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A method is presented for the quantum-mechanical problem of one particle moving in the
field of two identical fixed centers. An equation for the problem is derived in both position
and momentum space as a special limiting case of our general method for the three-body prob-
lem. When applied to the H," problem, using the Coulomb-Sturmian set as an expansion basis,
the method gives an infinite secular equation for the energy eigenvalues which can be solved
exactly in the limits as the internuclear distance goes to zero and to infinity. Numerical
results are also reported for the energy as a function of internuclear distance for the 1o,

loy, 20,, and 20, states of Hy'.

I. INTRODUCTION

It is well known that in the H," problem with fixed
nuclei the variables may be separated by using
prolate spheroidal coordinates!; an approximate
solution along those lines has been worked out, ?

It is interesting to note that even though the varia-
bles separate , an exact solution in the strictest
sense of the word is not obtained by that method.
This comes about because the energy eigenvalues
for the problem, which depend on the distance d
between the two centers, are the roots of an equa-
tion involving an infinite continued fraction.? The
roots can be found exactly by that method for d=0,
and a numerical solution is necessary for d# 0.
The solution by Bates, Ledsham, and Stewart has
come to be called “exact” because it separates the
variables; we also, with the above qualification,
will refer to it in that way. There have also been
a number of other methods reported in the litera-
ture for H," >*

The purpose of this paper is to present a general
expansion method for the quantum-mechanical
problem of one particle moving in the field of two
identical fixed centers with minimal conditions on
the pair potential. The variables need not separate
for our method to be useful. In this paper, we
apply it to H," as the most obvious example at hand.
As a bonus, we obtain the exact energy eigenvalues
for H," in the two limits as d- 0 and as d—», as
well as finding some new, simple, useful, approxi-
mate solutions for the energy eigenvalues and
wave functions in both position and momentum space
for nonzero d.

The use of Sturmian functions is central to our
method. Indeed, the use of Sturmian functions in
atomic and molecular physics is by no means new.
Hylleraas investigated them as an expansion basis
for the helium atom in 1928.° More recently, they
have found application in e-H scattering calcula-
tions, ® in our method for the three-body problem, ’
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and in conjunction with the Faddeev equations for
three-particle problems.® Sturmian functions
have also been used to obtain lower bounds for the
H," energy spectrum.® This approach® is based on
the method of truncated operators, which is simi-
lar to but actually different from our treatment of
the integral equation for the H," problem given in
Secs. IV and V.

One may well ask, why spend time on H,*? One
reason for doing so was to see if the H,"problem
with fixed nuclei was recoverable from our general
treatment of the three-body problem™!? as a special
limiting case. More importantly, the method pre-
sented here can be generalized in a relatively
straightforward way to treat diatomic molecules
with more than one electron. But first it must be
thoroughly tested for H,".

II. REVIEW OF SOME THREE-BODY RESULTS

It has been shown by Eyges!! that for a system
of three particles having the same mass and inter-
acting through pair potentials, the wave function
decomposes as a sum of three parts. For a sys-
tem of three particles of arbitrvary mass governed
by a Hamiltonian of the form

3 2
H=2 2+ D v,(F -%,)
-1 2my i<i AR i

we have shown that the exact wave function for the
problem also decomposes as a sum of three
parts. "' Separating out the center-of-mass mo-
tion, the wave function for bound states is

= ¢1z(¥12, -133) + ‘Pza('fzs, 7)1) + Z/’sx(-f'm s 52) s

where the §;; are different functions of their argu-
ments and the following sets of center-of-mass
coordinates are used:

-
R=(mT; + mT; + mT,)M™,

->

- -
T;j=T; =Ty,
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we then show that there are only two independent
¥;; (i.e., P12=1¥y) and the wave function for the
problem is" 0

Py =Ty = (m, Ty + mF) (my +my)™ .

The three sets of coordinates are generated by
allowing ¢, j, and k to assume the values 1, 2, and
3 in cyclical permutation, and M is the total mass.
The ¥;; are shown to obey a coupled set of equa-
tions, "1

If two of the three particles are identical (say,
particles 1 and 3) so that the total potential for
the problem is

WA = 9y (Trz, Do) £ Yl (-Tag, Pr) + ¥0°(Ta1, B2),

where we have either symmetric (upper sign) or
antisymmetric (lower sign) solutions upon exchange
of particles 1 and 3. Note that the e and o super-
scripts of J5, denote evenness or oddness of Yy,
with respect to its first argument. For bound-
state solutions, ¥;, and 5, obey the following set

V= Vig(T1a) + Vig( =TFag) + Vas(| Taa|), of coupled equations in position space™!?;

Uiy (T, Pg) = = f J‘ds"’fz d°p3 v12(T12)Go( F1a = Fiz, By —P3) (127 (F12, P3) £ 915 (=T hs, BY) + ¥51°(Thy, 23],  (12)
U$°(Tgy, o) = = f fdsyéldspé 031(T51)Go( T3y =Ta1, Po — ) [¥17(Fla, PP + P15 (= Ths, BY) + ¥§1°(T51, PD)],  (1b)

where the Green’s function for bound states is the solution to the following differential equation:

{3m/m; + m/mj)Vf“ +3[m/(m; +my) + m/my]V 2

and where

K%=m|E|/R% v;j=mV,/n?,
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K%}Gy = = 8(TF;; = F1,)8(5, - B0,

and the choice of m sets the mass scale. It is easy to show that’

