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He and Li', . as compared to the CS functions, the
results for the polarizability get worse as we go
from the CS to the OS1 approximation. Thus the
OS1 functions, in general, are quite extended,
which is clearly demonstrated by the extremely
large Iolarizability of H ion.

We have also calculated the polarizability of H

when the unperturbed wave function is OS2, but only
in the Henrich's approximation. This approxima-

tion is not expected to be serious because OS2 gives
a very good value for the energy of H . First of
all, we find from Table I that a. is drastically
lowered as we go from OS1 to OS2. Secondly, a
relatively simple three-parameter unperturbed
wave function OS2 gives a valueof thepolarizability
of H which is a significant improvement over all
the previous calculations except the one due to
Schwartz. '

*Supported in part by the University Research Council.
'Y. P. Varshni and R. C. Shukla, Rev. Mod. Phys.

35, 130 (1961).
S. Geltman, Astrophys. J. 136, 935 (1962).
C. Schwartz, Phys. Rev. 123, 1700 (1961).
A. Dalgarno, Advan. Phys. 11, 281 (1962).
S. Chandresekhar, Astrophys. J. 100, 176 (1944).
H. Shull and P. -O. Lowdin, J. Chem. Phys. 25,

1035 (1956).
H. R. Hassle, Proc. Cambridge Phil. Soc. 26, 542

(1930).
8H. A. Bethe and E. E. Salpeter, Quantum Mechanics

of One- and Takeo-Electron Atoms (Springer-Verlag,
Berlin, 1957), p. 122.

L. R. Henrich, Phys. Rev. 62, 545 (1942).
' The polarizability of LiH crystal as obtained from

Clausius-Mossotti relation is l. 9 A . Thus the polar-
izability of H is drastically reduced as one goes from
the free ion to the LiH crystal which is unlike most of
the halide ions.

PHYSICAL REVIEW A VOLUME 2, NUMB KB 5 NOVEMBER, 1970

Methods for Determining the Second Virial Coefficient of a

Gas frown Speed-of-Sound Data""

Marjorie E. Boyd and Raymond D. Mountain
Institute for Basic Standards, National Bureau of Standards, Washington, D. C. 20234

(Received 3 April 1970)

Two methods of analyzing speed-of-sound data in gases to obtain the second virial coeffi-
cients B(T) are compared. The older method, which assumes a form for the temperature de-
pendence of B, is shown to correspond to finding an exact solution to an approximate differen-
tial equation for B, while a method recently proposed by Bruch solves the exact equation, but
in an approximate manner. Examination of the errors in each method indicates that the first
method is preferable.

Keesom and Van Itterbeek showed that if the
square of the speed of sound, W, in a gas at a tem-
perature T is expanded in powers of the pressure
p, such that

W = Wo[l+ (2/RT)f(T)P+ ]

where Wo is the speed of sound in an ideal gas and
A is the gas constant, then the coefficient of the
linear term can be related to the second virial co-
efficient B(T) by

f(T) B(T)
2

T dB(T) 2
T

d B(T)
3 dT 15 dT

(2)

Unfortunately, the functional form of f(T) is not
known, so Eq. (2) cannot be solved directly toyield
B(T). The usual procedure has been to assume a
functional form for B(T) involving arbitrary coeffi-
c'ents and to use Etl. (2) to define a corresponding
functional form for f(T). The coefficients are then

obtained by curve-fitting the experimental values
off(T).

Recently, Bruch pr oposed avoiding the imposition
of a functional form by using the formal solution of
the differential etluation, Eg. (2), integrating nu-
merically, and determining the two integration con-
stants by fitting to two independently known values
of B(T). In so doing he criticized the former method
as not making explicit use of the solution of the ho-
mogeneous equation. Also, he attributed apparent
discrepancies between results of such a fitting and
I'VT values at the low-T end of the range involved
to neglect of this term. We shall show here that
(i) Bruch's criticism of the curve-fitting method is
invalid, and (ii) use of Bruch's method is, as he
suspected, rendered impracticable by the unrealis-
tic requirements on the accuracy needed in the data
used.

In discussing the first point it is important to
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are the integration constants and are
functions of v', since the particular integral chosen
will be different for every choice of the range of
integration. Since f(T) is only known numerically
at a limited number of points, an approximation to
the integral is obtained by numerical integration,
and n and P then fitted from previously known val-
ues in the range w —t —T. That is, one obtains an
approximate solution to the correct differential
equation, the accuracy of the approximation depend-
ing upon the adequacy of the data used.

