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A beam of noninteracting particles, bosons or fermions, is described by the superposition
of stochastic wave packets. This description allows in each case (bosons or fermions) the
determination of the detection process of the particles. This process is defined by the set of
the p-order coincidence probability densities, a general formulation of which is given. In the
case of a stationary and weak incoherent beam, these coincidence probability densities are
studied thoroughly and several results are obtained. The well-known bunching effect for bo-
sons and the "antibunching effect" for fermions are shown to come from the detection of in-
distinguishable particles. In the boson case, all the well-known results for thermal light are
found. In the fermion case, the detection process is, under certain conditions, identical to
a renewal process.

I. INTRODUCTION

Photon beam fluctuations have been extensively
studied in the last few years from a theoretical as
well as from an experimental point of view. ' These
recent developments of quantum optics are primar-
ily due to the use of new sources, such as lasers,
and of fast electronic techniques already used in
nuclear physics.

Many kinds of experiments can be performed to
determine the statistical properties of a photon
beam. In particular, the point stochastic process
consisting of the detection time instants of photons
in an electromagnetic field can be studied by means
of coincidence and counting experiments. "The
experimental results are in good agreement with
the theoretical calculations, ' indicating that this
process is a compound Poisson process.

These calculations can be obtained by using a
quantum-mechanical description of the field and
the detectors. In particular, a new description of
the old phenomena of coherence has been given on
an entirely quantum-mechanical basis by intro-
ducing the notion of coherent states of the electro-
magnetic field. " ' The coherent-states formal-
ism depends basically on the commutation rejations
between boson annihilation and creation operators.
Therefore, it can be generalized to any boson beam,
and it is possible to predict what one should obtain
from coincidence or counting experiments on such
beams.

However, if we are interested in the fluctuations
of fermion beams, such as electron or neutron
beams, none of these new developments inquantum
optics are very useful. The coherent-states for-
malism is not convenient to describe a beam of free
fermions, as I.edinegg has shown. Other authors
have devised a generalization of the coherent states
which deals only with the case of charged particles
in an external magnetic field. ' However, if we
consider the developments in electron optics and

especially in electron interferences, it seems worth-
while to study fermion beam fluctuations more
closely and in particular to know what should be ob-
served by making coincidence or counting experi-
ments on a fermionbeam.

The formalism that can be used for this purpose
is the wave-packet formalism which was introduced
in a series of papers by Goldberger and Watson (GW) to
study the second-order intensity correlation function
of any beam of particles. ' They associate a sto-
chastic wave packet with every particle and build
the wave function of the whole set of particles by
symmetrization or antisymmetrization. This wave-
packet formalism has the advantage of being con-
venient for fermions and bosons and then of enabling
us to compare the results which should be expected
in each case.

In their papers, GW have used a very important
approximation of the orthogonality of the wave
packets, and they have only considered the second-
order correlation function. In this paper, we are
starting from the same ideas as the ones intro-
duced by GW but we discuss their approximation
and use the wave-packet formalism not only to cal-
culate second-order correlation functions, but to
describe completely the statistical properties of
boson or fermion beams.

In Sec. II, the wave-packet formalism is de-
scribed in terms of wave mechanics. A thoroughly
general formulation of the wave function of a par-
ticles beam is given. In Sec. III, we express the
p-order coincidence probabilities which are mea-
sured on any beam of quantum particles by an ideal
p-order coincidence experiment. These probabili-
ties are introduced because it is possible to show
that the whole set of coincidence probabilities de-
fines entirely the statistical properties of the de-
tection process of the particles, including its time
dependence. Therefore, in what follows, we
will only deal with the coincidence probabilities to
describe the fluctuations of the beam. In Sec. IV,
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we study the stationary incoherent case. It is
also the only case that has been studied by GW.
We discuss their approximation of the "effective
orthogonality" of the wave packets which is shown
to be correct for very weak beams. We are giving
here the coincidence probabilities for this case.
By using these probabilities, we show that the boson
detection process is a Poisson compound process,
as might be expected, and we specify the properties
of the compounding random density. Several fea-
tures of fermions are pointed out. In particular,
the fermion detection process turns out to be a
renewal process when the correlation function of
every wave packet is exponential.

Finally, we emphasize the fact that the wave-
packet formalism shows very clearly the relation
between the measured statistical properties and the
quantum nature (boson or fermion) of the particles.
Hence the well-known Hanbury Brown and Twiss effect
observed on thermal light is shown to come only
from the stochastic independence of bosons.

II. %(AVE FUNCTION OF A BEAM OF PARTICLES

The beam of particles that we are considering here
is a set of indistinguishable and nonintemcting
particles. To simplify the calculations, we are not
taking into account the spin of the particles. The
number of particles in the beam is unknown and
is represented by a random variable N (&d), where
~ is a point in a probability space. To simplify,
we shall sometimes omit this explicit dependence
on ~. We assume that N (&u) wave packets can be
associated with the N (~) identical particles and
that they are also not known completely. Thus, these
wave packets are N (&»&) identical stochastic normalized
functions 4,(r, t; «&';), where r is the position and t
the time. For every stochastic function 4;(r, t; &uI)

a given point &,' in the probability space 0&

determines a given function 4
&

of r and t. This
function must be normalized in the volume V occu-
pied by the whole set of particles. In general, for
given values of &c'; and &d& (i 0j), the functions C,(r, t;&u';)

and C;(r, t; &u,
'.) are not orthogonal, and we have

have

(4, 4) =1.

It can be written as

I y(~, ~')
g(u) N(v )

=Z (+) Ps(~& P&((~& II II (@8/» C'&/)»
y', n" j=1 h=1

(2.4)

where (P;j and (y„jhave the same meaning as (a,j.
This expression is equivalent to

Iy(~, d) I
=[N( )]!D(~,~'), (2. 5)

where

D(, ')=gp,'...()"Ir(e„C.,).

In this expression (o.'&j has the same meaning as
in Eq. (2.3'). If the C, were orthogonal, we should
have, as usual,

N(co )

&1&((r&j, t, &c, &c')=y(~, &d')g(+)'P'„&„& II o (r„t;~,'.,) .

(2. 3)
In this expression, Ps stands for the sum of all

the different k-order permutations of N elements,
and(a, j is any k-order permutation of the ordered
set (1,2, . . . , N(u&)j which refers to the positions
(r(, r2, . . . , r„&„&j. The symbol ~' stands for
( I 1

(dl, . a~ ~ ~ ~ ) ~(~) ~

We can also write the ket 1&1& (&d, &d')) corre
sponding, in the Heisenberg picture, to the wave
function &1& ((r(j, t; «&, &d'). It is given by the following
expression:

N (co)

I
&(~, ~')) = y(~, &d')+(+) P' II

I ~.,(~, &d-', »
&=1

(2. 3')

In this formulation, (&&'. ;j is any k -order permutation
of the ordered set (1,2, . . . , N(&d)j which refers to
the order in which the N(&d) kets!. . .) are written.

