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Density Fluctuations in Single-Consponent Fluids
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The memory-function formalism of Zwanzig and Mori is used to study the density-density
correlation function ( p (8) p~} in a single-component fluid. Using the hydrodynamic variables
suitable for longitudinal disturbances, (p (S) p*) is expressed in terms of the appropriate
memory functions. This formally exact relation is then shown to be equivalent to the result
obtained by Kadanoff and Martin in terms of a dispersion function. By considering the approxi-
mations suitable for the analysis of Brillouin scattering experiments, it is also shown that the
formal expression for (O (S) p*) can be reduced to results previously derived by Mountain and

by Bhatia and Tong on the basis of a macroscopic analysis using the linearized hydrodynamic
equations coupled either with relaxing shear and bulk viscosities or with thermodynamic relaxa-
tion theory. Present analysis thereby provides a microscopic basis for these hydrodynamic

theories, as well as revealing to some extent the nature of approximations involved. Our mi-
croscopic analysis also suggests a simple model to take into account the effects of coupling
between heat flux and the viscosity stress tensor.

I. INTRODUCTION

It ls known thRt R VRx'lety of x'RdlRtlon scRttel'lng
experiments can be used to probe the density fluc-
tuations Rnd their correlations in a fluid. Among
them, the spectra of inelastic-slow-neutron and
light-scattering experiments have been analyzed
quite extensively; for both these, one can relate'
the scattered intensity to the dynamical structure
factor S(k, tc) which is the space-time Fourier trans-
form of the density-density correlation function of
Van Hove. Because the neutron directly couples to
the nuclear motion in the fluid, such a relation is
quite direct, ' whereas for a light-scattering probe,
one usuaQy assumes that the fluctuations in the dj.-
electric constant arise solely from the fluctuations
in the local fluid density. Theoretical understand-
ing of the density correlations in a fluid, and there-
by the calculation of S(k, &c), is one of the central
px'oblems in nonequilibrium statistical mechanics.

Fol' dilute gRses (both monatomlcRlldpolyatomlc),
S(k, &c) has been calculated '

by solving the linear-
ized Boltzmann equation with appropriate initial
conditions and for a variety of models of the colli-
sion integral. Fox' higher-density fluids, light-
scattering experiments probe, to a large extent, the
hydxodynamic region where the fluctuations are
relatively slowly varying in space and ti.me. Thus,
the usual approach in analyzing these experiments
has been to use the linearized hydrodynamic equa-
tions of irreversible thermodynamics. " For
fluids with internal degrees of freedom, such a
macroscopic approach has to be supplemented
either with frequency-dependent transport coeffi-
cients or with some relaxing internal parameter
which is treated via the thermodynamic theory of
relaxation. '3 The use of frequency-dependent trans-

port coefficients has been justified on a microscopic
bRsls by Zwanzlg ':fox' those sltuRtlons ln which
the coupling between the internal Rnd translational
motions is weak.

In recent years, however, two general formalisms
have been developed to deal directly with space-
time-dependent correlation functions for dense sys-
tems. The correlation-function formalism of Mar-
tin"'6 utilizes the equivalence of the linear-re-
sponse theory and the linearized hydrodynamic equa-
tions to describe the slowly varying response of a
system to an external disturbance, as well as gen-
eral analytic properties of the correlation functions,
and thereby deduces the expressions for the various
response functions which are correct for arbitrary
frequency and wave number. The formalism leaves
open the form of the unknown dispersion function
in these expressions; this form has to be guessed
on the basis of some physical model depending on
the problem at hand. In the memory-function for-
malism developed by Zwanzig' and Mori, one
applies the projection-operator technique to the
formally exact Liouville equation to derive the so-
called generalized Langevin equation for an arbitra, ry
set of dynamical variables. The memoxy-function
matrix appearing in this formally exact equation is,
in principle, known in terms of the detailed inter-
actions in the system, but is quite complex even for
the simplest systems. The arbitrariness in this
formalism is in the choice of the set of dynamical
variables which has to be guided by the pertinent
macroscopic variables for a given system.

Fox' the simple dense system of liquid Rrgon both
these formalisms have been recently applied' ' to
study the high-frequency-wave-number behavior of
various correlation functions encountered in analyz-
ing the molecular-dynamics (computer) experiments
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and the slow neutron-scattering experiments.
Our main objective in the present work is to ex-

tend the existing microscopic formulations for mon-
atomic systems ' ' to the study of density-density
correlations in one-component molecular fluids with
internal degrees of freedom, and thereby develop a
microscopic basis for the thermodynamic relaxation
theory (see Secs. IV and V). Depending on the par-
ticular physical situation, the internal degrees of
freedom (used here in the same sense as in Ref. 13)
could involve either the rotational modes of motion,
the vibrational modes, or both; the generality of the
memory-function formalism enables one to build a
general framework in which different physical situa-
tions would give rise to different behavior for the
appropriate memory functions.

In Sec. II, we explain the motivation in the choice
of the pertinent set of dynamical variables and write
down the formal result for the density-density cor-
relation function. We follow the procedure (and as
far as possible the notation as well) of Akcasu and

Daniels; in fact, we use a subset of the dynamical
variables chosen by them. The choice of this sub-
set is guided by our interest in the longitudinal dis-
turbances, the remaining variables being pertinent
to the transverse correlations. Thus, the results
summarized in this section are not new, but form a
convenient starting point for our purpose. Because
of our special interest in the hydrodynamic behavior
encountered in light-scattering experiments, we as-
sume that the fluid is spatially isotropic; this as-
sumption may not be rigorously valid at high fre-
quencies for molecular fluids. In Sec. III, we show
that the density-density correlation function given by
the memory-function formalism is formally equiva-
lent to that given' by the correlation-function for-
malism of Martin; in particular, we relate the dis-
persion function to the pertinent memory functions.
On account of the general equivalence between the
linearized version of the memory-function approach
and the linear-response theory, it was expected that
the formalisms would yield identical results.