<-f'12) le GO‘?{29T){33 >E <}%,51' Golﬁs 5505 (?31’-52| GO'?§1’55>

and that G, in the frame (1712, 53), for example, is given in integral form by

N | explik -, —Fl) + ik - (B =Y
Go(T12 ~T12, Ps“P§)=Wffd3kd3" XP[ a12k122+63:czz+K2 2 a] ’ (2)

where

o =3(m/m; + m/m,);

III. SPECIAL CASE vj3; =0 AND m,/m; >0

In this section, we derive an equation for the
wave function of a particle moving in the field of
two identical fixed centers a distance d apart. We
do this as a special case of our general formulation
of the three-body problem where the Pauli principle
on exchange of particles 1 and 3 has been included,
and where we set vy, to zero and take the limit as
my/my—~ 0. This special case represents the hy-
drogen molecular ion in the fixed-nuclei approxi-
mation, if we choose particles 1 and 3 as protons
and particle 2 as an electron.

We see immediately that if we turn off the inter-
action between the two nuclei by setting v3, to zero,
then from Eq. (1b), ¥s is also zero, and for the
remaining equation we have

V15" (Tip, Po) = — f f d*rpd’p (T 1)

By =3lm/(my +my) + m/m,] .

[
X Go(T1a=T15 Ps—P3)
X [P (Fia, PR £ (~Ths, P @)

We set the mass scale by choosing m =m, and note
that the mass ratio m, /m, in Eq. (3) only appears
in G, and in the second term of the total wave func-
tion under the integral sign. Taking the limit as
my/my~ 0, we get for Gy as my/my-0 ,

lmGy(Ty, —T 15, P =P 3)= (T ~Pgh(Ta=T1o)

where

eXP[iE . (;12 - Y‘iz)]
1 +K2)

- - 1
gg(rla—r{Z)EWfdsk

Here, we have evaluated the integral on « in
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Eq.(2) explicitly, taken the limit as m,/m,~ 0, and
used the following representation for the Dirac &
function:

. exp[—(l/ﬁ)lﬁ—ﬁ'l]) -
5(p-p )“hm( drelp-p'l as €0

Using the relations between the three sets of center-
of-mass coordinates, we also see that

-, _ >, >,
Fap3=—Tpp—Ta,

DO i |

limpi=T4 as my/m,~0;

as my/my—0 .
Utilizing the above results, we obtain the equation
(T )= = f A% {5v15(T ) g §(T1p — T {2)

[Py (Flos Dedy~(Fl+d; -d)], @)
where we have defined ?31 =d. Equation (4) is an
equation in position space for a fun_gtion of one vec-
tor variable and a constant vector d as a param-
eter. Itis important to note that in setting vs to
zero and taking the limit as m, /m,~ 0, the problem
loses much of its three-body character. Physically,
we now have a situation where one particle is moving
in the field of two noninteracting potentials a fixed
distance apart.

We find it convenient to transform Eq. (4) into
momentum space. Let us then define the following
Fourier-transform pair:

¥(F0)=[1/@n)Y? [ a’k¢y-(k; d)e T,
o5~(k; A=[1/@0)¥?] [ a% g~(F; D e FF,
Performing the Fourier transform of Eq. (4), we
get
¢%~(k; d)
= - [@rPG R +EY] [ [ d¥rd®hvu(T)
e &0 [gu-(k’; )zt ¥ dpy(k'; - D).
(5)
Evaluating the integral over the potential gives!?
¢oy7(k; D=-[@n(GR2+K )] [ d% 'w(k’ -F)
x[p~(k'; d)+ &' F3py-(k; )],
(6)

where
w(’)'f)=fd3'rvlz('f)e’;'; .
The total wave function in both position and momen-
tum space is
AT d)= Py ~(T1a3 E)i Py Ty +a§ -d) , (1)
25 Mgy @) = 0 (Frgy 2 P12 (Rags -3

(®)
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In the equations of this section, we have used the
subscript and superscript B to denote the special
case of a three-body problem where v3 =0 and
my/my—~0. Equation (5) is the basic equation we
wish to investigate.

Some comments are in order concerning Egs.
(4) and (5). The conventional treatment of the iden-
tical two-center problem is to apply the Born-Op-
penheimer approximation by first writing the Schro-
dinger equation for the motion of the less massive
particle in the field of the two identical fixed cen-
ters, imposing center-of-inversion symmetry or
antisymmetry on the wave function, and then solving
for the bound-state energies as a function of inter-
nuclear separation. We have adopted a different
approach. We started with the three-body problem
where the Pauli principle on exchange of the two
identical particles (the two centers) was incorpo-
rated. We then obtained an equation in either posi-
tion or momentum space for the first step in the
Born-Oppenheimer approximation procedure by
setting vs; to zero and taking the limit as m, /m,~ 0.
The two approaches to the problem are equivalent.

1V. SECULAR EQUATION FOR THE o STATES:
USE OF STURMIAN FUNCTIONS

In this section, we derive the secular equation
which results when ¢%(k; d) of Eq. (5) is expanded
in an infinitely denumerable, complete set of func-
tions in the Hilbert space L?. We also show how
the pair potential can be eliminated from the in-
tegrations. In this paper we restrict our attention
to the o states of the diatomic molecular ion, since
a secular equation for the other states may easily
be derived using the method presented here.

