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The high-temperature part of the fluid-solid coexistence curve for Lennard-Jones systems
is investigated by "exact" Monte Carlo calculations. The interaction potential is separated
into its repulsive (4/r' ) and attractive (-4/x ) parts. The repulsive part is treated "ex-
actly" by Monte Carlo computations with a 864-atom system, and the attractive part is
treated as a perturbation. The "unpextuxbed" potential, which is homogeneous in the coordi-
nates of the interacting particles, has trivial scaling properties which greatly simplify the
computations. The attractive perturbation is txeated to first order; the second-order cor-
rections are shown to be very small at not-too-low temperatures. A high-temperatuxe equa-
tion of state ls obtained fol the Lennard-Jones Quid, which ls ln excellent agleement with
exact Monte Carlo computations at temperatures as low as about twice the critical tempera-
ture. Using the Hoover-Bee scheme, the free energy of the solid is determined and the
transition densities and pressures calculated in the fixst-order approximation, which is shown
to be quite satisfactory. The validity of Lindemann's melting "law" and a crystallization
criterion based on the maximum of the structure factor are investigated.

I. INTRODUCTION

One of the recent successes of "computer-ex™
periment" techniques applied to classical systems
of atoms interacting through "realistic" two-body
forces, has been the study of first-order phase
transitions. In Ref. 2, Hoover and Ree pro-
posed an ingenious method for the exact deter-
mination of the fluid-solid transition data. The
free energy of the fluid phase is readily evaluated
by integrating the equation of state computed by a
Monte Carlo or a molecular dynamics procedure.
Hoover and Bee showed that the solid-phase free
energy could be calculated by integrating the single-
occupancy (cell-model) equation of state computed

by a modified Monte Carlo procedure where each
atom is confined to its own cell of volume v = V/N;
here V is the total volume of the system, N the
total number of atoms of the order of several
hundred in calculations done on the currently
available fastest computers. In Ref. 3, Hoover
and Bee applied their method to the fluid-sobd
transition of hard disks and hard spheres. The
same method was applied by Hansen and Verlet
(this paper will hereafter be referred to as I)
to the melting transition of systems of atoms inter-
acting through the two-body Lennard-Jones (LJ)
potential

v(~) = 4e [(cr/~)" —(cr/r)']

In I, a similar method, based on a limitation of
the density fluctuations, was appbed to the study
of the condensation transition. The transition data
along four isotherms ranging from the triple-point
temperature to about twice the critical tempera-
ture was thus obtained and shown to be in good

agreement with argon data if the potential param-
eters e and 0 are given those values which fit
the second viria. l coefficient at not-too-low tem-
peratures, i. e. , o = 3.405 A, &/k = 119.8 K.
If quantum corrections are included, the agree-
ment with neon data, using the parameter values
& and cr determined under 0'K conditions, has
been shown to be equally good. '

It must be stressed, though, that the computa-
tions leading to the phase transition data, for I J
systems are rather costly, as complete-fluid and

single-occupa, ncy equations of state must be gener-
ated a,long several isotherms. On the other hand,
if one is interested in the high-temperature tran-
sition data, , a perturbation approach in powers of

P = 1/T can be expected to yield reasonable re-
sults. These considerations led us to investigate
systems interacting solely through the repulsive
4e(o/x)' part of the LJ potential, the attractive
part —4e (o/y)' being treated as a perturbation.
The unperturbed potential being homogeneous in
the coordinates of all the atoms, a simple scaling
procedure allows one to deduce results at various
temperatures and densities from the data computed
along a single isotherm. On the other hand our
detailed numerical calculations which will be pre-
sented here, show that including only the first-
order perturbation correction to various thermo-
dynamic quantities yieMs very satisfactory re-
sults at not-too-low temperatures (more precisely
temperatures ranging from about twice the critical
temperature upwards). Thus the complete high-
temperature part of the coexistence curve for I J
systems can be computed if the inverse-12 poten-
tial problem has been numerically solved for a
single value of P. Similar calculations have been
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done independently by Hoover and collaborators, '
who did not, however, study the effect of the at-
tractive inverse-6 part of the potential. Their
results for the inverse-12 potential (or "soft
sphere") problem are in remarkable agreement
with our data.

The second purpose of this work was to check
the validity of two empirical laws which predict
the melting and crystallization densities from
properties of one of two coexisting phases. The
first of these laws is the time-honored Lindemann
melting law whichwe checkedprimarily in the low-
temperature region. The second law is a criterion
based on the height of the first peak of the structure
factor in the fluidphase and is discussed in I where
it was shown to hold in the temperature range consid-
ered in that work. Here we shall discuss its ex-
tension into the high-temperature region.

The inverse-12 potential problem and inverse-6
perturbation are briefly discussed and all relevant
formulas written down in Sec. II. The numerical
results from our Monte Carlo computations are
presented in Sec. III. The melting and crystalliza-
tion criteria are discussed in Sec. IV where their
validity and limitations are examined. Some con-
cluding remarks are given in Sec. V.