In Sec. IV, we consider the special case of zero
coupling between heat flux q and viscosity stress
tensor o. We show that with the proper hydrody-
namic identifications (where we neglect the frequen-
cy dependence of the memory functions) of various
coefficients, the expression for the density-density
correlation function derived in Sec. II reduces to
the results previously derived from the macroscopic
approach. ' Neglect of the q, ocoupling implies in
the hydrodynamic limit

Bs —Bs ——B~-B»
where Bs, B~ are, respectively, the instantaneous
values of adiabatic and isothermal bulk moduli; Bs,
B~ are the corresponding zero-f requency values.
Equation (1) means that the relaxing part of the bulk

Accprding tp Mpri, the equatipn pf mptipn pf a
set of dynamical variables A(t) is the generalized
Langevin equation

A

—iver A(t)~+ P(t-8) A(S)dS=7(t), t&0 (2)
dt o

A,

where &u (frequency matrix), p (t) (memory-function
matrix), andZ(t) (random force vector) are defined

by

i(o =(A, At) ~ (A, At) ',

7«) =(~(t),~') (A, A')-',

(3a)

(3b)

g(t) e t(1-P) &L(1 P) A

Also, we have

A(t) =e A,

(3c)

(3d)

and we have denoted A(0) by A, i LA by A. ln Eq.
(3), L is the Liouville operator and P is a projec-
tion operator defined by

PG(t) =(G(t), A ) ~ (A, At) ' A,
(1 —P)A=O .

(4a)

(4b)

In the linear-response approximation, Mori has
shown that a suitable definition of the scalar product
used in Eqs. (3) is

(F, G ) = (F G~), classical (5a)

=(1/p) f (e""Fe "" Gt)dX, quantal (5b)

where (~ ~ ~ ) denotes canonical ensemble average, H

is the Hamiltonian of the system, and P the equilib-
rium value of inverse temperature in energy units.
F and G are defined such that (F ) = (G) = 0. For the
calculation of the density-density correlation func-
tion, we choose the relevant dynamical variables as
follows: ' ' ' We define the microscopic mass-den-
sity and energy-density variables as

modulus is the same isothermally or adiabatically;
under this condition, it is also known' that the gen-
eral result of the thermodynamic theory of relaxa-
tion reduces to the result obtained by considering
an exponentially relaxing bulk viscosity.

In Sec. V, we consider a simple model in which
the q, o' coupling is treated via a single parameter.
We show that the density-density correlation func-
tion obtained from this model reduces, in the hydro-
dynamic region, to the general result obtained from
the thermodynamic theory of relaxation. In the
memory-function formalism, the coupling param-
eter has a definite expression, which can be evalu-
ated in principle. The hydrodynamic identifications
of the various coefficients which are made in Secs.
IV and V are justified in the Appendix. We conclude
the paper with a number of remarks in Sec. VI.

II. FORMULATION IN MEMORY-FUNCTION FORMALISM
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t)(r, t) =m Z 6'(r —r (t)), (6a
e=l

2(-„(),g ~ ', ) v(~~r. -r, ~~))5(r
—».it)).

m=1 m See
&6b)

and the Fourier transform of their fluctuations as

p(%, t) = (1/ V()) f e ' '
5p d' r, (7a)

with

Qp—=ik J (Sa)

(ab)

()p =f»(r, t) -(p(r, t)&, (7b)

and similarly for E(k, t). We have chosen to exclude
the part of the energy density associated with inter-
nal motion of the molecules since in the present work
we are interested in the correlated translational
motion in a one-component fluid. For simplicity,
we shall sometimes denote p(R, t) by p, etc. If the
current density J(k, t), stress tensor»» (k, t), and

energy current density Q(R, t) have the usual micro-
scopic definitions, then the following conservation
laws can be proved:

&p8 )=0,

&P'& =(pq'& = &8&'& = &8q'& = O' If& = &q ~& =(),

(po'&=(8o')=P q"&=o,

and it follows from Eq. (10) that

0'11 012 012

[(o»o» )]= o»2 oil o»2, i,2 = 1, 2, 2.

(12a)

(12b)

(12c)

(12d)

12 12 11

A= coi[p, 8, o„o„o„J,ql,

where

01=~~x 02=0rr~~s=~a~~~= J~~ 0'=0'~

and the 2 axis is chosen along the direction of R.
This is a subset of the variables chosen by Akcasu
and Daniels, and is relevant for the study of longi-
tudinal disturbances. The inclusion of the variables
q and cr, enables one to incorporate the important
loss mechanisms which give rise to thermal con-
ductivity, shear viscosity, and bulk viscosity in the
dynamical description of the fluid system.

To calculate the frequency matrix and the mem-
ory-function matrix, we shall make use of the fol-
lowing results which can be shown from symmetry
considerations:

„=i% q. (ac)

o=~ —&~p*&&pp*& 'p- &»*&&88*) '8

For fluids, the spatial isotropy implies that

(9c)

(V Vt)=

C11 C12 C12

C12 C11 C12

C12 C12 C11

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

C44 0

0 C44 0

0 0 C44

(loa)

with

It is now convenient to define a new variable 8(%, t)
as

8 =E- «p*)&pp*& 'p (Oa)

Fluctuations in p and 8 are thus uncoupled. The heat
flux q(k, t) and viscosity stress tensor o(fr, t) can then
be defined as

(0b)

0 zk 0
(8J*)
(JJ*)
iko, 2 (o,q*)
(JJ*) (qq*)
iko»2 (o2q &0 0 0
( „) ( 4) ~ (12a)