For bound states, the total wave function is an
element of the Hilbert space L2, It follows imme-
diately that ¢~ and P}~ are also elements in L2,
For o states we may, therefore, expand ¢y~ as
follows:

¢3-(k; d) =Z a7 (@)(= i) Fy o) g™
X (21 +1) Py(cos?) , (9)

where the phases (—:)’ are introduced as a matter
of convenience; the set {F 8, }is any infinitely de-
numerable complete set of functions on the interval
[0, «); 6 is the angle between k and d, and the
a;;"(d) are unknown coefficients which depend im-
plicitly on d as a parameter. Since we have set vy
to zero, the total potential for the problem is

0= 015(T1p) + 015( = Tp3) =Su(T15) +Su(=Tp) , (10)

where u(T) is the shape of the potential and S is its
strength. Here, v,, is quite general but must satisfy
the same conditions imposed by Kato. '?
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The conventional way of finding a secular equation
for the problem would be to substitute Eq. (9) for
¢%" in Eq. (6), multiply through by

(+3)*'FE 0 () Py (cosb) |

and integrate with respect to k. This would give
an integration over the Fourier transform of vy,.
Such an integration is often undesirable for singular
potentials, and how this can be avoided by using the
properties of the Sturmian set!*~!® for the analogous
pair problem will be shown below.

Let our pair potent1a1 be nonzero and everywhere
attractive and let $2,,(k) denote the Sturmian set
for it, then®

S (F) == [2s,, /(21)%(y%+a?)]

x [ [ d%d®ru(F)sE(R)et G- | (11)
where @2 is a positive number; the {1, }is a set of
positive numbers; #(T) is the shape of the pair po-
tential; and s is its strength. It can be shown that
for a given s there will be, in general, a countably
infinite set of positive numbers {r al } (possibly de-
generate) for some positive number a?, If we now
imagine the family of Sturmian sets generated by
regarding @ as a continuous variable, we see that
a2 will depend on s and {1, } through the solution
of Eq. (11):

azzf(s’ {Knl }) .

For most applications, the set {,; }is chosen such
that its smallest member (A,o) is 1.

The secular equation we propose, which elimi-
nates the explicit 1ntegrat1on over w, is obtained by
multiplying Eq. (5) by (3k%+K3%), substituting Eq.
(9) in (5), multiplying through by (+4)" S"‘,,. (%)

X Py, (cosb) and integrating with respect to k and
using Eq. (11) to eliminate the explicit appearance
of the pair potential. We obtain the result

a;i:[g l,t g +K D n? 10 n1*
"(S/ZS)\"II')(C;.::B,:M'+a2D‘:?11"11)]
bt 1 . YL
=£(S/48N o) | k' [ dzk %™ " [ ay ) !
- nl

X(21+1)(% "2 +0a?) 8%, (B VF2 (k") Py (2) Py(2)] ,
(12)

where the following families of integrals have been
defined:

cgé,.,,,,sfo”dkk‘* L (B)FE (),
D¥yue= [T AR RSy 10 (R)F 050 (B)

In Eq. (12), the Fourier transform of the pair po-
tential does not appear and the vector d has been
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chosen along the z axis. Equation (12) is the secular
equation for the problem using our method, where
the set {F# ,}1s arbitrary. If we so choose, we

may use the Sturmian set itself as an expansion
basis, set B= @, and make use of the orthogonality
condition in momentum space’®:

fo dkkaS:l;l (k)(kz +C¢2)Sfl‘,,(k) =s? Apep Spens (13)

to obtain

Fom (L 77 2 1
Zan',:(z Pn'l'nl' +KBA:?I'HI' —stén.n)
n

=+(S/4sX, .,.)Za @RI+ ) ). 1D

In Eq. (14), we have defined the following
expressions:

| R PT f dk k*Syo e () Sope () (15)

AGTy e —f dkk?Sprp (k) Spye (B) (16)

1% = fu f_l dkdz K2(k? + &) S% v (k) 8% ()

xet*2p, (z) P(z) . (17)

Equation (14) is the final secular equation for the
o-like states of the problem of one particle moving
in the field of two fixed centers when ¢ is expanded
in the Sturmian set for the analogous pair problem.

If'we now specialize to the H," -like problem, our
pair potential is

v1o(T) = Su(T) = (Ze2m, /H%)(~1/7)

and the Sturmian sets for the Coulomb pair potential
in position and momentum space are'®

§,(r)= =N vle=*r L3} (2ar)

(18)
o ={at~1 -1)1/2[(+1) ! P}Y2(2a)";
S% (k)= N& [/ (k2 + a®)2 Oy
* [(* = )/ (kF+ )], (19)

@ =920 [y —1 = 1) /mn+1) 1]V3nl a2,

The L% are the associated Laguerre polynomials,
and the C? are the Gegenbauer polynomials. The
functional relationship between @, s, and the set of
numbers {x ,;}is especially simple for the Coulomb
potential and given by'®

a?=s? ’ (20)

7\,,;=n . (21)

Closed-form expressions for the T'§%y e, AF%p 0y,
and 128, ,, may easily be found and are given in the
Appendix.

The total wave functions in both position and mo-
mentum space are given by Egs. (7) and (8), where
we have the following explicit expansions for the
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Hy g (d=2)

«  “EXACT"ENERGY
-L10}- —
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B
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T

FIG. 1. Energy as a function of @? and the order of
truncation for the 1o, state of Hy* for =2, Distances
and energies are all in a.u.

H," problem:
P(F; d)=2 a’y=(d)3%0r)(4n)1(21 +1) P, (cosb),
. nl (22)
3o(k; d)=2 a’y(d)( =)' S (k) (4n)
nl

X (21 +1) P;(cosb) . (23)

The a3~ (d) and the K %(d) are found as implicit func-
tions of d for each o-like state from the secular

Eq. (14).