Throughout this paper all quantities will be ex-
pressed in reduced units, i.e. , units where
o = e/k = 1. Densities (denoted by p) are expressed
in atoms per unit volume (i.e. , atoms/o'); note
that these densities are the same as those used by
Hoover et a/. which are taken relative to the den-
sity at which hard spheres of diameter o' would be
close packed; the 0' of Hoover et al. and our o'

differ by a factor of 2

II. INVERSE-12 POTENTIAL PROBLEM
AND PERTURBATION THEORY

Consider a system of N atoms interacting through
the LJ potential Eq. (1). The configurational part
of the partition function reads

Q„=—, exp —P Zv(r;, ) d'r, . .d'r„. .
v

At high temperatures (p«1) the atoms penetrate
deeply into the repulsive "cores" of their neigh-
bors and for small interatomic distances (r & 1),
the inverse-12 term of the potential clearly dom-
inates the inverse-6 term and it is reasonable to
consider this second term as a perturbation. All
quantities pertaining to the "unperturbed" 4/r'
problem will be denoted by the superscript 0.
Developing the exponential for the perturbation
terms one easily obtains"

Q»= Q»'(1 —& ('U&o+ 2 P' (U'&o +

where the brackets denote canonical average with

pp pp(0)

p p
+~( &0-~2p 4p2

x (&~ v)0 —&~&o &»o) (7)

%L=%L
' = &v&0+ P(&'U 'u)&0 &'U&0 &'u)&0) (6)

Here '0 is given by (4) and u) is

The second-order terms for Pp/p and 'LL, obtained
by differentiation of the corresponding term of the
free energy [i.e. , the last term of the right-hand
side of Eq. (6)], have a much more complicated
structure (with fluctuation terms of third order),
and their calculation by computer -'experimental"
methods is hopeless. We shall not consider them
here.

Consider now the unperturbed configurational
partition function Q'„"; changing to reduced dis-
tances

q, = p" r&

yN
we have Q~ '= —

& unit volume

&(d Q'l d gg
3 3

exp -4 p' 1 a'&y
f&j

(10)

The factor V"/Nl is simply the ideal-gas contri-
bution. Thus the excess free energy is simply a
function of the variable Pp, or its inverse TV,
l.e. )

P E' '
(P, p) = log p —1 + X' ' (Pp').

The first two terms of the right-hand side of
Eq (10) are the ideal-gas contribution to the con-
fxguratzonal free energy.

Similarly the equation of state reads

respect to the unperturbed system, U stands for

u =-Z— (4)
«g r'4

and Q'„', the unperturbed partition function, is
given by

(0)Q»' =&) exp -pZ La d'rL. . .d r». (6)
V

Taking the logarithm of Eq. (3), the free energy
up to second order in the perturbation 'U reads

Il = ——log Q» =&' +(u&0 —
g p'[(U &0

—(U&0]

(6)

Differentiation of the free energy with respect to
total volume and temperature yields the following
expressions for the equation of state and the in-
ternal energy, up to first order in the perturba-
tion:
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pp( 0&

P

p(0)
4 (0) I= 1+ 4Pp'&

= I+ v'" (Pp')

Also, the internal energy is

p@(0) — T —
(p ~(0)) pp4 y

(0) I
(pp4)

8

ar
l

I
8 '"

g)4g p

The primes denote first-order derivatives of the
functions with respect to their argument.

If the perturbation term (4) is added, it can be
easily seen that the first- and second-order cor-
rections to the free energy [Eq. (6)] are likewise
functions of Pp:

(13)

TABLE I. Convergence of the perturbation series in
the LJD cell model PF, PF ', and PF ' are, respec-
tively, the zero-, first-, and second- order contribu-
tions to the free energy divided by the temperature.
The sum of these three terms is to be compared to PE,
the free energy ior the LJ potential, divided by the tem-
perature.

r p ps(')

100 2. 6 8.131
1QQ 3. 11.043
50 2.4 9.882
50 2.8 14.169
20 2 10.965
20 2.4 17.201
5 l.4 10.717
5 l. 8 20. 212
2. 5 1.2 11.192
2. 5 1.4 16.350

py (1)

— 1.061
l.370
1.770
2.349
3.046
4.278
5.981
9.575
8.759

—ll. 670

py (2) p(y"&0&+y &&&+/&2)')

—0.002
—0 ~ 001
—0.003- 0.002
—0.007
—0.004
—0.030
—0.013
—0.057
—0.036

7.067
9.672
8.109

11.818
7.912

l2. 919
4.706

10.624
2. 376
4.644

7.067
9.672
8.108

11.817
7.911

12.918
4.702

10.622
2.366
4.638

pZ(" (p p) = p ('U)0 = p"' y
'" (pp') (14)

p~'" (p, p) = 'p'[=«')o —«}',] = p x'" (pp'»
(14')

and similar relations for the corrections to the
equation of state and the internal energy. (See note
added in proof. )

Thus it clearly appears that calculating the ther-
modynam'ic properties for an inverse-12 potential
system as well as the inverse-6 corrections along
one isotherm is sufficient to determine these same
properties for any temperature and density.

