetimes of some 3P
levels of Ne rl. A preliminary report3 was made
on some of these measurements earber. Since that
report me have made additional measurements and
have modified somewhat our method of analysis.

The lifetimes mere obtained using the ionic beam
technique. The apparatus and the experimental
method used have been described in detail in an
earlier paper. Some modifications in both have
been made, but the general characteristics are un-
changed. Ne' ions mere accelerated to energies
between 20 and 30 keV, were magnetically analyzed
after acceleration, and mere directed through a dif-
ferentially pumped collision cell. Helium mRS used
for a target gas at pressures of around 10 to 40

rnTorr. The decay of the electronic levels which
were excited in the collision cell during collisions
with the target gas mas observed optically after the
ions emerged into a high-vacuum observation cham-
ber equipped with a fused-quartz window.

Radiation from the beam at a distance x down-
stream from the exit aperture mas collected by a
fused-quartz lens and focused onto the entrance
slit of a Jarrell-Ash model No. 82-000 half-meter
scanning monochromator equipped with an EMI
6256@8 photomultiplier. The intensities of prese-

. lected bnes were measured as functions of x. The
beam ions mere collected in a deep cup insulated
from the observation chamber, and the resulting
current was monitored with a Keithley model No. 410
micro-rnicroammeter and recorded by a. Keithley
Model No. 370 strip-chart recorder.

I. SOLUTION OF RATE EQUATIONS

The rate equation approximately describing the
process of excitation of the Ne' levels in the colli-
sion chamber ls given by