V. CHOICE OF o AND EXACT SOLUTION FOR
d>0ANDd~> o

In this section, we give a prescription for choos-
ing the parameter @ in Eq. (14). We also show that
for the specific case of H,", this choice of a gives,
in a very transparent way, the exact eigenvalues
to the infinite secular Eq. (14) in the limits as d- 0
and as d—- =,

The method presented in Secs. III and IV depends
on one arbitrary parameter a. All L2 expansion
methods have an inherent arbitrariness about them
in that, generally, an infinite number of different
sets of complete orthonormal functions can be used
which will all converge in the mean to the exact
eigenfunctions and eigenvalues for the problem. It
is therefore important to examine, for each value
of d, the dependence of the energy spectrum on «
for successive orders of truncation of Eq. (14). We
have done this for a few of the lower-lying negative-
energy states of H," for several values of d and
found that, in all cases, the energies rapidly be-
come more and more independent of the choice of
@ as more terms in the expansion of the wave func-
tion are taken. A typical example is shown in
Fig. 1.

From Egs. (5) and (8), we see that the exact
wave function has the form

JASPERSE

(1M

éii'a_ji-(i—_d)
(GR2+K%y)

(24)
where the analytic properties of f% " are unknown
and the subscript N denotes the set of negative-
energy solutions. We can say from Eq. (24) and
our knowledge of the asymptotic form of the wave
function in position space that if we extend the &
variable to the complex plane, the exact wave func-
tion must have a singularity where the energy de-
nominator vanishes. If we now demand that our
truncated wave function have this property, we ob-
tain the condition

- > *y = E- a
oA D= ) e e

2

-30h + K25y =0. (25)
Let’s look at the implication of this choice for
@ in the equation for H,". Using $a®=K? and Eq.
(13), the secular Eq. (14) becomes

- S SN 4= N\
(s Ny % = 5 88) =4 » L{a,.', ()"
n n
X (21 +1)L,2%,(d) . (26)

For d- =, we get from Eqs. (A8) and (A9) of the
Appendix

Um 5%, (d)=0 asd—.

The secular equation for both the o, and the g,
states is

ay (30,;8%—4Ss)=0.
Using the functional relationships for the Coulomb-
Sturmian set given by Eqs. (20) and (21) together
with our choice of a?=2K2, and setting the deter-
minant of the coefficients to zero, gives an infinite-
order polynomial for K in factored form:

IlnK2 - (1/V2)SK5]=0, d=~< . (7)

n=1
The roots of the polynomial in Kz other than the
trivial solutions are!”

Ky (d==)=S/V2n (28)
and the associated energy levels are given by
E,(d~ )= -3(m,Z%* /1 *n®). (29)

These are just the exact energy levels of the hydro-
gen atom for me/m,,-— 0 with the correct degeneracy
on I, which is what we expect for the ¢, and o,
states of H," when d— .

For d—- 0, we may not use Eqs. (A8) and (A9) of
the Appendix, since in deriving them we made the
assumption that d# 0. Instead, we see directly
from Eq. (17) that

lim 1,52, (d) = [2/21+1)] 6., [, dk B (% + 0#) S5 (R) S5 (k)
a-o

Using Eq. (13), we have
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Hy log H; 20
-2.0 -0.5
A "EXACT" ENERGY
" " -04/|-
N,;_Ls EXACT" ENERGY _ nmax =7
% | Nxﬁ -0.3
> -1.0|- i
2 | omaxe! g -0z
- L = Z [ =3 =
Z-05 " Nmax =2 Dmar <5 S oL Nmax Nmax =5
L B I ]
% 17 2 3 a4 5 e %Iz 3 4 5
DISTANCE (d) DISTANCE (d)
FIG. 2. Energy as a function of d and the order of FIG. 4. Energy as a function of d and the order of
truncation for the lo, state of Hy" truncation for the 20, state of Hy'.
- OO
Lim Z,55,(d)=[2/(21 + 1)]51'132)%'1' B« and d )
a-0
Inserting this relation in Eq. (26), we obtain VI. COALESCENCE CONDITION FOR H,*
ali (5N s =5Ss) =% 5Ss(=1)"ay;. (30) It is well known that in an n-body problem where

the particles interact through Coulomb pair po-
tentials, exact conditions on the form of the wave
function may be derived in the limit as any two of

For the o, states of Hy" as d—~ 0, we obtain

o (K - VZSKg)=0, 1 even (31) the particles coalesce.'® That is to say, if parti-
n=1 cles ¢ and j come together, then the Coulomb singu-
Kg, (d=0)=v2(S/n), l even (32) larity in the pair potential determines the form of
¥ to the first order in IT; =%,|. The general form
~—0)= _ 1L 2,4/5-2,2 i—T
E,(d=0)= -3(mAZ""/n"n%), 1 even. (33) for the wave function as particles ¢ and j coalesce
is known to be'®
These are just the energy levels of a hydrogen-like U=vo[1+ 27 Zylhii7s5 +I~” .ﬁ” + O(fyizj)] s (37)
atom with charge 2 for m,/m,—~ 0. For I odd, there . .
are no nontrivial o, roots. For o, states for d- 0, where ¥, is the wave function evaluated at 7;; = 0;
we obtain from Eq. (30) Z; and Z; are the charges of the particles ¢ and j;