In order to have an idea of the convergence of
the perturbation series for the free energy, we
first made some cell-model calculations in the
Lennard-Jones-Devonshire (LJD) approximation, '

both for the inverse-12 and the complete LJ 12-6
potentials. The LJD cell-model approximation is
known to yield reasonable results for the solid-
state thermodynamic properties of systems with
hard-core potentials' and moreover allows one to
calculate very easily the free energy and equation
of state as well as the first- and second-order cor-
rections to the free energy. Some numerical re-
sults are gathered in Table I. They show that

down to reduced temperatures of the order of 2. 5,
inclusion of the first two corrections gives good
results for the free energy. These results can
only be considered as a hint for a good conver-
gence of the perturbation series in the high-den-

sity (solid-state) region. The convergence of the

series in the fluid region can only be checked by
direct numerical calculations based on computer
experiments. This will be considered in Sec.

III.

III. NUMERICAL RESULTS

In order to investigate the high-temperature
liquid-solid coexistence curve and transition data
along the lines developed in Secs. I and II, we

made extensive Monte Carlo calculations for the
inverse-12 potential system along the isotherm
T = 100. As already mentioned, similar computa-
tions have been carried through independently by
Hoover and collaborators' and their results pro-
vide a direct check of our "unperturbed" transi-
tion data.

A. Fluid Phase Results

The low-density fluid thermodynamic proper-
ties were calculated using the familiar Percus-
Yevick (PY)' integral equation for the radial
distribution function; the PY results proved ac-
curate up to densities of the order of O. V. At

higher densities the equation of state and other
thermodynamic properties were computed by the
Metropolis Monte Carlo method applied to a sys-
tem of 864 atoms enclosed in a cubic box with
periodic boundary conditions. For intermediate
densities, about 6 ~10' configurations were gener-
ated during each run, and about 10 for the highest
densities. The successive runs were carried
through for states whose densities differed gener-
ally by 0. 1 or 0.2. Thus, the fluid was gradually
compressed and the initial configuration for a
given density was obtained by scaling the inter-
partiele distances from the final configuration of
the preceding run. In each run, the first 1 —2x10'
configurations generated were not included in the
calculation of the thermodynamic averages in order
to obtain a faster convergence towards 'equilibrium".
The following properties were computed by aver-
aging over the remaining configurations: the equa-
tion of state pp( &/p, the internal energy

~(0& (Q 4y 10}
f&j

the first-order correction to the free energy [Eq.
(14)], the second-order correction to the free
energy [Eq. 14')], and the first-order correction
to the equation of state [Eq. (7)]. The first three
properties, which can be simply evaluated with
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II p1/4 L(23/2 ) I (3)p 1/4 (i8)

Equation of state(15) allows adirect comparison
of our data with the results of Hoover et al. ' ob-
tained for T = 1. Table III summarizes the compar-
ison. The difference between both sets of values

TABLE II. Fluid phase thermodynamic results along
the isotherm T=100 for the inverse-12 potential. P'g
is the internal energy divided by the temperature Pp/p
the equation of state; P&, the configurational part of
the free energy divided by the temperature [Eq. (17)];
PJ", the first-order correction to the free energy due
to the inverse-6 part of the LJ potential divided by the
temperature [Eq. (14)). The data at the lower densities
(up to p=0.6) were calculated with the help of the PY
equation. All other data are Monte Carlo results.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.2
1.4
1.6
1.8
2
2.3256
2.5
2.7

v=1/p

10
5
3e333
2.5
2
1.666
1.429
1.25
1.111
1
0.833
0.714
0.625
0.555
0.5
0.43
0.4
0.37

0.0306
0.0654
0.105
0.149
0.199
0.255
0.327
0.403
0.485
0.577
0.807
1.100
1.457
1.880
2.424
3.57
4.31
5.36

Pp/ p PQ'( 0)

1.122
1.261
1.419
1.597
1.797
2.021
2.307
2.612
2.94
3.31
4.23
5.40
6.83
8.52

10.70
15.28
18.23
22.45

—3.18
—2.36
—1.82
—1.39
—1.01
—0.66
—0.33

0
0.32
0.65
1.33
2.06
2.87
3.77
4.78
6.71
7.92
9.48

py&&)

0.0176
0.0368
0.0574
0.0795
0.103
0.128
0.157
0.187
0.218
0.251
0.324
0.407
0.498
0.597
0.707
0.908
1.025
1.171

the help of the radial distribution function, are ob-
tained with an accuracy of the order of 1% or bet-
ter by the Monte Carlo procedure; the last two
quantities which are related to fluctuations of '0

[Eq. (4)] and 'VP[Eq. (9)] are only obtained with an
accuracy of the order of 30/o, but this is not an
important drawback as we shall see. The essen-
tial numerical results of our computations for the
fluid isotherm are gathered in Table II. The equa-
tion of state for the "unperturbed" system (i. e. ,
the 4/4 12 potential) canbe written as a simple poly-
nomial in P"4p [remember Eq. (12)] which fits the
Monte Carlo data very well. The best fit is ob-
tained for the following polynomial:

PP(01/p I II P1/4p+ II P1/2p2+ II P3/4p3

+ ~ pp4+II p10/4 10

with B&= 3.629, B,= V. 2641,
B3 10 4924' B4 11 459' B]0 2 1V6 19~

While fitting the equation of state, the coefficient
of p was kept fixed and equal to the second virial
coefficient:

TABLE III. Comparison between the equation-of-
state data (inverse-12 potential) calculated from Eq. (15)
for T=l and the results of Hoover et al. (Ref. 5).