0 0 0
3ko 11 (83q )
«J") &qq*&

ik

ik(JJ*) (J8*)
(pp'&

ik(qq+&» p p

(88'& 1 o2 3

where

&qo» &( 11+2o12) o»2(&qol )+ &qg &+ &qo3))
( ll 12)( 11 + 2 12)

Using Eqs. (8) and (Sc), the random force is of the
form

Using Eqs. (8) and (12) and the stationarity property
of the correlation functions, we obtain

j.
C44= 2(C„—C,2), (lob) (t) = col[0 0 f,,f„f„0f, ]. (14)

We assume that (o' ~ ot) also has this symmetry.
Since density fluctuations are longitudinal distur-
bances, we shall choose as our dynamical variables

Hence, the memory-function matrix (t)(t) is of the
form
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 Pup&2/~2 0

o o 4u &f&ii 4'i2

o 4'i2»2 &f'ii o &e2a

ooo o oo o

where we have assumed that Q2 has the same sym-
metry as in Eqs. (10a) and (12d).

We now multiply Eq. (2) with At, take a canonical
ensemble average, and then take the Laplace trans-
form. Since (f(t) ~ A) =0, we get

(A(S) A') = [Sl - i~(o+ P(S)] '
(A A'), (16)

(A, (S)AJ ) = f2 e "&Ag{t)A)&dt, HeS &0 (17)

with a similar equation for P(S); . is a unit matrix.
Equation (16) is a matrix equation from which var-
ious correlation functions can be calculated. It is
then important to calculate the inverse of the ma-
trix [SI-iV+ P(S)] if one wishes to evaluate all
the correlation functions &A;(S)A)&. Since our in-
terest is only for (p(S)p*) —= (Aq{S)A,*), we can easily
show from Eq. (16) that, on account of the simple
«rm of (A At) we obtain

&p{S)p*», (S)

1S7-i~+P{S)1
where

&p, (S)

the viscosity stress tensor, one simply sets a; = b;
=0. Results summarized in this section are not
new, ~o but we have reexpressed them in a form that
is convenient for our purposes. For any given sys-
tem, knowing the explict form of the Liouville op-
erator, the memory-function formalism, in prin-
ciple gives the formal expressions for the nonzero
coefficients in P (S). However, since these are
quite complicated, most applications known to us
have taken recourse to modelizing at this stage.
For our present purposes, we do not need the ex-
plicit expressions for these memory functions.

III. RELATION WITH CORRELATION-FUNCTION
FORMALISM OF MARTIN

m-'&[ p(t), p*]&=j (dv/v) X "(k,v)e '"'.
Using Eq. (19) and the stationarity property of the
scalar product, one can show that

( )
4M 1 {k~M)

(d —g8

(21)

(22)

Relation between the memory-function formalism
and the correlation-function formalism can be de-
duced via the use of the fluctuation-dissipation theo-
rem. A well-known and useful formula which re-
lates the time-correlation function and the response
function is"

(x(t), y') = (1/P)& [x(t), y*]&,

where the scalar product is defined in Eq. (5), and
the square bracket is the commutator divided by
ih (quantum mechanically), or the Poisson bracket
(classically). In our notations, Martin's response
function" is

1t(k, S)= —(P/m') J, (p(t), p*)e "dt, (20)

~W

S+ 4n 412

(ed'+&

(ZZ+&

iko qa

PJ+&

and derive the sum rules

=X(k, S=0) =-X(k), (28)(
P g 8M X (kqv)

(ie+)
(88*&

,.k &qq*&

S+ 411 412

j7ro'~q
Ai2 S+»~ —

&d~,&

f 2

( (g, p*)= I ~(d, d*)=
i

"~1t"(k,~~). (24)
'fPl Pl

Equation (20), on integration by parts, yields

1t(k, S)= —(P/m ) S(p(S), p*) + 1t(k) .

From Eq. (18), one obtains

P S(p(S) p*& SZ„(S)
m' ~{k) SZ„{S)—(ikP/m')[(Zd *&/1t(k)]Z„(S) '

t2,. = —at+ P„,.(S), (18c)

k, = —&6,q*&&qq*&-'+ y, .,(S) . (18d)

For the case of zero coupling between heat flux and

where

~„(S)
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0 0 0

0 0

m' s' s[F„(s)—(s/ik)F„(s)]
P k &«'*) ik&«*)Fp~(s)

If one puts S= —iZ= —i(d+ 2 in Eq. (27) and identifies
r(k, «&) a,s

S+ 411 412

412 S 411

012
412 ak &«4)

O'12
412 —

2k&«2)

b1

b2

F„(-iZ)+ (Z/k)F„( —iZ) d(d' r(k, (~')
kF,~(-iZ)' )1 «&'-Z '

ik(qq*)
&«*)

Hence,

1 1

x(k, s) ~(k)

412
+11

(t)12 S+ (t)11

Q2 S+ Q„

(26b)

then Eq. (27) becomes identical to Eq. (85) of Ref.
15. From Eqs. (22) and (27), one can also evaluate
)("(k, (!))=Imp(k, S). We observe that Eq. (28) implies

F„(-iz)+ (z/k)F„(- iz)
kF„( 1Z)-

(2S)

In those physical situations where we can ignore
the coupling between q and o, i.e. , when a;=b; =0,
Eqs. (18b), (26b), and (29) give

»'(~ —(»„/«~'&)) ')+ ~»(~e, -~)"-(»»/(~z &)a„a'). (n, ).'e —~~ ) ),I' k, v) = Re
k [i(d —(v (4, +Drk ) —i(u(@2+ O,Drk )+42Drk ] (3O)

where

Dr(k, «) =

C, (k, ~)=

Ca(k, (o) =

W(k) =

&qq')&ee*) '(j„-i(o) ',
2411+ Aa

(y„+2e„)(e, e»), —

ge*)&e~ ")&ee*) '&«') ',

(3la)