Since the functions 4 ((r, t; &u'() are stochastic, g
is a stochastic function too, and its statistical
properties are defined by the structure of the prob-
ability spaces A and Q(. The constant y(&u, &d') is
determined by the condition

J @.(r, t; &d', ) e,*(r, t; (u,')dr &0. (2. 1) D(«&» &d ) = 1 ~ (2. a)

Since the particles are indistinguishable and
noninteracting, the wave function of the beam can
be deduced from the functions C, (r, t; &u'&) by using
the appropriate projection operator S on a sym-
metrized or antisymmetrized space. It can be
written

N(e)

&I& ((r;j, t; &u, &d') = y(+, &d ') S II 4' &d,(r;, t; &d, .), (2 2)
1=1

or, in a more detailed formulation,

However, since this assumption is generally not
valid, we shall use in the following discussion the
wave function defined by Eqs. (2. 3') and (2.5).

III. GENERAL FORMULATION OF COINCIDENCE
PROBABILITY DENSITIES

A. Definitions and Notations

In the particle beam, let us consider p arbitrary
infinitesimal volumes (a„da(j centered in a, and
l& time intervals (t„dt;j centered in t, . The l&-
order coincidence event C~ [(a„da;j;(t;, dt,j] is
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realized if we detect any particle of the beam in
the volume (a„da&j during the time interval (t„
dt's), any other in(a„da2), (t„dt,), . . . , and any
other in(a~, da~), (t~, dt~). The probability of this
event can be written

» [C.[(a„da );(t;, dt;)]] = P,[(a,);(t,)l ZZ da, «„
(3.1)

which defines the p-order coincidence probability
density (cpd) P~ [(a,); (t&)]. Such a quantity Pr[C(a&,
da, );(t&,dt)] canbemeasuredin a, p-ordercoinci-
dence experiment. This experiment is performed
by setting p detectors in the beam, each of them
acting in a volume (a;, da;) and during a time in-
terval(t;, dt;), and absorbing one particle or none
in this volume during this time. ~4 If the p detectors
act during the same time interval, we measure a
purely spatial cpd. On the other hand, if we use
only one detector acting during different time in-
tervals (t;, dt; j, we measure a purely temporal cpd.

As already mentioned in the Introduction, the
detection process of the particles of a beam is de-
fined, in this paper, by the set of the cpd. Since
all the statistical properties of a beam can be de-
rived from its wave function, defined by Eqs. (2. 3')
and (2.5), it is possible to express the cpd in terms
of the wave function, as is being done in the present
section. In the calculations, we shall introduce the
a posteriori cpd calculated for given values of ~ and
co'. It has only a mathematical meaning and the
cpd which is measured in a coincidence experiment
is an a Priori probability density P~[(a;); (t;)]which
is deduced from the a posteriori cpd by taking the
ensemble average over cu and ~'.

It will also be very useful to introduce in the cal-
culations the probability density (pd) (~ ((a/;(t~)).
The quantity (~ ((a;);(tj) Q da; II dt, is defined
mathematically as the probability that a given
particle will be detected in (a~, da,) during the time
interval (tq, dt~), another given particle will be
detected in (a2, da,,]. during the time interval
(tq, dtz). . . , and anothergiven particle detected in

(a~, da~) during the time interval(t~, dt~). As the
particles are identical, the pd $~ ((a;); (t &)) is sym-
metrical with respect to the points (a.„ t;). But,
since the particles are indistinguishable, it has
no physical meaning. The corresponding a poste-
~iort pd will be written as (~[(a;);(t,) I ~, ~'].

In the calculations below, we shall first compute
a Posteriori cpd and then a priori cpd. This mill
be done in the purely spatial case on one hand, and
in the general spatiotemporal case on the
hand.

B. Spatial-Coincidence Probability Densities

Let us consider the g posteriori spatial cpd, that

is to say, the spatial cpd that should be measured on a
system of N(&u) =n particles, where &u and m' are

fg, [(;);tI, '] rrd, =l,
it follows that

fp.[( ) tl, ']D,d

= ~(~- 1) (n —p+ 1)= n'".

In particular,

fP, [a;t]da=n,

J P„[(a,); t) ]jda, =n! .
We can also deduce from the relation

(3.3)

(3.4)

(3.8)

(3.8)

4[(a~); tl ~, ~']= J (,.~[(ai); t
I ~, ~']day 1

and the relation (3.2) that

P, [(a;); t
I

(u, &u']

(3.V)

=[1/(n -p)] p„, [(a, ,};t I
(u, (o']da„, . (3.8)

From Eq. (3.8), it follows that

P~[(a;); t
I

cu, cu']

=[1/(g-p)!] f P„[(a,); t
I ~, &u']da~. , ~ .da„.

(3.9)
This relation shows that any a Posteriori spatial
cpd can be expressed in terms of the n-order a
Posteriori spatial cpd.

Equation (3.9) can also be written in the form

p, [(a~); t
I ~, &']=[1/(&-t)!]f P.[(r;); tl ~, ~']

x 6 (a& —r&) ~ ~ 5 (a~ —r~)dr&. . .dr„. (3.10)

The expressions appearing in Eqs. (3.9) and (3.10)
are not symmetrical with respect to the space co-
ordinates a;, but since P„[(r,); t

I ~, ~'] is sym-
metrical with respect to the coordinates r;, Eq.
(3.10) can be rewritten in a symmetrical way:

P~[(a~)' tl ~ &']=[1/(&-p)!]p [(rk' t
I
~ &']

x (1/n ') ~ 5(a~ —rz ) ~ ~ ~ 5 (a~ -r8 )dr&. ~ ~ dr„.
(3.11')

The set of integers (p&' p,) characterizes any
permutation of p elements taken in n elements.
The symbol gz &...& indicates a sum over the n ~~

permutations z
~ ~

~ taken in n elements.
Thus, the a Posteriori cpd can be given by the

given. According to the definition of the cpd and
the pd, we can write

P,[(a,); t I(e, (u'] =[n!/(n —t)!]],[(a,); t
I

(u, (o'].

(3.2)

Since we have
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relation

P, [(a;};«
I ~, ~'] =(1/n!) P„[(r;};« I ~, ~']

x Z Q 6(a, -r)dr, dr„. (313)
Bt&'"% f=l

According to the symmetry of 0 with respect to
the space coordinates, this expression is equiva-
lent to

P&Ha~}; t
I
~, ~'] =n"'

I 0 ((r~}, t; ~, ~')
I

x II 6(a, —r, ) JI dr, . (3. 14)

This expression could have been directly derived
from Eqs. (3. 10) and (3.12).