0.1
0.2
0.4
0.6
0.7
0.8

Pp/p from (15)

1.447
2.118
4.578
9.556

13.511
18.851

Pp/p from Ref. 5

1.448
2.121
4.557
9.460

13.469
18.762

P3/4p3 + C Pp4 + Q P5/4p5] (i8)

with Cj = 5. 3692, Cz = 6.5V9V,

C3 6. 1V45, C4 ———4 ~ 2685, C5 ——1 ~ 6841 ~

The corresponding first-order corrections to
the equation of state and the internal energy are
then obtained by simple differentiation of (18) with
respect to the density or the temperature. In fact
the calculation of the correction terms by this pro-
cedure is much more precise than the direct eval-
uation of the fluctuation terms present in Eqs. (7)
and (8) and which are obtained by the Monte Carlo
method with a precision of only about 30/o.

Lastly, we must consider the second-order cor-
rection to the free energy, as given by Eq. (14').
Again, because it is a fluctuation term it cannot
be calculated with a high precision within reason-
able computer times. But our Monte Carlo com-
putations yield rough values of this term which
show that it is small compared to the first-order
perturbation term and also slowly varying with the
density. More precisely, for T = 100, p = 2, we
find PE'0' = 4. 78; PE' '= —0. 71; PE '= —0. 003
(see Table III). At that temperature PE ' varies
between the extreme (approximate values) -0.002
and -0.004 over the whole density range. The
value = -0.004 is reached in the vicinity of p
= 1.6 and the correction (which is of course al-
ways negative) increases below and above that
density.

For T = 5, p = 1, the corresponding values are
easily calculated by the above-mentioned scaling

never exceeds 1% which represents roughly the
combined errors; as both sets of values are ac-
tually smoothed results, the agreement can be con-
sidered as excellent.

The 'unperturbed" configurational free energy
per atom is obtained by simply integrating (15):

pE'" /N = fo (pp'0'/p' —1)dp'/p'+ log p —i. (17)

The first-order correction to the free energy
[Eq. (14)] can also be easily fitted by a polynomial
in p p:

P~'"/~= P'" -[C P'"p+C P'"p'
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procedure [Eqs. (11), (14), and (14')1; we find

py& = 4. 5q, py"& = —3. 46, pE"' =-0.05.

The two results given for T = 100and T = 5 seem to
indicate a strong convergence of the perturbation
series over the whole high-temperature range.
This view is supported by close inspection of the
results at all densities. It should be stressed
however that the second-order corrections to the
equation of state and internal energy cannot be ob-
tained by numerical differentiation of the free-
energy second-order correction as the precision
of its computed values is very poor as already
mentioned. Nevertheless, the slow variation of
PEN' with density at fixed temperature ensures
that its derivative and hence the second-order eor-
reetion to the equation of state must also remain
small as compared to the first-order correction.

Another and more conclusive method to check

the convergence of the perturbation series is a
direct comparison of its predictions with an ex-
act Monte Carlo calculation of the thermodynamic
properties for a system of atoms interacting
through the complete LJ potential. At low densi-
ties the PY results are also helpful. A certain
number of high-temperature Monte Carlo results
for LJ systems of 32 or 108 atoms have been pub-
lished by Wood'~ for the three temperatures T = 5,
20, and 100. Ve have complemented those data
by some PY calculations and by Monte Carlo cal-
culations. We have also compared the perturba-
tion results with the LJ Monte Carlo results along
the isotherm T=2. 74, which were published in I.
This temperature cannot be considered as "high"
(for comparison we recall that the critical tem-
perature for LJ systems is approximately l. 35)
and we do not expect a Priori the perturbation
series to yield very good results at that tempera-

4Q
—l.47

1~ 11

-2.40
—1.47
-1.11

PY

(WI

PY
(W)

W
W

MC

W
W

PY
PY
PY
(W)
W
W
W

MC
PY
PY
(w)

W

PY
MC
MC
MC

MC
MC

0. 39
1.42
1.65
4. 05
5. 18
6. 09
6.84

2. 97
4.41
4. 77
9. 56

12. 23
14. 54
16.52
1.274
1.675
1.945

20

0. 104
0.374
0. 984
2. 67

-0.139
—0. 389

-0.32
1.03
2. 77
6. 06

-2.43
1y 12

-0.492
-0.370

0.468
-0.293
-0.686
—l. 291
—l.428
-1.492
—l.452
-1.259

-0.48
l. 20
3.51

—2. 55
-1.78
-0.85
-0.45

0.05
0. 69
1.51

-2.65
—l. 93
-0.98
—0. 57
-0.06

0.58
l.41

TABLE IV. Comparison of LJ thermodynamic properties from exact calculations (superscript ex) and from first-
order perturbation theory (superscript per). pp/p is the equation of state, p& the internal energy divided by the tem-
perature, pE the configurational free energy divided by the temperature. In the last column the labels indicate the
source of the exact LJ calculations: PY are Percus-Yevick equation results, MC are our own Monte Carlo computa-
tions, and W are the Monte Carlo computations of Wood (Ref. 15).