(3lb)

(3lc)

(3ld)

c(k, (d) = [c'11((t&11+$12) —2a'12&12)&«) '. (3le)

IV. REDUCTION TO INTEGRAL-REPRESENTATION
METHOD

As discussed in the Introduction, for systems
with internal degrees of freedom, the analysis of
Rayleigh and Brillouin spectra can be carried out
using frequency-dependent or relaxing bulk and
shear viscosities. Since shear processes do not
involve changes in volume or temperature of the
fluid, such an integral representation for shear
viscosity can be justified. However, for bulk pro-

For the situations when the coupling cannot be ig-
nored, the expression for r(k, !o) is considerably
more complex. It can be seen from Eq. (30) that
I'(k, !d) is an even function of r~, and it has different
limits depending on the order in which i~ and k

approach zero. In Sec. IV, we shall see that for
small k and (~, kaI'(k, «1) reduces to the familiar
expressions for sound absorption per cycle under
appropriate approximations.

The equivalence between the two formalisms has
also been previously shown in a similar manner for
the simpler case of spin diffusion. 6

cesses, justification can be made only in the limit
of very weak coupling between internal and trans-
lational motions. In this section, we attempt such
a justification from the microscopic formulation of
Sec. II. In this section, we consider the special
case of zero coupling between q and o, i. e. , we
set a;=b&=0. In terms of the memory functions
(t)»(s) and (I&,2(s), we also define

-1
~2 4'11 412 ~

-1'ra = 411+ 2(t'12 ~

Then we have

(32a)

(32b)

1 Td +~8
& (33a)

2 ~d ~8
-1 -1 (33b)

( 3 [(AD(1+ 2c124'2'l+ 2 [2(&11—o»)ra ] j&«')
(33c)

The density-density correlation function, given in
Eq. (18), then reduces to

& (S) *)/& *)=8:(S)/8(s), (34a)
where

8(s) = S'+ S'(~-,'+ r ,'+ D,k')+ S-a[~„'&,~+,„ka/&-« ~)

—& + (Tq + ra)Drk )+ S(Drk (ra pa+ o11k /&«~))'
+ [ck' A(r + v ,-')])+ (cD,-k'- A.7 ,'r ,'), (34b)--

g(s) = S6'(S)+ k &«")(pp) '(S+Drk )(S+ T~ )(S+ rz ) .
(34c)

Equations (34) contains, in general, three relaxation
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mechanisms: (i) a frequency-dependent thermal
diffusivity Dr(k, S), (ii) a relaxing bulk viscosity
related to r„(k, S), and (iii) a relaxing shear vis-
cosity related to r~(k, S). For analyzing light-
scattering experiments in dense fluids, it is proper
to consider the hydrodynamic limit of various coef-
ficients in Eqs. (34b) and (34c). Then it is reason-
able to assume that in the frequency and wave-num-
ber range of interest, the memory functions P«,
and P,z, and P„are (k, S)-independent constants.
This assumption gives constant values for 7'„and
7.s and is equivalent to the single-relaxation ap-
proximation for bulk and shear viscosities. Ex-
pressions given in Eq. (34) are, however, capable
of dealing with those situations where single-re-
laxation approximations fail. If analysis of a cer-
tain experiment requires frequency dependence in
either 7'„or v's, it would imply a distribution of
relaxation times. It has been observed ' that in
viscous liquids, both the mean relaxation times 7~
and v s are of the same order and have the same
temperature dependence. If P„» P,z, then the
definitions of 7 „and r~ given in Eq. (32) would also
yield such a conclusion for the mean relaxation
times 7'„and rs. We further assume that, in the
frequency range of interest, thermal diffusivity Dr
can be replaced by its zero-frequency (static) value,
thus ignoring the explicit frequency dependence in

Eq. (sla). Then for hydrodynamic k and S values
(appropriate to Rayleigh and Brillouin spectra), the
following identifications result:

D (k, S)-X/(p e„),
«J")&pp') '-B,/p. ,

A(k) - (Br —Bg)k / po,

,'[( „o2—(+7„)&JJ) '] -(Bg —B$)l/pQ,

( „-o )&JJ') '- 2G "/po,

(S5a)

(s5b)

(35c)

(35d)

(35e)

where 6" is the adiabatic (instantaneous) shear
modulus, c, the specific heat per unit mass at con-
stant volume, X the thermal conductivity, and po
the equilibrium density. Justification of the iden-
tifications in (35) is made in the Appendix. Using

Eqs. (35), Eqs. (34) reduce to the earlier re-
sults derived from macroscopic considerations in

Refs. 1,0 and 8. Equations (30)-(33) of Ref. 10
contain the q, o.coupling; it is easy to verify that
Eq. (34) with identifications in Eq. (35) is equivalent
to Eqs. (30)-(33) of Ref. 10 provided one sets B~
—B~=Br"—Br (or equivalently c„=c„"), i. e. , pro-
vided one neglects the coupling. Also, Eqs. (28)
and (29) of Ref. 8 become a special case of our
Eqs. (34) and (35) with nonrelaxing shear viscosity.

With the identifications of Eqs. (35), we can also
consider the behavior of I'(k, v) given in Eq. (30).
Two different limits are of interest. If v7'„«1,

ig7's«1, we get

a Bs —&s 4t" X &cpor(a, .) a
*- ~ ...— ... ~

—-i),
Po 3 Po Rocs k c„

(s6)

whereas in the other extreme when v7 „»1, vv s
&&1,

a Bs-Bs 1 4 G
k r(k, ~)-, ' —+-

Pot~ ~u 3 Pov~ 7s

Bs Ak ep
2 r

Po~ Pocs
(37)

In Eqs. (36) and (37), cz is the specific heat per
unit mass at constant pressure and v2 = (Bz+ ~~ G")/
po. These are the well-known expressions for
sound absorption [see, for example, Eqs. (69) and
(72) in Ref. 10]. From the results obtained in Eqs.
(36) and (37), one sees that when shear and bulk
viscosities are very rapidly relaxing I (k, v) reduces
to a constant, whereas when the bulk and shear re-
laxations are very slow the sound absorption per
cycle, k I'(k, v), becomes constant.