The a Priori spatial cpd is the only one that can
be measured on a beam where N(v) a.nd C,(v';) are
random. %e have

P

Z 0 6(a& —r& )dr&. dr„.
Bg& ~ % i= 1

(s. is')

Let us now consider the wave function g((a,},t; v, &u')

defined by Eq. (2.4), where (u and &u' are given.
According to Eq. (2.3), I g (aq, ~ ~ ~, a„;t; ~, &u') I'
is generally referred to as the 'gresenceproba-
bility density" of then particles in a&, .. . , a„, at
time t. ~' By considering Eqs. (2.4) and (3.6) we see
that thepresence probabilitydensity I t!t((a,},t; &, ~') I2

is related to the cpd by
2

I @((a~},t; ~ ~')
I

=[n'] 'P. Ha~};«I, ~']
(s. is)

From Eq. (3.12) it follows that the function
I (((a&},t; &, &') I maybe considered as the proba-
bility density, defined only on a mathematical
point of view, that a given particle is at a&,

a given particle at a„, for given values of (d and
co'. This function is identical to the probability
$„[aq, . . . , a„; t I &u, &u'] that we have already intro-
duced.

From Eqs. (S.11') and (3.12), we can derive the
expression of the spatial a posteriori cpd in terms
of the wave function

P, [(a,};«I, ']=f III ((r,}, t; ~, ~. ')
I

C. Spatiotemporal Conincidence Probabilities

Let us consider the expression of P~ [(a,};t I &u, &u']

given by Eq. (3.13). If we introduce in this
expression the ket I g), which has been defined
in Sec. II, [Eq. (2. 3')], we can write Eq. (3.13')
in the following way:

Pt [(ac ' «
I

& & ] =
I
&(» & ) I

~(~) P» II (c'~, I
n

f"-1

x II
I a, (t))(a~(t) I I.-p Z(~) P", II I +,,),i=1 I' i-"1

(3.18)

P& Ha~}; t
I ~, ~']= (0 I6',"Ha;}, tl I (),

where

p,"[(a,},t] = n'" II I a,.(t)) (a,.(t) I I„, .

(s. i8')

(3.19)

The set of integers (c.,}and (y,}are permutations
of the ordered set (i}which refers to the order of
the n kets I. . .). The operator I„~ is the identity
operator in the states space of n- p identical parti-
cles. The operator la, (t))(a, (t) I is a Heisenberg
operator. It is equal to U (t, to) I a;)(a ~ I U(t, to),
where U(t, to) = exp[ —i H(t —to)/h]. The operator H
is the Hamiltonian of the n particles. The operator
y~ [(a,}, t] is a Heisenberg operator in the states
space of the n identical particles.

We can assume that, in Eq. (3.18), every ket i
is associated with a given particle i. ' Moreover,
as the particles are independent, we have

For the a Priori cpd there is no simple relation be-
tween P~,~ and P&, but from Eqs. (3.4) and (3.15)
we deduce that

P, [(r;},t)] dry dr, = (N((u)'~')„, (3.17)

where (N(~)'~')„ is the factorial moment of N(ra)
(The symbol (' ')„refers to an ensemble average
over &u only. )

Equation (3.16) gives the most general formula-
tion of a spatial cpd. However, to define com-
pletely the statistical properties of the detection
process of the particles, we have to know a more
general cpd, that is to say, thespatiotemporal cpd.

P. H };t] = &P [(a };t I
-,- ]), (s.15)

U(t, t,)=II u, (t, t,).
j=l

where the symbol ( ~ ~ ~ ) refers to an ensemble
average over ~ and (d'.

From Eqs. (3. 13) and (3.15), we derive

P, [(a,};t] = f I g ((r,},t; &u, ~ ) I'

Z II 6 (a, —rz, ) dr& ~ ~ ~ dr„&„& .(S.16)
gggs ~ eggs ] ]

The operator u;(t, tp) is equal to exp[-ih;(t -to)/8],
and the operator h, is the Hamiltonian of particle
i. Hence we can write

Ia;(t))(a, (t)I = u',.(t, t,) I a,)(a, I
u, (t, t,). (3.19')

Thus, every operator
I
a;(t) )(a;(t) I

can be con-
sidered as a projection operator acting on particle
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i. It localizes particle i Rt point a ~ Rt time I; Rnd

the p-ol dex' coincidence measurement 18 descl lbed
by the action of these p projection operators. It
follows that any p-order coincidence measurement
performed at different points a; and different times
t; can be described by the action of the operator

(Pt[g;};ft(}]=n"' g
I
a, (t,))(a,(t;) II„~, (3.20)

I a, (t,))(a,(t;) I
=u', (t„t(,) I a,)(a, Iu;(t;, t,).

(3.2I)
Thus, we have

pe[Pa,};(t;} I (o, (d'] =
I y ((d, (u')

I P (~)"p'„

The a priori cpd is given by

P&[(a;};9&1=(l~(~, ~')
I

&(~)"&',

In this expression, the sum of permutations fn;} can
be replaced by n t times the zero-order permuta-
tion, because of the identity of the stochastic func-
tions 4;(r, t, u&';). Furthermore, using Eq. (2.6),
we can write

(3.24)

Fmally, the d«»led «rmu»tion «P, [~a,.};9,}]ls

(3.aS)

For any qua@turn system of particles described
by random wave packets, the number of which is
equally random, the detection process is determined
in theory by E(t. (3. 25). However, the expression
of the cpd given by this equation is so complicated
that no interesting general consideration can be
made about the properties of the cpd. To obtain
some simple xesults, we shall have to limit our-
selves to certain types of beams, namely, to sta-
tionary and weak incoherent beams.

However, it is worth noting that when the func-
ti.ons 4; and C

&
are orthogonal for any ~'; and ~,'

(t &j), Eq. (3.25) reduces to

t& can be considered as the emission time" of the
packet 4 &. The point process consisting of the
time instants t; is without memory, and the num-
ber N((d) of emission times t, in a time interval
'E is a Poisson variable. Thex'efore, as it can
easily be shown, the stochastic functions
C;(r, t; (u';) are indePendent

(ii) Any wave packet C,(r, t;(d';) can be written
as

C (r t (u')=e(r t-t.)=e'" '"o"- o" '0"

x 5 d pa(p)e (h (Pt'-BU )(( (&1 (4 -I)

p,[gP; (t,}]=(n"'Z (~)"p,' Q C „a,, t, ; ',.)