Bruch contends that the curve-fitting method
amounts to choosing the particular integral without
considering explicitly the homogeneous solution.
We now show that this contention is incorrect, and
that choosing a form for B is, in effect, specifying
an approximate differential equation for which the
chosen form is the complete solution. This can be
made clear by considering a form of solution fre-
quently employed for curve-fitting in the past,

B(T)=a+ c/T,
which in Eq. (2) gives

f(T) =~+ '(c/T)- (5)

Suppose now that we have chosen expression (5)
for f(T), that we have obtained the coefficients by
curve-fitting the experimental data, and now we
wish to obtain B(T) by solving thedifferential equa-
tion resulting from inserting this expression for
f(T) in Eq. (2). This Eq. (2), let us repeat, isnow
no longer the "true" one, but an approximation to
it. Its formal solution is Eq. (3) where the partic-
ular integral can be obtained analytically, and is
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where

emphasize that since the functional form of f(T) is
not theoretically known, Eq. (2) is onlyamathemat-
ical relationship between the unknown f(T) and B(T),
and we do not, in fact, know the form of the actual
differential equation satisfied by B(T). Bruch pro-
ceeds on the basis that we know numerical values
for f(T) at certain T values, and writes down the
formal solution of Eq. (2), considered as a differ-
ential equation, as

B(T) Bhomoaeaeoue + Bparti oui ar

Since physically B(T) is a unique function of T and
cannot be a function of the range over which mea-
surements have been made, we must choose the in-
tegration constants to eliminate the dependence of
the solution on v'. This can obviously be done, and
we are left with the solution as Eq. (4). Note that
in the case of this general solution the homogeneous
term is nonzero and is thus not neglected in obtain-
ing the solution. One could, of course, have chosen
the particular integral as Eq. (4), and since the
solution must be mathematically equivalent, the ho-
mogeneous term will then be given by the trigono-
metric combination of the cosine terms in the above
solution. The new coefficient and phase angle can
be obtained from the old and will result in the ho-
mogeneous term being identically zero. This seems
to have been the case Bruch envisioned without re-
alizing that the homogeneous term was not arbitrar-
ily ignored in obtaining Eq. (4) as the complete so-
lution. Thus the curve-fitting method is the equiv-
alent of an exact complete (integration constants
specified) solution of an approximate differential
equation (2) for B(T), and is limited in accuracy
by the adequacy of the form chosen to represent
the real behavior of B(T) in the range of the mea-
surements.

Bruch gives an example in which he takes a curve-
fitting solution to speed-of-sound data on He for
the range 2 K ~ T~10 K, compares its results to
those from a fitting to PVT results near the low end
of the range, and ascribes the apparent difference
to a missing homogeneous term. Fitting values of
n and P and calculating a new B at 10 K with the
resulting expression, he finds a 3/q change. How-
ever, we have seen that the curve-fitting solution
is a complete one with the constants already speci-
fied for the approximate differential equation solved,
and it is mathematically inconsistent to impose
another homogeneous term with another set of the
constants to be fitted. Alternatively, this solution
is ~at a particular integral of the true differential
equation which would be required if the constants
in the homogeneous solution are to be fitted to in-
dependent actual values of B and the range depen-
dence eliminated. Thus Bruch was, in effect, add-
ing a mathematically unjustifiable correction factor
to account for the inadequacy of the chosen form to
represent B(T). In fact, Eq. (4) has been shown, '
in the case of a Lennard-Jones (LJ) potential for
He', to represent adequately only the Boltzmann part
of B(T) in the range of Bruch's example. At the
low-T end of the range (2 K) it will not include the
exchange contribution which would amount to about
3%. However, it is also the case that the two sets
of measurements used in his example are actually
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FIG. 1. Percent uncertainty 10008/8 and the uncer-
tainty M implied by a 1% uncertainty in the values of
8(T) used to determine 0.'and Q. Case 1 is shown as
the solid curve, and case 2 is shown as the dashed
curve. The uncertainties are relative to 8(T) shown in

Fig. 2.

in agreement within their estimated experimental
errors.

I.et us now turn to the second point and examine
the effect of errors in the data used on the results
obtained by Bruch's method. It is apparent that
the problem of obtaining a good value for the partic-
ular integral in Eq. (3) will be quite acute, since
f(T) is only known approximately [it is obtained by
curve-fitting data to an Eq. (1) at each T value] and

usually at a relatively small number of points. In

addition, the values of f{T)are weighted in the in-
tegral by the range used and not by consideration of
experimental accuracy —a statistically unsatis-
factory situation. However, we will assume here
that the integral can be obtained to as high an ac-
curacy as desired and consider the effect only of
uncertainty in the independently known values of
B used to determine n and P. For this purpose we

will again employ a model where

for He in the range 11 K «T «20 K. Only f(t) will
be considered as given, and Eq. (7) will be used
only to obtain our "known" values of B, i.e. , B(10)
= -20. 50 and B(12)= —14.25 for case 1 {solid curve,
Fig. 1), and B(15)= —8, B(17)=—5. 06 for case 2