1;; is their reduced mass, and U;; is an unknown

© vector independent of T;; .
I (nK% ~vzSKp)=0 i3

ot , lodd (34) We have examined our expression for the wave
function in position space given by Eqs. (7) and (22)
Kp,(d=0)= vz (S/n) , lLodd (35) in the limit as either particles 2 and 3 coalesce or
E,(d=0)= - 3(m,42%*/n 22)  lodd (36) as particles 2 and 1 coalesce, and found that it has
the form of Eq. (37). For H,* with m,/m, -0, we

with no nontrivial g, roots for even l. Again, we
have the correct degeneracy on [ for this limit. S A -s.a . . . .
We see that our infinite secular Eq. (14) gives the oA =01+ g 74+ Fra - Upa+ O(113)] (38)
exact results in a simple way for H," whend -0

obtain

. 0301 H; 20,
Ha lo, "EXACT" ENERGY
-1.00 -0.25
— 075 | EXACT” ENERGY Pmax =7 020
o @ — Nxm
. T -ols5
> -0.50 o
(O] (4
« Nmax =2 . /_3 g -0.10 Nmax=7
Z -0.251 max hmak <5
-0.05 —
o L L L ! L i .
0 1 2 3 4 5 6 00 : 12 I 1 g I IT é
3 4 6
DISTANCE (d) DISTANCE (d)
FIG. 3. Energy as a function of d and the order of FIG. 5. Energy as a function of d and the order of

truncation for the 1o, state of Hy". truncation for the 20, state of Hy".
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TABLE I. Energies® and coalescence constants for Hy*(1o,) at d=2.
Orders of truncation of 5 labeled by 7y,
1 2 3 4 5 6 7 8
b
E(nergz-z —0.8148 —1.0182 —1.0756 ~1.0886 —1.0944 —1.0974 ~1.0989 —1.1000
— KB
A(-KY) 0.2878 0. 0844 0. 0270 0.0140 0. 0082 0. 0052 0.0037 0.0026
Coalescence, ~1.1844  —0.7952 ~0.9630  —~1.0392 —1.0300 —0.9987 —0.9817 ~0.9839
constant® (g7¥)
Algh —0.1844 0.2048 0. 0370 —~0.0392 ~0.0300 0.0013 0.0183 0.0161
o
(@=vVZ Kp) 1.2766 1.4270 1. 4667 1.4756 1.4795 1.4815 1.4825 1.4832

2Energies are reported in a. u.
P“Exact” energy to five figures is — 1. 1026.

where g™~ is given by
[ aan(Z350) N O
wSh = Z}a 3 (47)715%,(0)
iZ‘,( 1)la3(47) ‘IS‘;‘,,(d (21+1). (40)

VIL. RESULTS FOR H,*

We have examined all of the truncations of the
secular Eq. (14) for a maximum #» from 1 through
7, and the results for the energy as a function of
d for the four lowest o -states are shown and com-
pared with the “exact” results in Figs. 2-5. For
each ny,,, we kept all terms whose indices run from
(1, 0) through (my,,, #magx—1). The total number of
terms kept in the expansion of ¢ for a given ng,,
is

nmax

total number =27, 0= 3 Moy (Mg + 1)
n=1

In all cases examined, the energy improves as more
terms in ¢ 5 are included. A large number of more
excited o -states were also found which are not

°Exact value for g* is —1.0.

reported here.'® In general, as more terms are
included in the expansion, more o states appear,
and in the limit as n,,,~ >, we would expect to see
all of them converge in the mean to the exact re-
sults. Inallthe calculations for each state, the value
of d and order of truncation @ was chosen such
that

say=Kj,. (41)
For example, setting the determinant of the coef-
ficients to zero for the first truncation (1., =1) of

Eq. (14) for the o, states gives

K%=Sae ®(1+ad)+Sa-3a?. (42)

Imposing Eq. (41), we get a transcendental equation
for Ky in terms of d:

2K 3= SV2Kge % Y1+ V2Kypd)+ SV2Ky (43)

A numerical solution yields the roots for the first
truncation as a function of 4 shown in Fig. 2,

In Tables I and I, we give the energies and values
of the coalescence constants for the 1o, and 1o,
states at d=2 for truncations labeled by #,,, from
1 through 8. Note the way in which the energies
converge as opposed to the oscillatory way in which

TABLE 1L Energ'iesa and coalescence constants for Hy*(1,) at d=2.
Orders of truncation of ¥ labeled by 7y,
2 3 4 5 6 7 8
b
line;%’ ~0.4830 -0.6179 —0.6410 -0.6514 ~0.6576 ~0.6609 —0.6627
—4&B
A(- K% 0.1845 0.0496 0. 0265 0.0161 0. 0099 0.0066 0. 0048
Coalescence _, g17g ~0.8610 - 0.8067 ~0.8047 ~0.8316 ~0.8601 ~0.8774
constant®(g”)
AgY) 0. 0822 0.1390 0.1933 0.1953 0.1684 0.1399 0.1226
o
(@ =V2 Kp) 0. 9829 1.1117 1.1322 1.1414 1. 1468 1.1497 1.1513

3Energies are reported in a, u.
b“Exact” energy to five figures is — 0. 667 54.