&&
4* (a;, t, ; ~„,.)). (3.25')

I et us call & p the width of the function a/) and
let &E be corresponding variation of E{p).
assume that the beam is quasi. monochromatic, or
that

(4.2)

IV. STATIONARY AND WEAK INCOHERENT BEAMS

A. Definition

The beams we are studying in this section are
stationary, weak, and incoherent. Moreover, they
are assumed to be quasimonochromatic. They ax'e

defined by the following hypotheses;
(i) The wave packets O, (r, t; &u,') associated

with the parti. cles are stochastic functions with the
same probability distribution. %e assume that
4;(1', t; (d;) call be wl'lt'tell as 4(r, t —t;). Tile po111t

By definition, the coherence time is 7 = I((gE)
and the coherence length is l = 7'v, where v is the
mean velocity of the particles. The coherence area
o is defined by the width of the wave packets in
the directions y and z normal to the propagation
direction x. In the following, to simplify the cal-
culations, we shall consider only measurements
on a beam whose section is of the order of the co-
herence area; we are not interested in the varia-
tions of C; withy ands and we write
C, as C;(x, t; (d';).
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(iii) The random functions 4,(x, f; &u~) and the
random variable N(&u) are stationary in space and
time. Since a wave packet can only be stationary
during a limited time interval T and on a limited
length interval I =nT, where the spreading of the
wave packet may be neglected, this implies that
the dimensions of the stationary physical system
S being considered are limited by T and L, . As
can easily be shown, the time interval T is re-
lated to the coherence time v' by

2'«(E,/I)" . (4.3)

This quantity 5 is the degeneracy parameter. Con-
dition (4.4) is fulfilled for thermal light (6= 10 )
and for the most powerful and monocinetic electron
beams (5= 10 '), but it is not fulfilled in the laser
case and, as a consequence, in the experiments
performed with pseudothermal light" 8 (& may be

larger than 103). Finally, according to hypo-
theses {iii) and (iv), T must verify the two condi-
tions

(iv) The number of particles that can be de-
tected in the time interval T is equal to the number
N(~) of time instants f, in this interval. This hy-
pothesis means that for every wave packet emitted
during the time interval T a particle corresponds
which can be detected during the time interval T.
This implies that 7.

' is much larger than v, the
time-width of the wave packets, and that the prob-
ability of a particle being emitted during a time 7'

at, the beginning or the end of the time interval T
is very small. This last condition is fulfilled if
5, the mean number of particles emitted during a
time ~, is such that

(4.4)

so, we must determine for what conditions such an
assumption is valid and what its meaning is. In
this subsection, we show that this assumption is
necessarily an approximation. In fact, the func-
tions 4&, being identical and independent, cannot be
orthogonal for every set f&u',J. In Sec. IV C, we
show that the assumption of 6%' is nevertheless a
good approximation if a certain condition limiting
the density of the particles is fulfilled.

It can easily be shown that the 4&, verifying
hypothesis (i), cannot be orthogonal for any value
of (a&',). For this purpose, let us consider the ran-
dom function G(f„ f,; &u'„&o&), which is the simplest
term in D((u„ to') identified with zero by GW:

G(t„f,; ur';, ~',)= J I;(x„t,; (u';) 4", (x„ f, ; (u';)

&& 4» (x~, t~; &u&) 4»*(x~, t~; &u&)dx~dx2. (4. 6)

This function is equal to zero if, and only if, the
functions 4, and C» are orthogonal (i&j) Ho.wever,
taking into account the fact that C

&
and Cz are identi-

cal and independent and knowing that the order of
the integration in space and of the mean value can
be interchanged, we can write

G(fg, fg', (d(, tdg)

= f ~(e,( x~, t, ;(o',)ef {x„t,;(o',) }~ dx, dx, . (4. 7)

The function(G(f„ tv, &o'„v&)} is strictly positive.
It follows that, when 4

&
and 4& are identical and

independent, G(t, , t2, &u &, &u J) is not identical to zero
and that the functions 4

&
are not orthogonal with

one another for every value of (&ug. Thus the ran-
dom variable D(&o, ru') is never equal to 1, and the
assumption of 6%' is always an approximation.

v «r«(Z, /a) v' (4. 8) C. Condition of Validity

Both these conditions can be fulfilled because,
according to Eq. {4.2), we have

v «(E,/Iv) v'.

8. Approximation

The preceding hypotheses bring very few simpli-
fications to expression (3.25) of the cpd, but the
problem can be considerably simplified by assuming,
as GW did, that the functions e, are effectively
orthogonal". This assumption of "effective ortho-
gonality" merely signifies that for any value of
N(~), the N(&u) functions C, are orthogonal for any
set of points v ., as can be verified by performing
the calculations which lead to Eqs. (2. lb) and (2. 26)
of Ref. 20. Thus the assumption of GW is equiva-
lent to condition (2. 8) of the present paper If this.
condition is fulfilled, the cpd's are given by Eq.
(3.26 ). So, it would be very convenient to make the
same assumption as 6%. However, before doing

%'e shall now establish the condition which allows
us to consider the random variable D(&u, &o') as
nearly equal to 1. In what follows, the proposition
"D(&u, &u') is nearly equal to 1"is strictly equivalent
to the relations

{D((u, (u')} =1+&, (e «1), (4.8)

o~ ={D'((u, &a')} —(D((u, ur')}'= &' (e «1). (4.9)

No condition is imposed upon higher-order moments
of D(~, a&'). The values of the quantities e and e'
determine the range of error which is introduced
by admitting condition (2. 8).

%e shall first determine the necessary and suf-
ficient condition for (D{&o,ro')} to satisfy Eq. (4.8).
Next we shall show that this condition is sufficient
for (Tg) to fulfill Eq. (4. 9)(Appendix B).