(dashed curve, Fig. 1). Using these values to fix
n and Q when r = 10 will of course enable us to cal-
culate values of B(T) agreeing exactly with Eq. (7).
Now assume an error of @ 1% in these known values,
a very conservative error indeed in experimental
terms. Figure 1 displays the percent uncertainty
in Band the magnitude of the uncertainty in Bover the
whole range which is thus introduced. Equation (7)
is displayed in Fig. 2. One sees that the process
introduces systematic errox s which propagate and
even amplify over the entire range considered, and
are dependent on the range and the particular points
fitted. Thus, in Bruch's method all the errors in-
troduced are of an unknown nature and would be ex-
tremely difficult to estimate in actual cases. The
method also suffers from the fact that it is not an
independent determination of B but requires other
measurements.

In the curve-fitting method, the form used can
be based on experience with virial coefficients,
considerations of physical reasonableness, or anal-
ysis of values calculated from model intermolecu-
lar-potential functions. Values of f(T) can be
weighted in the fitting by experimental considera-
tions, and errors in the data are averaged out in
the process rather than propagated over the range.
Finally, probable error in the results can be esti-
mated by comparing results for different assumed
functional forms. Therefore we assert that this
method is still preferable for obtaining second
virial coefficients from speed-of-sound data. With

either procedure, extrapolation outside the tem-
perature range of the data is not justified.

0

8 (T)
-IO

B(T)= 17 —275/T (7)

f(T) = 17 —225/T
-20

l2 l4
T, K
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over the temperature range 10 K ~ T ~17 K. The
coefficients used here are similar to those found FIG. 2. The virial coefficient B(T) =17 -375/T.
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Procedures which derive the second virial coefficient of a gas from the acoustic second
virial coefficient or the Joule-Thomson coefficient are discussed. Model calculations with

realistic helium intermolecular potentials are presented. The validity of a procedure which

does not directly face the uniqueness problem is tested.

I. INTRODUCTION

This note is in part an addendum to a previous
w ork, ' presenting model calculations which illustrate
points made there. It is also a comment on a cri-
tique' of that work.

The uniqueness problem which is discussed oc-
curs when data for the acoustic second virial coef-
ficient f(T) or Joule-Thomson (JT) coefficient p(T),
are used to generate values of the second virial co-
efficient 8(T) This occ.urs when such data are used
to test the accuracy of existing data for B(T) or when

values of B(T) are needed for other purposes and
direct determinations do not exist. Itneednotoccur
in the testing of model intermolecular potentials,
since f, p., or 8 can each be calculated directly
from the model. This has sometimes been done. '

Section II contains the formulation of the problem,
and Sec. III contains the model calculations. Con-
clusions and discussion of other work are given in
Sec. IV.

II. FORMULATION

The acoustic second virial coefficient f(T) and the
JT coefficient t(.(T) of a dilute gas are expressed
in terms of the second virial coefficient B(T) by
these equations ':

ic heat at constant pressure. In this work, the
specific choice y=3 is made, and the calculations
are for helium. Treated as inhomogeneous differ-
ential equations for 8(T), these have solutions"

Tdt
8(T) = a, T+ T —,p, (t)Cp,

'r
(3)

8(T) = (c((&)/T ) cos[(p7) t In(T/r)+ y(v)]

+ (14,(p ~T
dt tf(t) sin[(+2)' ln(T/t)] .

(4)

Equation (3) is valid also for temperature-dependent

The quantities a, c(, and (t( are constants which
in usual solutions of differential equations are de-
termined by boundary conditions. The specification
of these quantities is the mathematical form of the
uniqueness problem for determination of 8 from f
or p, . Calculations with realistic intermolecular
potentials which support an earlier discussion of
t»s topic' are presented in Sec. III. The JT coef-
ficient provides an example of the phenomenon dis-
cussed for f(T).

In contrast to Eqs. (3) and (4), the curve-fitting
method, which has been used' for f(T) and might
be attempted for p(T), assumes a, finite series for
8(T):

8= Qb„T
n=0

f(T) = 8+ (y —1)T—+
2

T
dTP2y (2)

and a corresponding series for f or p, :

f=Zf.T ", u = Z u.T" .
y is the ratio of ideal-gas specific heats, T is the
absolute temperature, and Cp is theideal-gas specif-

n=0

The coefficients f„or p.„are determined by a fit to