(pp/~)'" (pp/p)'" (p'8'" (p%~'" (p~)'" (ps) ~' Label

100 0. 2 1.221 1.221 0. 036 0, 037
0.4 1, 505 1.506 0. 085 0.087
0. 5 1.675 1.679 0. 115 0. 118

(1.671) (0. 114)
0.666 2. 007 2, 022 0. 175 0. 181 —0. 59 —0. 58

(2. oo2) (O. 175)
1 2. 95 0.361 0. 367 0.39
l. 333 4. 36 0.648 0. 664 1.43
1.4 4. 76 0.734 0.740 1.66
2 9.50 l.767 1.786 4. 07
2. 222 12.10 2. 346 2. 388 5. 21
2. 38 14.46 2. 887 2. 913 6. 13
2. 5 16.29 3.304 3.367 6.89
0. 2 1, 270 -0.005 0. 004 —2, 35
0.4 1.667 0. 009 0. 025 -1.36
0. 5 1.930 0. 026 0.045 -0.96

(1.888) (o. o21)
0.666 2. 508 2. 538 0. 083
1 4, 458 4. 50 0.348
1.333 7. 999 8. 08 0.942
l.765 16.68 16.73 2. 65

5 Q, 2 l. 169 1.199 -0.202
0. 5 1.867 1.869 -0.474

(1.865) (-0.468)
0.666 2. 628 2. 70 -0.584
1 6. 336 6.45 -0.456
l. 279 13.44 13.40 0.435

2, 74 0, 2 0. 992 1.052 -0.440
0 l. 20 1.22 -0.865
0.7 2. 59 2. 56 —l.424
0. 8 3.61 3.60 - l. 562
0. 9 5. 14 5.11 —l. 609
1 7. 37 7. 23 —l. 525
1.1 10.17 10.15 -1.351
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ture. We have nevertheless made the comparison
because the LJ data along the 2. 74 isotherm are
rather complete, which is not true of the higher
isotherms. The data along the isotherms T = 5

and T = 20 . taken from Wood and our own PY and
Monte Carlo computations are insufficient to allow
for a calculation of the free energy through Eq.
(17). For T= 100, results are also somewhat
scarce but sufficient for a rather unprecise evalua-
tion of the free energy (the error should however
not exceed 1%). In Table IV the thermodynamic
data from first-order perturbation theory and
from the exact LJ computations are compared for
the above-mentioned temperatures. At T = 100
there seems to be no significant difference be-
tween the exact and the perturbation results, ex-
cept at the highest densities. But we believe the
slight discrepancies at those densities to be due
« the inaccuracy of the equation-of-state results
from Wood's work which appear to be systemati-
cally too low especially at high density, for each
of the three isotherms. This view is supported
by a close investigation of Wood's data in the vi-
cinity of our own results, e.g. , the points (&
=100, p= 1.4), (T= 20, p= 1.765), (T= 5, p
= 1.279) and also the PY point (T = 20, p = 0. 5).
At T=20 the PY result is certainly very precise
at the relatively low density 0. 5; as a matter of
fact the PY result for the equation of state can
only be lower than the exact result, but here the
converse is true which indicates that Wood's value
is certainly too low at that particular density.
The reason for the apparently systematic error in
Wood's equation-of-state data can be due either to
the relatively small size of his systems (32 or
108 atoms as compared to our 864), or to an in-
adequate choice of the initial configuration (which
is generally an fcc lattice according to Ref. 15).

Bearing this restriction in mind, we see in
Table IV that the perturbation results are in very
good agreement with the exact LJ results for T
=100 and T= 20; the agreement is still reasonable
at T=5 and even, rather unexpectedly, at T=2. 74,
except for the internal energy values. At T = 2. 74
the difference between the free energies obtained
by the perturbation method and the LJ calculations
is roughly equal to the second-order perturbation
correction which was not included in the perturba-
tion results (limited to first order as already men-
tioned). At that temperature the equation-of- state
results are worst at low density, which is not a
major drawback as we are essentially interested
in high-density results.

Thus, it is clear that combining Eqs. (15) and

(18) we obtain an equation of state for the LJ fluid
which is very accurate in the high-temperature
limit and provides an excellent extension of the

As pointed out in the Introduction, the free en-
ergy of the solid phase (which we shall need in or-
der to determine the coexistence curve) can be
calculated by integrating the "single-occupancy"
(or exact cell-model) equation of state for all den-
sities. Just as for the fluid, we computed the
single-occupancy thermodynamic properties for
the inverse-12 (unperturbed) potential system
along the isotherm T =100. The results in the
"unphysical" region (i. e. , below the melting den-
sity) are not given here. In Table V, the results
in the solid phase (i. e. , for those densities where
the single-occupancy restriction is not operating
any more because the atoms remain localized all
by themselves) are presented. In addition to the
equation of state, the internal energy, the free
energy, and the perturbation terms, the mean
square deviation of an atom from its lattice site
has been computed:

S2= —( Z(r, —R,)')2.
N

Just as in the case of the fluid, the convergence of
the perturbation series is strong at high tempera-
tures. The second-order correction to the free
energy is of the same order of magnitude as in the
high-density fluid. The comparison with the LJ
data at T = 2. 74 again shows reasonable agreement
between these data and the perturbation results,

TABLE V. Solid-phase results for the inverse-12-po-
tential (T=100 ). The meaning oi' the symbols is the
same as in Table II. S is the mean-square deviation of
an atom from its lattice site [Eq. (20)].

p ~1/p P~ Pptp P&'& -P~'"
4.19 17.78 8.69 1.064 0.185x 10
5.15 21.61 10,3.4 ' 1.210 0.113x 10
6.36 26.45 11.79 1.371 0.78 x 10

2.6 0.385
2.8 0.357
3 0.333

equation of state proposed by Levesque and
Verlet, '6 based on the Barker-Henderson' per-
turbation theory, which holds for low and inter-
mediate temperatures (up to two or three times
the critical temperature). The high-temperature
equation of state, which yields already reasonable
results at roughly twice the critical temperature
is rather simple and finally reads

PI/p =PP"'/p+e'"/p = I+~1P"'p
+gyl/8 8+II p p3+g p ~II p3/8 10

pl/2[+pl/4p+ 2&(+pl/2p2+ 3 +pp3/4p3

+ 4X C4pp'+ 5X g3p'/4p3], (19)

where the 8's and C's are given below Eqs. (15)
and (18).

B. Solid-Phase Results
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except at very high density where the discrepan-
cies between the equation-of-state and free- energy
values become more important. This is not trou-
blesome however as we are primarily interested
in the melting properties, and consequently the
lowest solid densities.

100-

C. Phase Transition

Having calculated the free energies of the fluid
and the solid, we are now in a position to deter-
mine the transition densities and pressure by the
Maxwell double-tangent construction in exactly the
same way as was done in I. This was first done for
the inverse-12 potential problem; because of the
scaling properties [Eq. (11)], the densities of the
coexisting phases and the transition pressure are
simple functions of the temperature:

g. o-

40-

'~

p, = 0. 844 (~ 0. 002) x p-"',
p~ = 0. 814 (+0.002) x p

'i4

P~= 16.0 (+0.1) x p '~4,

(21)

TABLE VI. Liquid-solid transition densities and pres-
sures for the inverse-12 potential and the LJ potential
(from first-order perturbation theory). p& and ps are
the liquid and solid densities along the coexistence
curve and P the transition pressure.

Inverse-12 potential
P=l /T

ps P pz,

LJ potential

100
50
20
10

5
2.74

0.01
0.02
0.05
O.l
0.2
0.365

2.570
2.162
1.720
1.447
&.216
1.047

2.670 5050
1.246 2170
1.785 675
1.501 282
1.262 120
1.086 56

2.60&

2.200
1.765
1.500
1.279
1.117

2.706 4800
2.291 1970
1.843 590
1.572 231
1.349 86
1.191 33

where ps is the density of the solid at melting, pi
the volume of the coexisting liquid phase, and I'
the melting pressure. These numerical values
are in remarkable agreement with those given by
Hoover et a/. ' which are, respectively, 0.844,
0. S13, and 15.95.

If now the first-order correction is added to the
free energy, the double-tangent construction can
be repeated for the LJ system at various tempera-
tures. The results are summarized in Table VI
which gives the transition densities and pressures
for T=100, 50, 20, 10, 5, and 2. 74 both for the
unperturbed inverse-12 system [formulas (21)]
and for the LJ system in the first-order approxi-
mation. Because of the strong convergence of the
free-energy perturbation series, the first-order
results are expected to be very close to the exact
LJ results. This is confirmed at the lowest
(least favorable) temperature considered (7 = 2.V4),
by a direct comparison with the exact LJ result
from I, i.e. , pz = 1.113 (against 1.11V), p~ = 1.1V9

0.$ 0, 6 0.8 8.0 &.2

FIG. 1 Coexistence curve for the inverse-12 potentiai
system (broken curve) and the LJ system (full curve).
V is the reduced volume per atom, T the temperature
(on a logarithmic scale).

In this section, we shall investigate awell-known
melting criterion, i.e. , the familiar Lindemann
melting law, and the crystallization criterion based
on the magnitude of the structure-factor maximum,
which was introduced in I.

It is first of all clear that the Lindemann law is
actually exact for systems of atoms interacting
through a repulsive potential which is homogeneous
in the coordinates of all the atoms and in pa, rticu-
lar for the inverse-12 potential; this is again a
consequence of the scaling properties valid for
homogeneous potentials, which ensure that the
product 8 && p is a constant along the melting
curve; this is the most direct formulation of Lin-
demann's law (for a detailed discussion of this law
see Ref. 18). Be was computed along the solid-
phase isotherm of the inverse-12 problem, as
mentioned earlier. If p and T denote the melt-
ing density and temperature and a is the nearest-
neighbor distance at melting (a„=2 /p'~3), the
Lindemann constant a.ccording to our Monte Carlo
computations is

(against 1.191), and P„=32 (against 33). Conse-
quently, one can be very confident about the per-
turbation results at higher temperatures. The LJ
coexistence curve is shown in Fig. 1 (with a loga-
rithmic scale for the temperatures) compared to
the inverse-12 coexistence curve. The transition
data from I were used for the low-temperature
region.