V. CORRECTION FOR COUPLING BETWEEN HEAT
FLUX AND VISCOSITY STRESS TENSOR

In this section, we consider a simple model to
take into account the coupling between the heat flux

q and the viscosity stress tensor o . In view of the
isotropy of a fluid, we assume that in Eqs. (18)

Qy =02=03= 0 y

bq = bq= b3= b.
(Ssa)

(38b)

Then using the definitions in Eqs. (31) and (33), Eq.
(18a) reduces to

& (S) *)/& *)= 6:(S)/&(S),

where

(S9a)

(S)=SF(S)+k &JJ'*)&pp*) '[S'+S (Dr'k + r~'+r~')

+S(Drk rg+Drk r~ +r„Tg)+Drk T~ rg]. '

(39c)
In Eqs. (39), we obtain

&qq*)(ee*) ' —sab/k
T t (40a)

(rg, +2o,2 A(k) D b Dr &8J' )
) D' 3&JJ*) k' ' ~O, k'Dr&JJ*)

P(S) = S + S (r g + r g + D rk ) + S (v g 7'g + o„k2/&JJ")
-A +Drk rz'+Drk r„')+S(Drk ra rs +Drk

& [& + —,
' (o„—o;,)/&u *& ]+ ck' A(~-,'+ r,'—)J

+(&rk 3 [(o„—v~2)/&JJ )]r„'+Drk S v'~' Ar~'r~)—.

(s9b)
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a D~ &/8*& (o„+2o„)
P D,' (qq*)

(40b)

&(&, S)-(f37-Br)/po .
(43a)

(43b)
It is easy to verify that Eqs. (39) reduce to (34)
if a = b = Q. In general, the coupling constants a
and 5 are not independent. The dependence is
clearly seen in a special case when we assume that

P,,q= $„.=0, i=1, 2, 3.

For this case, Eqs. (13b), (18c), and (18d) imply

g(on+ 20'g2) &0' q )
(41)

&qq*& &qq*)

Thus, if we ignore the memory functions p„,. and
the density-density correlation function is

given by Eqs. (39}withasingle coupling parameters
b(k) in terms of which D~r(k, S) and S (k, S) are
given Rs

Dr(l', 8) = Dr(kS) (1+,,3 I b I'
&

ee* &

ops+ 2og2
(42a)

Dr o'gg+ 2ogg A(k) Dr ~D 2
D' 3&JAN+) k D' D'&

Again, the reduction of (39) in the hydrodynamic re-
gion is of interest. For such k and S values, the
identifications given in Eqs. (35) remain valid in the
presence of the q —v coupling; also, (42) reduces to

The justification for Eqs. (35) and (43) is given in
the Appendix. Using these identifications, we can
show that Eqs. (39) reduce to the result previously
obtained from the thermodynamic theory of relaxa-
tion and given in Eqs. (30)-(33) of Ref. 10. [In
showing the equivalence, one has to use the defini-
tions given in Eqs. (34), (35), and (44) of Ref. 10.]
We also note in passing that in absence of q o cou-
pling, Eq. (43a}becomes

so that

8 "(Bs fi.)/po-= (Br Br)/p-o .
(44b)

(44c)

It is also of interest to see the effect of the cou-
pling on the bulk relaxation processes. To that end,
we consider the (k, S)-dependent bulk viscosity: '

~p ( o,(S)Z ) + 2 & o, (S)Z&

Se & Z(S)Z* &

This definition can be understood from the static
case in coordinate space, where g is defined as

3 Tr[o'qy] = t dive = f cllv(J/po) (45')

Using Eq. (16), we can show that for the model
considered in this section, Eq. (45) reduces to

&» [(o„+2o„)/3&ZZ+ &](S+D,I') h(& eZ—*&/&ZZ+, &)D,
(S+ ,r')( S+D,u')-+ I'(D,' D,)S- (46)

In thi.s expression, if one neglects the coupling or
lets k- 0 and uses the hydrodynamic identification
of Eq. (3M), then one gets

t

pected. If one uses the hydrodynamic identification
of Eq. (35e), then one obtaind

ri(n, i(o) -G.~g/(1+ ~~~g),
t.(y )

(DS Ds)rg
1 + $Qpvy

(47) which is the single-relaxation form usually as-
sumed.

p, & ~,(S)Z+ & —& o, (S)Z+ )
&Z(S)~ &

(48)

and Eq. (16), we can show that for the model con-
sidered in this section q(k, S) becomes

„(~ S) p~ (o» —cia) &~J' &
'

S+ $1i $12
(49)

and is independent of the coupling constant b, as ex-

which is the familiar result corresponding to the
single-relaxation approximation. As has been pre-
viously observed, it is important to realize that
the result in Eq. (4V) is valid for arbitrary k only
when the q, 0 coupling can be legitimately ignored.