From Eq. (2.7), it follows that
N(u) 1

&D(~, ~ )& =I+ Z P~(. )(+)
k=l
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V (ru)

(xxi' tx,) X'„(x,, t;tx,.,.)dx, dx„|„)
i=1

(4. 10)

The quantity P „~„& is the sum of all the k-order
permutations of N((d) elements. Any k-order
permutation(u»} taken in N((d) elements [(N(())) & k]
can be written as a product of l circular permuta-
tions of q, elements (2& q»& k) and 1 circular per-
mutation of one element, the sum of the orders
of all these permutations being equal to k. ' Since
the order of a circular permutation of q elements
is equal to q —1, for any positive integer q, we
have

or

g(q, -i) =k

g q; =k+1
(4. ii)

The integer I depends on the permutation {c»P under
consideration and may vary from 1 to k. When l
= 1, the permutation {nn~ is a k-order circular per-
mutation. When I = k, the permutation {»).;] is a
product of k circular permutations of two elements.
The integers l and q; being given, different k-order
permutations can be written as a product of l cir-
cular permutations of q; elements. We shall call
them equivalent per mutations. All these equivalent
permutations give an equal contribution to (D(v, &u')) .
This contribution is

l l

II F„=II f )» X )» !» dx, dx, "dx, ,
i=1 i~ 1 i1'i qi1

(4. 12)
where

X, ,=(e,(x„ t;(d';) 4;(x„t; (oI)). (4. iS)

As shown in Appendix A the function F, is real and

positive. The number of equivalent permutations
is equal to the number of different sets of l circular
permutations of q, (1& i & l) different elements that
can be chosen in N((d) elements. In other words,
it is equal to the number of sets of l nonordered
group of qi different elements that can be taken in

N((d) elements, times the product of the numbers
of the different circular permutations that can be
respectively built with q» q». . . , q, elements. Thus
the number of equivalent k-order permutations is

(V(tx)) (N( ) -q)

l k+l

q ~ ~ ~ q»- » IT
i 1 qi a=2

(4. 14)

The quantity A, &
' is the number of circular permuta

tions of q, elements. We have

A', » '=(q; —1) ! . (4. 15)

(D(&u, ~'))

N 4) NEO q1

V

-kt l --1 l

n t Aqi-' F
ql g-2 '

1
qi qi

(4. 16)

The sum g», ) is obtained over all the different sets
of l nonordered positive integers larger than 1, the

sum of which is $I,q»=k+l.

From Eqs. (4. 15) and (4. 16) it follows that

N leo)-1
(D(&, ~')) =I+ g (~1)' g gN(~)[N(~) -I] "

k=1 l=1 {q.)i

k+ l P -1
x [ (N~) t t+1] g-(n-. !)Qq,

La=2

(4. iv)
I et us call H(k, I ) the positive function of k and l

which is written as
"k+l l 1 l

H(k, I) =g Q (n, !) gq; P F, , (4. 18)
{qi) a=2

and let us call p(n) the probability that N(v) will be
equal to n. We can write

OO n" 1

(D((d, (()')) = 1+Z P(n) g (+) |n(n —1)' '
n=O

x (n -k - I + 1) H(k, I ) . (4. 19)

After some calculations, we find that this ex-
pression is equivalent to

(D((u, (d'))=1+ Q(+)"g H(k, t)

xZ P(n)n(n —1) . (n -k -3 +1) . (4.20)
n~k+ l

As N(v) is a Poisson variable, we have

(D(~, ~')) = i+ Z (+) '0 H(k, t)(N(~)) "' . (4.2i)
k=1

From Eqs. (4. 8) and (4. 21), it follows that the
condition we are looking for is the condition neces-
sary and sufficient (ns condition) for having

The integer n, is the number of q, equal to a. (The
number a is a positive integer varying from 2 to k
+I).

According to Eq. (4. 14), we can write (D(ur, v'))
in the form
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g (~)'Pa(e, t)(Z(~))"'«I.
k=1

(4.22)
Vfe see in this formula that the ns condition to

have (t)D) «1 is

The ns condition for Eq. (4. 22) to be satisfied for
bosons (+sign) is a sufficient condition for Eq.
(4.22) to be satisfied for fermions (-sign). So,
the ns condition we are looking for is that required
to get

(~D) = g(+)'ga(n, I)Pr(~))"' «1. (4.as)

Let us study the function H(k, f). It is shown in
Appendix A that, if q o 2

(P~/T')' '= F,- (m. /T)' ' (4.24)

- ~ 1

Q (n, !) q;
(4. 28)

In this expression m is a positive quantity of the
order of 2, and the constant p is such that 0 & p & m.
It is given (Appendix A) by

f ~
)t„~'d, dx, =p(~/r).

From Eq. (4. 24), it follows that

(P~/r)" g F„(m~/Z)' (4.as)
i=1

and from Eqs. (4. 18) and (4. 25), it follows that

[(N((u))'r/T] «1,
which can also be written as

(N(&o)) 5«1 .

(4.so)

{4.31)

Relation (4. 31) is the ns condition in order that
the approximation of 6% might be used. It limits
the intensity of the beam. It is fulfilled for weak
beams only, such as thermal light beams [(N((d)) 6
& 10 ] and electron beams [(t))(&o))5& 10 ]. How-
ever, there are cases where the approximation of
GW cannot be used because (N((d)) 5 is much larger
than 1. Such is the case for pseudothermal light. 8

In this paper, we shall deal only with weak beams
which respect condition (4. 31).

Condition (4. 31) allows us to write Eq. (3.25) in
the following way:

P~ Es» «c]=(~"Z (~)'P.' Il e, (a(, t~; ~'()
f"1

x e., (a,, t;, ~.',) ~~ (e„e.)) . (4. sa)

It can readily be shown that it follows from condi-
tion (4. 31) that the sum of all the terms in which
permutations occur within the scalar products can
be neglected. As a consequence, Eq. (4. 32) gives

P, [(aj;«,}]=(X(~))'„

Moreover, we have
i- ))+) l

- -1

I/(a+I) g Q (,!)gq,
fe~) Ln 2

(4.2V)

x g e, (a;, t;; (0',)Q (a) ' p~ e, (a;, t „(u,' )
k

(4. ss)

The first inequality is derived from the fact that
the quantity (&+I) is one of the terms of the sum
of positive terms

"keg

S(n, I)=g (n. !)Qq;
fe]) a=

To establish the second inequality, lt ls sufflclent
to notice that the number of k-order permutations
of q elements taken in N((d) elements is smaller
than the number of all the permutations of q ele-
ments taken in N(&o) elements. Thus we have

g @[a,(q j]!)t(~){X((d)—1) ~ (N((d) —q+1),
(4.28)

which gives
)-k+ l

Z P(~. t)IIq,
(e;) '=2

»om Eqs. (4.23), (4. 26), and(4. 27), it follows
that

z(~)'z()', „""'(») j(',')'r()(( ))"'.
(4. 29)

a result which is identical to what we should obtain
if the wave packets were orthogonal.