IV. MELTING AND CRYSTALLIZATION CRITERIA
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S (T, p )/a~=0. 023+0. 001. (22)

The square root of the corresponding inverse ratio
r) = aJs„equals 6. 6.

As the inverse-12 problem represents a good
zero-order approximation to the complete LJprob-
lem at high temperature, we expect the Lindemann
law to be approximately valid for LJ systems,
with possibly a different value of the Lindemann
constant. We checked this for the lower tempera-
ture range considered in I. The situation is pic-
tured in Fig. 2 where the solid curves represent
S2 as a function of am = 2'~ /p ~ along four iso-
therms (T=0. 75, 1.15, 1.35, and 2. '74). The
vertical broken lines correspond to the values of
a2 at melting (i.e. , a„) for these four tempera-
tures. The intersections of these vertical lines
with the S curves determine the values of the ra-
tios 7) =aJs„at melting. These values are

Qx)Q

2-

~
I

I

j

I j

Oe 75) P~ 6e 87) T 1 a 15y Pfft 7o 18')

T:1 e 35) 'g~ 7s 28'j T 2e 74~ pffft: 6o 72'

Thus, the fraction g turns out to be remark-
ably constant within the statistical errors (about
5%%uo on the S values). The broken curve in Fig. 2
corresponds to the situation where Lindemann's
law would be verified exactly for the constant val-
ue g~= 7. The deviation of this "ideal" case from
our results is hardly significant due to the rather
large error bars. Thus it can be safely concluded
that Lindemann's melting law holds for the classi-
cal LJ solid over a wide temperature range.

The crystallization criterion, based on the anal-
ogy with the hard-sphere system, states that the
fluid crystallizes whenever the maximum value of
the structure factor S(k,) reaches a certain con-
stant value. We recall that the structure factor
is defined by

S(k) =Z
e'"('~ - r, ) ) (23)

and is simply related to the Fourier transform of
the radial distribution function. In I, this law was
discussed in more detail and shown to hold for the
LJ system in the temperature range considered
there with a constant maximum value S(ko) equal
to 2. 85. Here we are interested in the extension
of the law to the high-temperature limit.

Just as in the case of the Lindemann law, it is
a straightforward matter to show that the struc-
ture factor "law" is exact in the case of a homoge-
neous potential. Indeed, applying the scaling prop-
erty for such a potential to the definition of the
radial distribution function, one obtains the rela-
tion

~ FIG. 2. Mean-square deviation S of an atom from
its lattice site as a function of the square of the nearest-
neighbor distance a along the isotherms T=0.75, 1.15,
1.35, and 2. 74 (upper left curve). The broken vertical
lines correspond to the four melting densities. The S~

data are taken from Refs. 4 and 13.

&er..'v(~r) =sr, v(r) (24)

s;, ,~„(k/~) = s, ,(k). (25)

Now, if the state (T, V) lies on the fluid branch of
the coexistence curve, then the same is true of all
the states (VT, X'V) (0 & X& ~) according to the re-
lations (21) (where n = —12). This completes the
proof of the statement that at crystallization S(k)
is always the same except for the scaling of the
wave vector. In fact this property of homogeneous
potential systems is not surprising because there
is no temperature-independent characteristic
length in such systems. This is not true of more
general potentials and in partj. cular of the LJ po-
tential. But again a similar law can be expected
to hold approximately for LJ systems because of
the essentially geometric properties underlying
the structure-factor law. (cf. the discussion in
I. ) For the inverse-12 problem the maximum of
the structure factor at crystallization turns out to
be S(ko) =2. 95+0.05 from the Monte Carlo compu-
tations. Taking for the crystallization densities
of the LJ fluid the values obtained by our pertur-
bation calculation (Table VI), we calculated the

Here X is the scaling coefficient and n is the ex-
ponent of the potential v(r) = r"(n = —12 in our case).

Hence, the structure factor, obtained by Fou-
rier-transforming g —1, verifies



stx'uctux'6 fRctor Rt T= 5y pl, = 1~ 279 and ~
p~ = 1.765. The corresponding maxima are 2. 9
+ 0.05 and 2. 95 + 0.05.

Taking into account both the statistical errors
and the small uQcex'tRinties oQ 'the trRnsition den-
sities due to their determination by pex'turbation
theory, these results show that the law S(ko) =2.85
at crystallization can be extended to the high-tem-
perature region for LJ systems, with perhaps a
very weRk temperature dependence of the maximum.