°Exact value for g~ is — 1. 0.
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TABLE III. Normalized coefficients ay; for Hy* (loy) at d=2.
(ay,/4m) x10 for orders of truncation of ¥ labeled by #yay
2 3 4 6 7 8
102 +2.3462 +1.7984 +1,7539 +1.76498 +1.77165 +1.77567 +1,778161 +1.779902
20 —0,3246 -0.3151 - 0.30283 - 0,296 02 -0.29190 —0.289417 -0,287686
21 -0.2174 ~0.1831 -0,17851 - 0.176 37 -0.17575 -0.175276 -0,174976
30 +0, 0427 +0,03599 +0.03404 +0,03389 +0.034 043 +0.034303
31 +0, 0455 +0, 044 96 +0, 046 22 +0, 046 49 +0.046 671 +0,046 816
32 +0. 0490 +0,05144 +0.05130 +0,05138 +0.051420 +0.051407
40 +0.013 97 +0,01311 +0,01194 +0.011 460 +0.011209
41 +0.00873 +0,007 74 +0.007 90 +0.007 966 +0,008 058
42 -0.002 16 - 0.00183 -0,00183 - 0.001786 -0,001821
43 —-0,01718 - 0.01726 -0.01731 —-0.017383 —-0.017409
50 - 0,00080 -~ 0.00073 -~ 0,001067 —-0.001356
51 —0,00292 - 0,003 40 - 0,003 544 -0.003570
52 - 0.00607 -0.00618 - 0,006112 -~0,006107
53 — 0,005 43 - 0.00528 — 0. 005 329 —-0.005343
54 +0.00572 +0.00573 +0.005764 +0.005785
60 —0.00268 - 0,002 560 - 0.002570
61 —-0.00279 - 0.002914 - 0.003075
62 —0.002 38 —0.002 532 —0.002 492
63 +0,000 16 +0.000243 +0, 000227
64 +0, 003 83 +0, 003 859 +0, 003 887
65 -0,00178 - 0,001793 -0,.001805
70 —-0.001134 - 0.001087
71 - 0.000729 —-0.000720
72 +0,000186 +0.000080
73 +0,001511 +0, 001528
74 +0,001661 +0,001698
75 —0,001837 -0.001860
76 +0,000517 +0, 000522
80 +0,000161
81 +0.000462
82 +0, 000953
83 +0,001151
84 +0.,000255
85 -0.001399
86 +0,000717
_~_87 —0.000140

g" and g~ converge.

aValues of (a},,/47) x10 are denoted in this column by the indices @, I).

The relatively poor values for

g are not surprising since the coalescence condition
constitutes a very severe test for any approximate

wave function.

Table III shows the coefficients of

the normalized wave function for the 1o, state at
d=2 for values of ny,, from 1 through 8. Tables I

TABLE IV. Truncated wave function compared to “exact” wave function for Hy" (o), d=2.

Distance from Our value of the wave function in position space “Exact”
center along for orders of truncation labeled by 7pmay value
internuclear of

axis? 1 2 3 4 5 6 7 8 wave function®
0.0 0.267 0.319 0.312 0.317 0.317 0,317 0.316 0.316 0.315

0.5 0.326 0.340 0.335 0.339 0.341 0.343 0.344 0,345

1.0 0.516 0.381 0.415 0.434 0.441 0,444 0.446 0. 449 0,458

1.5 0.275 0,187 0.219 0.226 0.228 0.230 0.232 0.233

2.0 0.144 0.090 0.116 0.117 0.117 0.119 0,120 0.120 0,120

2.5 0.076 0,044 0.063 0,061 0.060 0.061 0. 062 0.061

3.0 0. 040 0,021 0.034 0.030 0.031 0.032 0,031 0,030 0.030

4.0 0.011 0.005 0.010 0. 007 0.008 0. 008 0, 007 0.007 0.007

apistance given in a.u.

bupyact” values taken from Ref. 2.
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+
HZ lvg (d=0) o8T+d

j\/\H; log (d=2)

Hj log(d=4)

FIG. 6. Wave function for H,* (1¢,) in position and FIG. 7. Wave function for Hy*(10,) in position and
momentum space for several values of internuclear sepa~ momentum space for several values of internuclear sep-
ration (d). aration (d).
and III together with Egs. (7), (8), (22), and (23) VIIL. DISCUSSION

specify the wave function for the lo, state with d=2
in both position and momentum space for various We have given a new method for the problem of
orders of approximation. Tables IV and V compare one particle bound to two fixed centers. We have
the truncated wave function to the “exact” one for the shown how to apply this method by treating H,* and
lo, and 1o, states at d=2. Figures 6 and 7 show the obtaining the exact energy levels in the limits
value of the wave function along the line between the d—- 0 and d-~~, as well as some simple approxi-
two centers in both position space and momentum mate wave functions in both momentum space and

space for the lo, and lo, states for several values of position space for d# 0.
d. The most immediate extension of this work is to

TABLE V., Truncated wave function compared to “exact” wave function for Hy"(10,), d=2.

Distance from Our value of the wave function in position “Exact”
center along space for orders of truncation labeled by 7y, value
internuclear of
axis?® 2 3 4 5 6 7 8 wave function®
0.0 0. 000 0,000 0. 000 0.000 0,000 0,000 0.000 0.000
0.5 0.161 0.169 0.187 0.193 0.197 0.200 0.202
1.0 0.407 0.383 0.403 0.414 0.426 0.434 0.439 0.453
1.5 0.294 0.262 0.274 0.285 0,293 0.298 0.300
2.0 0,207 0.175 0,184 0,193 0,197 0,198 0.198 0.199
2,5 0.144 0.115 0,123 0,128 0.129 0,127 0.127
3.0 0.098 0.075 0,082 0,084 0,081 0.080 0.079 0.078
4, 0. 044 0,031 0,036 0.033 0.030 0,030 0.030 0.029

3Distance given in a.u.
bépxact” values taken from Ref. 2.
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see how large a truncation we can manage on exist- creasing order of truncation for all states examined
ing computers and how good an answer we can get. including those not reported here. It is possible
We are at present attempting to streamline our to show that Eq. (14) is equivalent to a linear vari-
calculations so that large matrix equations can be ational calculation. %

solved. We believe it is also possible to general-

ize the method in a straightforward way so that ACKNOWLEDGMENTS

diatomic molecules involving two electrons can be We acknowledge the capable efforts of Dr. R.
treated. It is interesting to note from Figs. 1~5 Ring and N. Grossbard, who have done some of

and from Table I that we get an upper bound to the analysis and all of the numerical computations

each energy level of H," which improves with in- for this paper.