If we set

q, (a, t; (o';)=e, (a, t; (d';)i.",
we can write P~[fa,};«;}]in the following way:

aa((«);Pal=( )'(llama, (aa ),; ta))

a g 'p( )a'q, ( aaa;; a,',)),
(4. s4)

where (p) is the mean number of particles by unit
of length

[&p) =&N( ))I '].
Equation (4.34) can also be written as

P, H. .};«&] =&p&'Z P;{.I)

0 &')I( (+ ( t (i (d () 0 ( (&)) t (i (()~))
i=1

(4.s4')
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or, by introducing the correlation function,

y„=y„=&al, ( „t„',.)rI*, ( „t„',)&, (4. 35)

P [(a];9]]=&p&" ZP'(+ I)' II y, . (4. 34")
4=1

This equation shows that in the case of a weak in-
coherent beam the cpd can be expressed in terms of
the second-order correlation function of the wave

packets. Moreover, in the case of fermions, we
see that the cpd can be considered as the determi-
nant of a matrice I'~:

'Yll ~la''' »~ '''»
~21 ~22 ~aj ~2@

~jl ' ''
Yg)

'''
Yg

The cpd given by Eq. (4.34) or by Eq. (4.34") de-
fines the detection process of any beam of particles
characterized by the hypotheses of Sec. IV and
verifying condition (4. 31).

It remains for us to study the properties of the
point processes defined by these cpd. To begin
with, in the present paper, we shall only point out
some particular features of these processes.

Several comments can be made about the expres-
sion (4. 34) of P~ga,); (t;J].

(a) If we write Eq. (4. 34) for p=2, we obtain

Pa[ai —aa, ti -ta] =&p)'[1+
l »a I'], (5. 1)

where y, a is given by Eq. (4. 35).
The purely temporal cpd P, [0, (t, t, =t)] is give-n

in Fig. 1 intheparticular case where y(0, t, t,)—
=exp[- I t& ta I/7']. We h-ave

P, [0, t]=P, (t/r)=(p)'[1-e~(-2 It I/r)]. (5.2)

Equation (5.1) expresses the well-known bunching
effectforbosons (+sign), and it shows, in the fer-
mion case (- sign), another effect that may be called
the "antibunching effect. " In the latter case, the
a Posteriori cpd &p) [1—

I y, a Ia], to detect any par-
ticle at a given point and at a given time, when
another particle has already been detected in a
neighboring point and time (distance in space and
time of the order of the coherence length and time),
is smaller than the a priori cpd &p) to detect a parti-
cle at that; point and at that time. This second-order
effect is well known; it is the so-called Fermi-hole
effect, and the principal interest of our results
lies in the knowledge of higher-order fermion cpd.

(b) Equation (4.34) shows that the bunching

effect, as well as the antibunching effect, arising

2, t/7

FIG. 1. Variation vnth respect to t/7 of the purely tem-
poral second-order cpd P&(t/7) for bosons and fermions.

p (x, t) = n (x, t) n*(x, t), (5.3)

where n (x, t) is a Gaussian analytic signal whose
correlation function is

&n (a~, t~) n" (aa, ta)& =&p&»a . (5.4)

For this purpose, let us consider the p-order
moment &p(ai» 4) p(aa~ ta) p(aa, t~)& which is
equal to the 2p-order moment (na ) =&n (a„ t,)
x n* (a„ t,) n (a„ t,) n* (a„ t, ) n (aa, ta) n* (aa, t,))
of the Gaussian function n (x, t). This 2p-order
moment of a Gaussian function is the sum of all

in a weak incoherent beam, comes from the terms
corresponding to nonzero-order permutations. If
the particles were distinguishable, these terms
would not exist and we should have

P, [fa); $t,)] =&p)'.

The detection process would be a Poisson process.
Thus it is because of their indistinguishability that
the particles, zvhich are assumed to be stochastical-
lg independent When emitted, ar8 d8tect8d as
bunched or antibunched.

(c) The space and time variations of the p-order
cpd given by Eq. (4.34) come from the indistin-
guishability of p particles. The existence of other
particles appears only in the coefficient &p&a. There-
fore, the actual system on which a p-order coinci-
dence experiment is performed can be considered
to result from the interaction of a system of p
indistinguishable particles on which the measure-
ment is performed, with a reservoir consisting of
the [N(~) —p] other particles.

(d) Equation (4.34) enables us to find all the

well-known results for thermal photon fields.
The cpd given by Eq. (4. 34) written with the +sign,
are the cpd of a compound Poisson process. In
fact, we know that if the set of the cpd of a point
process is identical to the set of the moments of
a stochastic positive function p (x, t), this process
is a compound Poisson process, the density of
which is p (x, t). It can be easily seen in Eq. (4.34)
that the cpd are identical to the moments of
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the different gonoxdexed nonzero products of p
second-order moments of a (x, t). Since a (x, t)
is an analytic signal, we know that

(n (a„ t,) a (a„ t,)) = 0,

(c.*(a„t,)(x*(a„t,)) =0 .
(5.5)

It follows that the sum of all the different non-
ordered nonzero products of P second-order mo-

ments is obtained by associating any o. (a„ t,)with
any n (a1, t1). We have

P P«l

(aa) = II a, (a„ t,)Q t",a1, (a, , t;)&, (5.8)
&=0

where P~ and fPJ have the meaning already defined
in Sec. III.

From Eqs. (5.4) and (5.6), it follows that

p«j
(~"

& =(p&' II n1 (~; t; ~'1) Z P~ &8, (~1 «&s,).
j=1 0=0

(5. 7)

Fl om Eqs. (5. 3) and (5.V) we deduce that the

cpd given by Eq. (4.34) al'e ldelltlcal to tile p-order
moments of the stochastic function p (x, t).

We must note that this stochastic function p (x, t)
has a physical interpretation only when the beam
is strong enough. In the case of very weak beams,
it appears to have only a mathematical meaning.
The quantity p (x, t)1)dt, according to the definition
of p (x, t), is equal to the number of particles pas-
sing through the section of the beam at time t during
the time interval dt. This number can be measured
only if the detector is fast enough to follow the fluc-
tuations of p (x, t), but another condition must be
fulfilled for p (x, t) to be mensurable and thus to
have a physical interpretation. In fact, because of
the quantum nature of the interaction, a detector
would measure the density p (x, t) only if the number
of particles arriving to the detector during its res-
olution time is much larger than 1. If this condi-
ti.on is not satisfied, that is to say if the bea, m is
very weak, it is only possible to count particles
and impossible to measure any intensity.

(e) For fermions, several interesting features
may be pointed out. Let us consider the one-di-
mensional stochastic process, a function of time
only, that is obtained when all the coincidence mea-
surements are made at the same point in space:

(i) We see in Eq. (4.34) that, for fermions as
well as for bosons, if the coherence time is very
sn1all con1pazed with all the times introduced by
these measurements, the detection process is a
Poisson process. It is the only case that has been
attained experimentally, In fact, the best fermion
sources that could be used for coincidence experi-
ments are point-cathode electron sources, because
they are monocinetic and powerful. " Even these
sources, which give a coherence area large enough

to allow good measurements, give a coherence
time of the order of 10 ' sec. Vfe know that the
electronic detection devices we might use are
generally integrating over a time of the order of
10 sec. Consequently, they would smooth out
the effects that we wouM like to observe; we meet
the same problem with coincidence experiments
on white light.