The small temperature dependence of the struc-
ture factor maximum at crystallization seems to
indicate that at high temperature the analogy of
the LJ fluid mith an "equivalent" hard-sphexe fluid
is not as close as for lower temperatures. %6
recall that at crystallization S(k,) = 2. 85 for the
hard-sphere fluid. Our results seem to indicate
a tendency tomards a higher maximum as the tem-
perature increases. Actually the complete struc-
ture factor for the inverse-12 system does not fit
the equivalent hard-sphere structure factor as
well as the low-temperature LJ structure factor
does. For example, for T=100 and p=2. 5 the
height of the second peRk is 0. 38 38 compared to
0. 26 fox the equivalent hard-sphere system. The
discrepancies are possibly due to the fact that at
high temperatures, it is difficult to define a mell-
determined equivalent hard-sphere diameter. This
is probably related to thedifficultiesof the Barker-
Hendex'son perturbation theory at high tempera-
tux'es w'hich mill be brieQy discussed in Sec. V.

V. DISCUSQON

The high-temperature perturbation method
based on the separation of the LJ potential into its
tmo homogeneous parts, and which mas initially
devised for rather practical reasons, turns out to
be a good approach to the LJ problem even at in-
termediate temperatures. Our perturbation ap-
pxoach avoids the difficulties encountexed by the
Barker-Henderson perturbation theory at high
temperatures as shown by the work of Levesque
and Verlet. '6 The starting point of the Barker-
Henderson theory is the hard-sphere system Rnd
the difficulty at high temperatures lies essentially
in the definition of the equivalent hard-sphere di-
ameter. Recently these authors have suggested a
variational method to determine the "best" hard-

sphere diameter for a given density and tempera-
tux'6 of the LJ system. Taking the iQvelse-12
potential as a starting point avoids this difficulty
from the beginning and represents an alternative
zero-order approximation to the LJ proble.

Terminating the perturbation series after first
order yields good results down to a reduced tem-
peratuxe of about 5. The next term of the sexies
has been shown to be small and of the same order
as the difference betmeen the exact LJ data Rnd
the perturbation results. Important progress
mouM thus be achieved if the second-ox'der fluctu-
ation term couM be cRlculRted with R good px'eci-
sioQ. This is in principle possible by the Monte
Carlo method, but much faster computers mould
be necessary for actual computations. Approxi-
mate expressions for the fluctuation terms, of
the type proposed by Barker and Hendex'son, un-
fortunRtely yield vex'y inRccux'Rte x'68ults.

Finally, both the Lindemann Rnd the structuxe-
factor lam8 turn out to give x'6Rsonable estimRtes
of the fluid-solid transition densities. Close in-
spection of the structure factox in the high-tem-
perature limit indicates that the high-temperature
LJ fluid is less mell approximated by an equivalent
hard-sphere Quid than in the lom-temperature re-
gion. This is a consequence of the fact that at
high temperature the distance of closest approach
between tmo atoms is smaller and the potential felt
in a colli.sion varies more midely as the tempera-
ture incx'eases, which renders a clear definition
of the equivalent hard-sphere diameter more dif-
ficult.

Note added in proof Thus pE .for the LJ poten-
tial appears as a function of the variables P'" and
P' p. In fact, J. L. Lebowitz [Phys. Letters
28A, 596 (1969)] has shown that in a properly de-
fined domain the thermodynamic properties for the
LJ potential are analytic in these tmo variables.
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An approximation scheme for a Bose liquid is presented, based on small fluctuations in

density and currents. The method of obtaining the elementary excitations and theix inter-
actions in any order of the approximation is outlined. Also it is shown that the first-order
calculations are in agreement with the calculations of Feynman, Bogoliubov, and Pitayevski.
Second-order calculations agree with the improved results of Feynman and Cohen.

I. INTRODUCTION

In this paper, a systematic approximation
scheme for the interacting Bose liquid is derived.
The method used is based on the assumption of
small fluctuations of the density operator p(r) and

the current operator J'(r) from their averages. It
differs, however, in several important aspects
from Pitayevski's coarse-grained theory, which
is based on a similar idea. In Sec. II the Hamil-
tonlan is expressed in terms of the current and
density operators, and the commutation relations
of the Fourier transforms of these operators are
derived. Section III uses the assumption of small
fluctuations of p and 0 from their average values
ln order to approximate the commutation x'elRtlons

as well as the Hamiltonian. This first-order cal-
culation yields the results of three apparently dif-
ferent theories: the Bogoliubov microscopic
theory, the Feynman variational theory, and the
Pitayevski theory. In Sec. IV the commutation
relations and Hamiltonian are treated in a higher-
order approximation. The procedure for obtaining

the elementary excitations is discussed; it is
easily shown that the wave functions obtained, in
this order, are the Feynxnan-Cohen wave func-
tions. " Higher-order expansions are discussed
in Sec. V. The method for systematically de-
riving, the quasiparticle interactions without using
phenomenological models is outlined, though actual
calculations of this kind are postponed for later
publicatio. Some general results holding fox any
order of the expansion are also explicitly derived
in Sec. V..

II. HAMILTONIAN AND COMMUTATION RELATIONS

The Hamiltonian for a system of N identical
bosons contained in a box of volume 0 and inter-
acting via a two-body potential v(r) is given by
Eq. (I) (K=m= I):

a=-', J vy'vied'r+ —,
' j y'(r)g'(r') v(r r')-

x y(r) y(r') d'rd'r',

where g (r) and g(r) are creation and destruction
operators, respectively, of a particle at point z'