APPENDIX: INTEGRALS A, T 8%, AND 1535,

In this Appendix, we derive closed-form expressions for the three families of integrals defined by Eqgs.
(15)-(17):

AgSeny = Nis pNye | < dx PR 4 ()Q%(x), T&% =N 1 Ny j(')”dx 2% 1 (x)Q% (%)
where
am-1~-1)172

Q% (x) = x! cl = a? o Ezz(xm[__________._ nllat®? (A1)
nl (,f.+a2)1+2 n-1-1 jﬁ+a2 ’ nl ﬂ'(}’l+l)' M ’

and the C’; are the Gegenbauer polynomials. Let

y= (2 -a?/(F+a?) ,
so that

dx=[a/(1 -y =)/ +]2ay .

We obtain the following in terms of an integral on y:
A%, = (NS NG /a?V 5284 [T ay (1= 4?2 = 9)Cr )G a0)

T2% = (NS NS /Y 92204 [Lay (1 - 92" 214+ 9)Ch 1 ()G 1)

The orthogonality relation for the Gegenbauer polynomials is*!
JYay (1 =P =0, g#7 (A2)
[ ay (1= 2PV i) = {m2t g+ 2p - 1)V/q o+ Q0 - 11T} . (A3)
A useful recursion formula for the C% is?!
20+ qwCi(v)= (2p+ g - 1)Ch 1 (v)+ (g+ 1)Chui(v) . (A4)

For all values of »’ and » such that |n'—#%| >1, we see from Egs. (A2)-(A4) that
Sy 1= - e G ()=0 .
Since a similar result holds for the I" family of integrals, we have
A= TS5 =0, |n'=n|>1 . (a5)
For the case where »’ and » differ by 1, we have
T8y irmpe + QALY e = (N Gyy e N /a?V 922 ) [T ay (1= V)G )CL 4 ()
This integral is just zero by orthogonality, so we have the following result:
TS e == QAL 1wy
The integral for A&y 18
AL e = (NE oy NG @2V 522 [1dy (1= %) 21 =)C 3 WC )

Using the orthogonality and the recursion relation, we obtain
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Ay = = Ny e N /a®1 792274 [y (1= 2" 2 - 1%/ 2n][CL 1 () F,

A(u:t(fl)l’nl' == %[(ﬂ'- l’)(”l+ '+ 1)]1/2 .

Therefore, we have the result
QPAL e = =T & e == 10 (= 1+ 17+ 1)]V2 . (AB)

For n'=n, using Egs. (A2)-(A4), we obtain

A& e =[N/ 522 ] [ ay (1= D) VG0 = 2
We may also show that

azA:l?nl' = Fnaﬁn s
therefore, we obtain
(A7)

azA:l?nl' = Tpny = ina®
For the family of integrals denoted by I9.,,(d), we may write from Eq. (17)
W int =N p NG iSon s Goom = j ./ dxdz (¢ + a®)Qm 1+ ()Q(X)P (2)P(2)e™ % .

The C) which appear in the Qﬁ are given by*
C,hhx) = E Coyx?,

Expanding each term in @%,;(x), using the binomial theorem, we obtain
H n=1-1
x

sz(x)=m g Cln, 1, o, p)x*

where we have defined the constants C(n, I, @, p) as
n=l-1-p'
p _pl! .
Substituting Eq. (Al) for the %, and noting that the integrations and the summations may be interchanged
for all »’,1’, n, and [ gives the following:

n=l~1 P
C(n’ l: @, P) = QZ("-I-I-“ Z; Cg'lz l)p * ( I’)<
=0 =0

sl 1 nl-l w P R
= L 2 Ol o p)COn L, o, p) f dx f da (o + &) g gy Py(2)Py()e™*%
o b b

First, consider the case when I+’ is even. Then we have

1 1
f_1 dz P,.(2)P,(z)e*i*9 =2 fo dz P,.(z)P,(z) cos(xdz).

Let us also write for the P,
i

P,(2)=23 C(, p)2*

=0

Substituting for the P, gives

=i~ ln:_\l—l l_’\ L 2)# P11 /2
=2 L/ 2 24 2 CW, U, o p")Cn 1, o, p)C’, ¢')C(, q)/ dxf dz P cos(xdz)z?™ .
$=0  p=0 q'=0 q=0 (x*+af)

Wwriting (##)* = (x*+ a® - a?)! and expanding this expression by the binomial theorem gives
nfa1'-1 nal-1

A
Gr%m=2 2. 2. 2. 22 Cw'\l',a,p")Cu, 1, a,p)

' =0 $=0 ¢'=0 ¢=0 7=

Q" +q
<ot g0, - vra (1) [(axf az SRt

(=]
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where t=p’+p+1+ 5(1"+1). Remember the following formula:

= cos(xdz) dre m(dz)"te-2% ™ (m4s—1)!
b (P+a®)m "

(m=-1)12a)" ;3 slm—-s-1)!