Similarly, by using the definition

In this paper, we have applied the memory-func-
tion formalism of Zwanzlg Rnd Mori to elucldRte the
general form of the density-density correlation func-
tion ( p(S)p*) in one-component fluids. By assuming
isotropy in the fluid system, we arrive at a general
(but quite complex} form for (p(S)p*) given in Eqs.
(18). Vfe show that it is equivalent to the result
previously obtained by Kadanoff and Martin; in
particular, we relate their dispersion function to
the appropriate memory functions through Eqs.
(29)-(31). By specializing the general form of Eqs.
(18) to specific hydrodynamic situations, we rede-
rive in Secs. IV and V results previously obtainede
from macroscopic points of view.
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In particular, when the coupling between heat flux

q and the viscosity stress tensor o is negligibl,
we isolate the three relaxation functions p,,'(S),
7'„(S), and 7'~(S), defined in Eqs. (31a) and (32),
which represent the relaxing behavior of thermal
diffusivity, bulk viscosity, and shear viscosity, re-
spectively. If one replaces the thermal diffusivity
Dr(k, S) by its static local value, then one is led to
two distribution functions of relaxation times: one
for bulk and another for shear processes. ' lf,
instead, one chooses to ignore the frequency depen-
dence of thememory functions Q„, P~q, andpq»
then one arrives at the single-relaxation models for
the relaxingtransportbehavior for thermal conduc-
tivity, bulk vise.psity, and shear viscosity.

We further show that the model discussed in Sec.
V, which takes into account the q, o coupling in
terms of a single parameter [defined in Eq. (41)],
is equivalent to the general result obtained from
the thermodynamic theory of relaxation. The model
implies the use of a static local thermal diffusivity,
and exponentially relaxing shear and bulk viscosi-
ties. In general, the presence of q, o coupling im-
plies an extra relaxation function P„,.(S). [Isotropy
in the fluid system would imply that P„,(S) and Q„;(S)
are not independent. ] It is found that the single-
relaxation-time model of Bhatia and Tong'0 implies
the neglect of this relaxation (memory) function
[see Eq. (A39) in the Appendix]. The presence of
this extra relaxation function is consistent with the
more recent finding that for highly viscous liquids
one does need two relaxation functions associated
with bulk processes.

We would expect that in Eqs. (18c) and (18d), P„,
and p„., can be neglected for molecular gases, thus,
the model described in Sec. V would provide a uni-
fied prescription to analyze the Rayleigh-Brillouin
scattering experiments on molecular gases, thereby
predicting the extent of q, 0. coupling. Recently,
such experiments have been performed on gaseous
H2, D2, and HD, and in analyzing them it has been
found that the thepries ' ' which dp npt take this
coupling into at;count properly show some definite
areas of disagreement with experiment.

In this paper, we have chosen to concentrate only
on the correlated translational motion in molecular
fluids. Memory-function formalism can also be
applied to study the collective modes arising from
internal motions. The set of dynamical variables
appropriate for such a study should include the in-
ternal degrees of freedom explicitly. Such a study
can provide a microscopic basis for the shear
waves which have been observed experimentally
in a variety of liquids and for which the existing
theories are either phenomenological or of macro-
scopic thermodynamic type. Also, in this paper we

have not expressed the various memory functions in
terms of molecular interactions, even though the

We would like to thank Professor A. D. May for
useful discussions regarding their Rayleigh- Bril-
louin scattering experiments on gaseous H„D„
and HD and the interesting analysis. This work
was supported by the National Research Council of
Canada and the University of Toronto.

APPENDIX

We attempt the justification of Eqs. (35) and (43)
here. Using Eq. (16) and ignoring a; and b, , it can
be shown that

1 ( q(S)Z* ) ( qq* ) ( 88* ) '
ik ( l7 (S)Z*) S+ P„

Now, one can use Eq. (9a) to write the small-fre-
quency limit of Eq. (Al) as

D, =V,y, (qq+)/(k T p c„) (A2)

where we have used the relation [Eq. (49) of Ref.
23]

( 88* ) = poka Tgc „/ Vo (A3)

Here c, is, in general, a function of k; we expect
this dependence to be slowly varying in the hydro-
dynamic region. Quantities which are la.beled with

a zero subscript refer to equilibrium values.
Now, the general expression for thermal con-

ductivity34 is

X=lim lim VOTO' f dte
S-0 k-0

-1
xJ' '

dX (q(- t —iA)q*), (A4)

which reduces tp

A, = lim lim ', (q(S)q*)
S 0 k 0 B 0

in the classical limit. Using Eq. (1,6), this is

(A6)

Vo (qq*) Vo(qq*)
a 0 ka To S+(f) p (Q)ka To

(A6)

Equations (A2) and (A6) imply Dr- y/poc„, which
is Eq. (36a). Now let us define the temperature

formalism provides such a connection via the Liou-
ville operator for the system. Understanding the
dynamical role that the molecular interactions play
in the detailed behavior of the memory functions is
difficult even for the monatomic systems and has to
be gained for such simpler systems first; however,
by using some physical models for the memory func-
tions, one can now proceed to study the detailedrole
that memory functions play in the experimentally
observable behavior of the different space-time-
dependent correlation functions in molecular fluids.
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fluctuations T(k, f) as

e(k, f)= p, c„(k)r(u, f) .
Then, Eq. (Qc) becomes

';=&;;p*&&pp*& 'p+&;;T*&&rr*& 'T+;; (A8)

Hence, we obtain

s &+pm;; p*) &pp~& =&JZ*&(pp*) 1,
which reduces to the thermodynamic rela, tion

&P B~

This justifies Eq. (35b). Equation (A8) also gives

-', &g, ,, , T+& {Tr*&-'= (I/fk) (J r*)(TT*) ', (AQ)

which reduces to the thermodynamic relation

(A10)

where pr is the coefficient of thermal expansion.
From fluctuation theory, ' one has the sum-rule
results:

&Pp*& Pok=s To/(VOBr) (Al

both Eqs. (A16) and (AIV). The microscopic
approach described in this article contains, in
principle, all such couplings in its formalism.
Macroscopically, however, the thermodynamic
theory of relaxation also attempts to describe
relaxing bulk processes by the fewest possible
macroscopic parameters. In its simplest form,
the theory supplements the usual thermodynamic
description (in terms of two variables) by intro-
ducing a third variable $, or its conjugate force
Z, which would relax with time, say with relax-
ation time w„. Any quantity measured at constant