(ii) In what follows, we assume that the mea-
surements introduce times of the order of v; we
obtain theoretical results that cannot be verified
with the present experimental devices.

We assume that the time correlation function
y12=(q(a, tl) g*(a, tl)& is such that yls= y12y2~, if
t& & t2& ts. Thus it can be written as

~la= exP[-
I tl -41 I&] (5.8)

In the expression P~ (a, tl , ~ ~ ~, .c, t&) we can al-
ways assume that t - t - ~ ~ ~ - t . Then after some
calculations, it can be shown" that, when Eq. (5.8)
is satisfied, we have

p-1
P (a, t, ~ ~ a, t )=(p&~Q (1-e '&'),

g=a

where 4t&=t„,-t~.
The quantity 4I;& is the waiting time between two

successive detections.
The relation (5.9) is a sufficient condition for

the stochastic process to be a renewal process,
as has been shown by Macchi. A renewal process
may be defined as follows: It is a stochastic process
in which the successive waiting times are mutually
independent random variables. ' In our case, this
means that the waiting time 4I;& between two suc-
cessive detections does not depend on the preceding
detections. It must be emphasized that this result
is quite unexpected. In fact, it depends on the
weakness of the beam density ((Ã& 5 « I), but this
condition is not sufficient. It is only for the par-
ticular shape of the correlation function given by
Eq. (5. 8) that the independence between successive
waiting times occurs.

The renewalprocess is characterized by the prob-
ability p(t) that the waiting time will be equal to t.
This probability can be calculated from the expres-
sion of P1, pa,];(t,]]. We have

P(t) = 2(I) (1 —2(I)~) "' e '" sinh[t (1 2(I) ~)'"'/~—].
(5.10)

In this expression, we have introduced the mean
number of particles passing through the section of
the beam per time unit (I) which is given by the
relation (I) =(p) 1).

We notice that for P(t) to be a probability, it is
necessary that 2(I) r ~ 1. This is merely the ex-
pression of the Pauli exclusion principle. When
v -0, the process becomes a Poisson process, and
we have p(t)- po (t) =(I) exp[-(I) t].
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2 3 4 5 6 7 8 9 t (}ise~I

y(x, -x,) =(q,. (x„ t)qf(x„ t)) =y+ (x, -x,). (Al}

The functions tl, (x, t) are identical and stationary
stochastic functions. They are defined by the
relation q;(x, f) =I, i'4, ( x, t). The quantities I and

C,(x, f) are defined in Sec. IV.
%e set

y(x x ) f g(k) sais'(x't -xs) dk

FIG, 2, Variation with the time t of the probability p(t)
defined by Eq. (5. 10), for a given value (I) =105 parti-
cles/sec, and several values of &. The two limiting
cases (I) v=0. 5 and v =0 are drawn. The curve rep-
resenting p(t) for the possible values of 7 varies between
these two limits, as shown for (I) r =0.1.

As can easily be calculated, the probability p(t)
is maximum for a value t, of the time t. This
value to depends on the coherence time 7' and the
mean intettsity (I) . We find that & to/&v' & 0 and
& t, / &'(I) & 0, results which are easily understood.
Moreover, for any value of (I), satisfying the in-
equality 2(I) r» 1, we have the relation to& r The.
larger the quantity (I) v', the smaller the difference
(f, —v). For the limiting case where 2(I) r =1, we
have to= v. The function p(t) is drawn on Fig. 2
for a given value of (I) and several values of v.

VI. CONCULSION

The study of the statlstlcal properties of a set
of particles in the wave-packet formalism, in the
most general conditions, yields results which are
too complicated to be easily used. Some conditions
(stationarity, incoherence, weakness of density)
must be fulfilled in order for the difficulties in
this formalism arising from the nonorthogonality
of the wave packets to be solved.

Under these conditions, the wave-packet formal-
ism gives, in a simple way, several interesting
new results. In particular, it shows how bunching
and antibunching effects come from the detection
of indistinguishable particles. It enables us to
detel mine tI1e detection plocess of R weRk beam
of incoherent fermions.
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APPENDIX A

The function A(k), being the Fourier transform of
a correlation function, is real and non-negative. '~

It is assumed to have a finite maximum A(ko) = A„
and to vary monotonically before and after this
maximum, as is the case if A(k) is the spectral
density of a quasimonochromatic field. Let us
introduce the quantity hk which is related to the
width f of the correlation function y(xt -xs) by

~a =t-', (AS)

and let us calid„m the value of the function A(k)
for k =ko+ &k/2. (The value of m is of the order
of 2. )

From the normalization condition (4;, 4;)= 1,
it follows that

y(0) = f X(k)dk= l.
From Eq. (AS) it follows that

f2 (k)dk&A„m I ',

and from Eqs. (A4) and (A5), we deduce that

(Ae)

Rnd that

f A (k)dk»mf.

Thus we can set

f /
y(x, -x,) [ dx, =f X'(k)dk=pf, (A8)

g'f (xi, —xt) dxs dxs ~ ~ ~ de ~

We have

f+~ f+ g(k )estreat(xt gs&g(k ) 2islhs-(x »&. . . -'

& A(ki, ) e ''si t"i "t'dxs dx&dktdks ~ ~ dk—i, (A10)

Ol

We now show that, if the preceding conditions
are fulfilled, we have

(A9)

where we have set

Xf X3 p Xa X3 p Xg X p g ~ Xy ~

Let us consider the purely spatial correlation func-
tion y(xt —xs) such that
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& 5 (k»- k l) dk ldk 2
~ ~ ~ dk„ D((u, (u') = 1+ Z P'„(„)(~)"f((o.,}), (al)

that is to say,

e, = f„w»(k) dk . (A12)

We have

f ~» (u) du-« f X»-'(k)A, dk- ml f A(k)' 'dk-

(A14)

Since fA (k)dk~ ml, it follows that

f A» {k)du& (ml)»-'. (A15)

To show that (Pl) ~ f A»(k) dk, we use the
Tschebycheff inequality35: If B(k) and C(k) are two
functions of k such that, for every k1 and k2,
[B(k,) —B(k2)][C(kl) —C(kz)] & 0, and if P(k) is a
probability density, we can write

f p{u)B(k)dk j„'"P(u)c(u)dk f p(k)B(k)C(k) dk.