(2adz)™ .

Inserting this for the integral on x, we note that the resulting integral on z may also be done and for d #0

has the form

w (@d)(w+1-u)!

(ad)unl

1 w 1 -od
w! 1-
fdzzwe'“””:-—e'“dz +w!( e )
0

The final result for I%%,, with I+’ even and d #0 is

‘g ,
aa _ 2mNgpNg TS st
n' 'nl~ 013+I +1

=0  p=0 q'=0 ¢=0

X(a2)-n-n’+t+l’+2+9+9'c(ll’ql)c(l’ q)i mz-l (_ l)r(t)

r=0 s=0

(m+rs—-1)!

w!
x ___e-ozd :
(m-1)12""s ! (m-s-1)! ( ug (w+1=u)!

Here, we have defined the following expressions:

m=n"+n-p'—p- 21U+ 1)+v,

The family of integrals I3

.

ZHiNoi N n’-1'-1n-1-1 1 I
LA AT

:‘O;'nl" 341" +1 Z Z Z

a =0 p=0 ¢'=0 ¢=0

-1
2. C',1',a,p")Cn, 1, @, p)

7

_ p-ad
(@d)™ 4 ! E———,——(lx d)f WJ . (A8)

w=n"+n-p'—=p-31'+D+q' +q+r—-s-1

% 1 for '+ 1 odd and d #0 may be done in a similar fashion. The answer is

Ct',l'ya,p")Cn, 1, a,p)

X (@2 R o, e, 2 L (=1)

« (m'+s=1)!
m 12" s (m - s - 1)!

where the following quantities have been defined:

t'=p'+p+1+31'+1-1),

t' m'-1 l”l
()

r=0 =0

(_ e‘““wZ' w'

, 1_ -ad
lﬁaﬁm%>, (A9)

m’ -s-u
-t (w,+1_u)! (dd) + W

m'=n"s+n-p'—-p-31'+1-1)+r-1,

w=n"+n~p'-p-30'+1-1)+q'+q+r-s-1
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9
dapyt

{y*, (T + B Y+ Vil S =0,

where T is the kinetic-energy operator. The natural
linear variational equations, however, involve the total
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wave function

3
daynit

(O S4 (T+RPY A+ (Vi + Vyp) ¥ S} =0,

We may show the variational equivalence of these two
sets of equations by first substituting (1 +0) y*~ for ¥ S+4,
where O is the operator which exchanges particles 1 and
3, by noting that (1+0) Vi, ¥ S+4=(V,, +V,y) ¥ $+4, and by
using the transformation which relates an integral about
one center of the molecule to that about the other.
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The mean lives of six 3p levels of singly ionized neon have been measured using the ionic beam
method with a gas target. Relative line intensities in two of the strongest multiplets have also

been measured.

It was found that the levels were populated according to the weight 2J +1, where

J is the quantum number for the total electronic angular momentum. The levels and the mea-
sured lifetimes in nanoseconds are 3p*D$,, (7.8+0.5), D3/, (7.6+0.1), 1Pg/, (10.10, 4),

P, (10.6+0.4), D3, (8.43+0.,07), and 3p'2F 5, (8.5+0,3). The indicated uncertainties are
the standard deviations from the means; however, an additional uncertainty of approximately
10% should be added to each value in order to account for possible systematic errors. The re-~
ported lifetimes were obtained by fitting appropriate line intensities with the sum of two expo-
nentials and a constant. Such fits adequately described the decay of the level populations of the
fast Ne® ions downstream from the exit aperture of the differentially pumped collision cell.

INTRODUCTION

The Atomic and Molecular Collisions Laboratory
at Louisiana State University has been engaged in
the study of some of the atomic and ionic multiplets
of astrophysical interest which have been tabulated
by Moore.! In this paper we report the measure-
ment of the mean radiative lifetimes of some 3p
levels of Ne 11. A preliminary report? was made
on some of these measurements earlier. Since that
report we have made additional measurements and
have modified somewhat our method of analysis.

The lifetimes were obtained using the ionic beam
technique. 3~" The apparatus and the experimental
method used have been described in detail in an
earlier paper.® Some modifications in both have
been made, but the general characteristics are un-
changed. Ne* ions were accelerated to energies
between 20 and 30 keV, were magnetically analyzed
after acceleration, and were directed through a dif-
ferentially pumped collision cell. Helium was used
for a target gas at pressures of around 10 to 40

mTorr. The decay of the electronic levels which
were excited in the collision cell during collisions
with the target gas was observed optically after the
ions emerged into a high-vacuum observation cham-
ber equipped with a fused-quartz window.

Radiation from the beam at a distance x down~
stream from the exit aperture was collected by a
fused-quartz lens and focused onto the entrance
slit of a Jarrell-Ash model No. 82-000 half-meter
scanning monochromator equipped with an EMI
6256QB photomultiplier. The intensities of prese-
lected lines were measured as functions of x. The
beam ions were collected in a deep cup insulated
from the observation chamber, and the resulting
current was monitored with a Keithley model No. 410
micro-microammeter and recorded by a Keithley
Model No. 370 strip-chart recorder.

I. SOLUTION OF RATE EQUATIONS

The rate equation® approximately describing the
process of excitation of the Ne* levels in the colli-
sion chamber is given by