$ is labeled with a superscript ~, corresponding
to the limit ~v„- ~, e. g. , c„"; unlabeled quantities
correspond to sv'„- 0, i.e. , measured at constant
Z. The first law of thermodynamics then gives

6c =T5S+(P/po) 5P+Z5$,

where the thermodynamic quantities are defined
per unit mass. T and P in Eq. (A18}will, in gen-
eral, be different from the usual thermodynamic
variables T, I'. In calculating the density-density
correlation function, one needs to transform Eqs.
(A15)-(AIV) to the variables T, P and needs in ad-
dition the relaxation equation for &,

'

&JJ ) =Poksro/Vo, (A12}

&Tr+&=u, T', /(V, p,c„) . (Al

Hence, using Eqs. (AV), (AQ), (A10), (A12), and

(A13), we get

(fkP„B,)'T, (B,-B,)k'

(Pocv) Po
(A14)

This justifies Eq. (35c). Finally, we note that
Eqs. (35d) and (35e) are consistent with the iso-
tropic property of fluids and Eq. (10).

In order to justify Eq. (43), it is necessary to
briefly discuss the pertinent aspects of the thermo-
dynamic theory of relaxation. ' We recall that
the usual linearized macroscopic equations rele-
vant for the study of longitudinal disturbances are

8$
Bt

-- = -L, QZ

which can also be written as

B,p

The fluctuation in pressure is

B~ 8&5P= 5P+PrBr 5T+ 5Z .
po TpP

(A19)

{A20)

(A21)

9 eQ~~ + po Q ' = 0 (continuity),
X$

(A15)

~Q~ ~I
po = — + P (Navler-Stokes) (AI6)

Xf ) Xy

BT
q;= -X (heat flow) . (AIV)

~X)

%hen the transport coefficients become frequency
dependent, the above equations are not appropriate.
For the case of relaxing bulk viscosity, it has
been shown that a convolution time-integral-type
modification of the last term in Eq. (A16) is a
good model provided the internal and external
degrees of freedom are weakly coupled. In gen-
eral, the presence of such a coupling will modify

(p(k) p*(k)) = pou~ T,/(VOBr),

&T(k) T+(k)& =u, r,'/(V, p,c„),
&S(k)S+(k)& =u, c, /(V, p, )

(A11')

(A13')

(A22)

Comparing the Fourier transform of Eq. (A21) with
Eq. (A8), one sees that the pressure fluctuations
are not the usual thermodynamic pressure fluctua-
tions 5P, but are —,

'
g,v«. Similarly, the tempera-

ture fluctuations 5T in Eq. (A21) are not the usual
temperature fluctuations 6T, but also include the
contribution due to the irreversible bulk processes.
This is made more evident by noting that fluctua-
tion analysis ' gives
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(P(k) P+(k)) =k, T,B, /V, , (Ass)

whereas the thermodynamic theory of relaxation
gives the same relations as in Eqs. (All} and
(A22), but Eqs. (Als) and (A23) are replaced by

(T(k) T*(k)) =k, T', /(V, p,c„"), (A24)

(P(k) P*(k)) =ks TOB~ /vo . (A25)

Furthermore, we find

P(k)=~ p(k)+p B T(k)
Po

BT dP
+ PrBr —

Z
+ — — Z(k) . (A36)

S)p T p-

Equation (A36) can be directly compared with Eq.
(9c). For simplicity, we neglect shear viscosity
in what follows, i.e. , we set 0, = 0, =0, = o and o»
=o» so that one can identify

(Z(k) T+(k)) =- 8S

po Voc„&$ i, o

(z(k)z*(k)) = ' '
povo

(A26)

(A2V) (ASV)

(Z(k) S*(k)) =(Z(k) p*(k)) = 0 . (A28)

(A29)

For the justification of Eqs. (43), we also need the
following easily provable results:

It is then straightforward to verify that Eq. (35d)
remains valid even in presence of coupling, Justi-
fication for other identifications in Eqs. (35) re-
mains unaffected. To justify (43), we note that the
rate of change of entropy fluctation, 8(k}, is re-
lated to the heat flux q(k) by

Po ToS =ikq . (Asa)

(A30)

(A31)

(A32)

Hence, using (ASV) and neglecting the memory func-
tions &f&a;a, Q„,, as is done in the model of Sec. V,
one has

(o'q*) SP (ZS*) t', k

(qq*) sz ~, (SSQ poTO
'

Writing

T
QT = QT+ — 5Z,

s, o

(As4)

(Z(k)T*(k)) =(Z(k) p*(k)) =(p(k)T+(k)) =0, (A35)

in accordance with Eq. (12), but in contrast to Eq.
(A26). The Fourier transform of Eq. (A21) can
now be written, using Eq. (A34), as

We can now proceed to justify Eqs. (35) and (43}
in presence of q, a coupling. Towards this end, we
need to rewrite the Fourier transforms of Eqs.
(A20) and (A21) in terms of the ordinary thermody-
namic variables p(k), T(k), and &r;,.(k). Because of
theyroperties of p(k) andS(k) [as distinct from those
of T(k) and P(k)], it is desirable to write the fluc-
tuation 5T in Eq. (A21) in the form

5T = — 5S+ — 5p+ — gg
t S,p

Here, the last term arises from the bulk processes
and is orthogonal to the other two terms. Also,
the first two terms together represent the ordinary
temperature fluctuation, so that

and using Eq. (A19) and the orthogonality relations
in Eqs. (12), one gets

POT0 ~~ S ~

Therefore, we obtain

DT
(A40)

which, together with Eq. (35a), implies Eq. (43a).