(A16)

Setting B(k) =W(k), P(k) =A. {k), and C(k) =A» '(k),
we obtain

f &'(k)dk f A» '(k)dk f A»(k)dk, (A

which, according to Eq. (A8), can be rewritten
as

pl f ~» '(k)dk f-A.»{k)dk.

Since we have fA (k) dk = Pl, it follows from Eq.
(A18) that

(pl)' 'f A»(k) dk -(qED).

(A18)

Let us now consider the quantity

F,=f X(x, -x,) ~ ~ . X(x, -x,)

This relation still holds if, instead of integrating
from -~ to+~, we integrate over an interval I very
large compared to l, as we do in Sec. IV.

Therefore, we have to establish the relation

(Pl)' ' J '„A.» {k)du (ml)' ' . (AIS)

where
g{e)

f{L~~})=II f e&(x;)e.*,{x,)dx, ,

and f o.&} is any k-order permutation of (I, 2, ~ ~ ~

N(&u)}. Expressing (o.&} as a product of l circular
permutations of q; given elements (I & i & l), we
can set,

l=1

{B2)

(as)

where

O q, -l=q-l=k,

and F, , integral of a circular permutation of q;
functions 4, ' is given by the expression

p, = fe,*(x'„t) e', +(x,', t}e,'(x*„ t) ~

& e,* (x,*, t) e',*(x'„ t) dx', dx,'. .

Therefore, D(m, &o'} can be written as
N{@) 1 k l

D(~, ~'}=1+ & (+)" Z Z 8((q;}}gF, .
k=1 1=1 fq; } g=1

The symbol 8 ((q,})indicates that we take the
sum over all the equivalent permutations III,F, .~

where I and q,. are given. j et us note that
we have

&p &=p' (B8}

p, = L' x(tl - 4}x{4-t3} ' x{t,'. —tl»
Z

where F, is the quantity defined by Eq. (4. 12}.
By using expression {4.1}of e;{r, t, &o ), we can

show that Eq. (B4}ls eqlllvalellt. to tile relation

prom Eq. (AQ), we deduce that

(plL ') '~ E ~ (mlI ) l

a relation which is identical to Eq. (4. 24}~

(AIO)

APPENDIX 8

This appendix shows that O'D verifies Eq. (4 9)
if (D) verifies Eq. (4. 8).

According to Eq. {2.7), D(&u, &o') is given by
the relation

X (xy —xy) ' X (x» xl) dxldx2 ' ' dx»)

where

X (x, —x,) = I,-' y{x,—x,) =&e,.{x„t) e*,. (x„ t)& .

where x{t—t') is the purely temporal correlation
function of any wave packet 4 „, and t& the emission
time of the wave pack O', We have

x(t,' —t,'„)=& e,(x, t', ; a)'„}e,*(x, t,'„;(u', }&

= I.-' f e,'(x, t}e,'*„(x;t}dx .

Let us now consider OD. We have

o.'=& D'&-& D&'
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(B8)

&X((~;))) .-.(~f/L)' "L"II II x(f.,
—t. ..),

(B18)
and that

In this expression, the terms in which all the func-
tions 4» are different from the functions C» give
a zero contribution.

Let us now show that the terms in which r(1&x
-inf(q, q') ) functions C

&
are identical to r functions

4» are very small compared to 1. We shall call
C, these r identical functions (1 &s &x). We con-
sider a term

l

rr F., II F„,

i i i i
i i i i i

l "i l'

rr rr rr rI' ~(f., -f..„)x(f... -f.., .,)«.,
(B14)

According to Eq. (A4), we have the relation )t(f, —t2)
&1/L Thu. s we can write Eq. (B14) in the form

&f(f~~))f((~; )))
Q+Q Qf gf l 'i

r X ts. ts.+1 d~s

where x; functions 4, appear in F, , and x,' func-'i
tions C, appear in F, . We have

Cig
'

By using the relation

(B15)

(B9)

We call k,.(k&. l the number of integrals F, (F, ),
where there is at least one function 4,.
We have

k, &inf(r, l); k, , &inf(r, f')

By using the relation

(1/T' ') 1 L~(f, f,) L)f(f, f,-)"-
(B10)

(F, ), -(m&/L)'~ "*L)t(f,-f,)Lq(f, -f, ) ~ ~q. Si

x L)t(f, —t, „) Lq(f„. —t,), (B12)

x L)f(tq —tq, q) dt2dts dt's - (ml/L)~ L)f(t| —t~,g),

(Bl1)

which can be deduced from Eqs. (A2) and (A15) of
Appendix A, we obtain

&(+ f/L)r. -1
(B18)

which can be deduced from Eq. (A9), we obtain

&f(b~j)f((o; ))) &(~~/L)'" "" (BlV)

where k=inf(k&, k;.).

Then, by using the method which has enabled us
to deduce Eqs. (4. 21) and (4. 27) from Eq. (4. 10),
we deduce from Eqs. (B8) and (B17) that

+ ~ kk& inf (e,a') q+q'-r-ko'- Z Q P (N((u))'"' "

krak

-"1 2=1, l'=1 g=1

(B18)

The first two terms of o~, for k = k'= 1, are (N(v))
x(ml/L) and(N(~))' (mi/L)'.

From the relations between q, q', l, l', r,and Il,,
we deduce that

where t, are the emission times of the ~, functions
i

4, . The symbol ( )., indicates that we take
the ensemble average of F, over the functions 4»
different from 4, .

Therefore, it follows from Eq. (B12) that

q+ q' —r & 2(q+ q' —r —k), (B19)

Therefore, since the conditions l/L«1 and N(&u) l/
L«1 are assumed to be fulfilled, Eq. (B18) shows
that o~ is very small compared to 1.
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In analogy with the work of Kawasaki and Oppenheim on the shear viscosity, the density ex-
pansion of the bulk viscosity is obtained for gas systems which interact with attractive forces
and repulsive forces. In the case of repulsive forces, the first term in the density expansion
of the bulk viscosity is of order p . In the case of attractive forces with bound states, the den-
sity expansion possesses a term of order p.

I. INTRODUCTION

Over the past few years several researchers em-
ploying various techniques have investigated the
density expansion of the coefficient of bulk viscosity.
Choh and Uhlenbeck first attacked the problem
using the Bogoliubov-Born-Green-Kirkwood- Yvon
hierarchy of equations and showed explicitly that

for a hard-sphere gas, the bulk viscosity was zero
to at least order p in the density. ' Several years
later Garcia-Colin, using a kinetic approach, and
Ernst, using a correlation-function approach,
showed that for systems with repulsive interactions
the bulk viscosity is at least of order p .

We now wish to confirm and extend the results
already obtained for the bulk viscosity. We first