(A39)

From Eq. (42a), using Eqs. (A3), (AV), (A29),
(A30), an'd (A39), one immediately obtains the fol-
lowing result:
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N0% ) 81DCe

&ei q &ZZ*&-' =&ir+)» &u") -'
p,c„(A41)

hy Eq. (AV), we can show using Eqs. (AQ)„(A10),
and (A13) that

&ei*)&u*)-'- t'kP-, B,&o IPo . (A42)

Hence, Eq. (42h) can he reduced, using Egs. (A39),
(A40), (A42), (35c), and (35d), to

(g g) ~ s s 1 ~
~

s F

Vo c.i

2 Pr&r &oc.
"

Po&v

sib ss l ez~x-
s~&s, n s~&r, . sh&s, .

Now we use Eqs. (A10) and (A29)-(A33) and the
relati. on

L. Van Hove, Phys. Bev. 95, 249 (1954).
I»»' Koxnarov Rnd I» Z» Flshel'» Zll» Ekspe11In» 1

Teor. Fiz. 43, 1927 (1962) |Soviet Phys. JETP 16, 1358
(1963)].

38. Pecora, J. Chem. Phys. 40, 1604 (1964).
~M. Nelkin, J. M. J. Van Leeuwen, and S. Yip,

N8Ntf'05 I58lPstgc ScQtt8%'ggg (InterQRtloQRl Atomic Energy
Agency, Vienna, 1965), Vol. II, p. 35.

~A. Sugawara and S. Yip, Phys. Fluids 10, 1911 (1967).
E. P. Gross, in Leetg&8s in Th8w. etieaI Physics

(Gordon Cr, Breach, New York, 1967), Vol. 9c, pp.
171-230.

~B. D» Mountain, Bev. Mod. Phys. 38, 205 (1966).
B. D. Mountain, J. Bes. Natl. Bur. Std. (U. S.) 70A,

207 0966).
B. D. Mountain, J. Bes. Natl. Bur. Std. (U. S.) 72A,

95 (1968).
A» B» Bhatla and E» Tong» Phys» Bev» 173, 231

0.968).
Vf. H. Nichols and E. F. Carome, J. Chem. Phys.

49, 1000 (1968).
2A. B. Bhatia, Ultrasonic &bsotption (Oxford U. P»»

London, 1967), Chap. 9; see also the first five refer-
ences of Bef. 13.

' B. Zwanzig, J. Chem. Phys. 43, 714 (1965).
48. Zwanzig, Phys. Bev. 124, 983 (1961).
SL. P. Kadanoff and P. C. Martin, Ann. Phys. (N» Y.)

24I 419 (1963).
P. C. Martin, in Many-Body I'cyst'es, edited by

DeWitt and Balian (Gordon @ Breach, New York, 1968),
p. 39.

Z%'anzig, ln I 8cggf'8s ts 17$80t'8tfc+E PAgsfcs,
edited by %'. E. Brittin (Vhley, New Yoxk, 1961).

H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423
(1965),

SC, H. Chung Rnd S. Yip, Phys. Bev. 182, 323 (1969).
20A. Z. Akcasu Rnd E. Daniels, Phys. Bev. A2, 962

(1970).
A. Bahman, B. Zwanzig, and N. K. Ailawadj. (un-

published); and N. K. Ailawadi, University of Maryland

Report No. BN-614, 1969 (unpublished).
This ls given by Eqs» (30)—(33) of Bef» 10»
P. Schofield, Proc. Phys. Soc. (London) 88, 149

(1966).
Oux' deflnltlons Rre ldentlcR1 to those ln Bef. 20; note

that average values (J), (v), (@are zero. J', V, aud

Q Rs defined hex'e Rle Rlso ldeQtlcRl to Sgj f »
0'g~

» Rnd
q„+8„+8j„as defined by Schofield in Bef. 23, pro-
vided 8&0. See also the paper by J. H. Ixving and
J. G. Kirkwood fJ. Chem. Phys. 18, 817 (3.950)], and
the footnote on p. 822 of that paper.

2~R. Kubo, Rept. Progr. Phys. 29, 255 (1966), Eq.
(5.20).

T. H. Cheung, E. Tong, and K. P. Wang, Can. J.
Phys. 48, 1631 (1970).

See Bef. 12, Chap. 10, $6; see also K. F. Herzfeld
and T. A. Litovitz, &bso+gggg and &isPn'si, oe Of Atw+-
sonie Rae8s (Academic, New Yoxk, 1959), Chap. XII,
remaxks at the end of g 109 and Table 109-1.

"See Eqs. (4.63), (4.59), and (4.66) of Bef. 20.
C. J. Montxose, U. A. Solovyev, and T. A. Litovitz,

J. Acoust. Soc. Am. 43, 117 (1968).
3 A. B. Bhatia and E. Tong, J. Acoust. Soc. Am. 47, 65

(1970).
3~8. D. Mountain, J. Bes. Natl. Bur. Std. (U. S.) 73A,

593 (1969).
32A. D. May and Z. H. Hara (private communication).
33For experimental observations, see G. I. A. 8tege-

man and B. P. Stoicheff, Phys. Bev. Letters 21, 202
(1968); and 6. I. A. Stegeman, Ph. D. thesis, Univexsity
of Toronto, 1969 (unpublished). For theory, see V.
Volterra, Phys. Bev. 180, 156 (1969), and references
therein for Leontovich and Bytov theories.

J. M. Luttinger, Phys. Bev. 135, A1505 (1964).
3~L. D. Landau and E. M. Lifshitz, Statistic/ Physics

(Pergamon, London, 1958), Chap. XII.
P» Schofield» ln +Agslcs of 8&Ptp/8 L4$Nttfs» edited by

H. ¹ V. Temperley, J. S. HowHnson and G. S, Hush-
brooke (North-Holland, Amsterdam, 1968), Chap. 13,
Eq. (66).


