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The spectral power distribution of a broadband maser signal that is saturating a two-level
system is derived using stationary Gaussian statistics for the electric fields and assuming the

bandwidth is large compared to the homogeneous linewidths of the two levels. The results are
applied to travelling-wave amplifiers of this type, the cosmic OH and H20 masers, to obtain the

saturated maser output intensity and linewidth as a function of amplifier length.

I. INTRODUCTION

The spectral distribution of steady-state broad-
band maser emission at any point in a saturated

amplifier has not been adequately presented, even

for a two-level system, in previous work. ' 3 For
reasons of tractability, such a power spectrum is
derived here based on the approximations that anti-
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resonance and second-harmonic terms ean be ne-
glected, that the electric fields have nearly station-
ary Gaussian statistics, and that the bandwidth is
large compared to the homogeneous (natural, colli-
sion, or pumping) linewidths of the two levels. A
multiple-level system, appropriate to the analysis
of the competition between modes having orthogonal
polarization, can also be handled by considering
coupled equations for the power spectrum of the
two modes. However, we consider here just two
levels which are connected by an electric dipole
moment and a microwave field of a given circular
or linear polarization and Zeeman transition. Nev-
ertheless, these conditions are probably appropriate
for the cosmic QH and H30 masers, '4 whose output
eharaeteristics we will deal with below.

II. SPECTRAL POKER MSTRIBUTION —SIX CASES

The equations of motion for the two-level (a and

5) density matrix (in the interaction representation)
are as follows:

p„(t)= ' '[V„(t)p„(t) -p. (t) V .(t)] —I',.p..(t)+ t-
p.~(t) = i ' V.b(t) I p»(t) —p..(t)] —I;a p.~«),

p„„(t)= i '[V~„(t)p~(t) —p&, (t) V.~(t)] —I'» p»(t)+

ilats

p~.(t) = p.*~(t)

where the damping factors 1";,=-,'(I';;+ I'&,.) give the
net rates out of the states, and the production rates
A„and A» give the net rates into the states. The
interaction is given by

(t)= p, e '"~" E(t)/8

where p, ~ is the electric-dipole-moment matrix ele-
ment and the electric field is

E(t) = z f d~& E('&) e

=-,' f d(u[E(~)e '"'+E'(.g)e'"'] .

The polarization (electric dipole moment per unit
volume) of the medium has a Fourier component
6' (~) at frequency ~~,

~(d) = J («/2~) e"'-' [7~.e'""'p.~«)

+p„e '""'
p~.(t)1

where

p.,(t) = i-' j V.,(t ') [p„(t ') —p..(t')]e-'""-"dt'

=i ' j dt' f dt" V (t')(e r»"-"'+e -"' ' '
)

x [V~.(t")p.s(t ") V~(-t ")p~.(t ")]e """"
+i'f V (t')e ""' 'dt'Ap

Here, 6, p = A»/I'» —A„/I;, is the steady-state
population inversion in the absence of saturation.

If we considerpumping only between the two levels
without any destruction or formation of the mole-
cules, then we ma, y write A„= W', ~ p» and A»
= 5'~,p„, and then we replace each F„and 1» in all
the formulas given below by W', &+ W'&„where W',

~

and 8'~, are the net pump and collision rates from
b to a and from a to b, respectively.

The average power output per unit volume a,t
frequency ~ is obtained from the time or ensemble
average of the product of the polarization and the
microwave field, i. e. , the power density is —vIm
(6'(v) ~ E(s)). If the increase of intensity occurs
over distances that are large compared with the
wavelength, then, from the Maxwell equations,

d(E'(i~) E(&u))/ds= —8g(oim(6'((u) E((u))/c

where ds is an element of distance along the ray
path. The Fourier component of the off-diagonal
density-matrix element in (P (&u) is obtained from
Eq. (5) as

p (fi) =- f p„(t)e'"' (dt/2v) =(p.~/2@i) (I'.~
- i@ ' ~ p E ('"~

—(I p, „I2/4g2)(l'„—io) ' J J d&u~dv, K„(~dp, —&u2
—&) & ('&2)

x[p, z(x ) p (0+co —e ) —p, qE (&g) pg, (&+&a+~a 2&b )]

where the sharply-resonant kernel

&„('d)-=(r.,+i~~) '+ (r»+i~~) ' .

I order to obtain the power output at frequency M we will need fd times the lmaglnary part of the complex

quantity
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&6 (~) ~ E(~')& =
I ~.& p.~(». -» E('" ')

&

which we obtain from the above expression for p„, evaluated at 0= &db, —(d:

~~.& p~(~~. &u)—E{~')
&
= {I ~.ol '/2~~)[I; +f(~ — .)] '& p&E'( ) E( '&& —{I~. I'/«')[I" +f( —,.)] '

'f d'u~ff. ~(&& -~2)&E (&u2)E{~ )&J «1[Pba&pab(~ha 8 1)E{»)&
0 0

—p, q& pq ('up+&2 —& —u~ )E {to~)& ] —(~ P q! /4k ) [I' &+i{+—co& )]

~f f d'uad'ui&. ~(& —u3) [&E'(»)E('ui) &(p.~('u~. -'u+'u2-'ui) E(«') & V ~.
0 0

—p, „&E"(»)E(~ ')) ( p„,( u+ u2—. u —u„)E'(wz)) ],

which has been averaged with one pair-mise elec-
tric field correlation function factored out, as al-
lowed by Gaussian statistics. We have neglected
the correlation of E with E or E' with E' or of p„
with E, etc. , since we are ignoring the small sec-
ond-harmonic generation and antiresonance terms.
We also assume stationary statistics, so that
&E'(Cu)E(u ')) =E(~)5(~ —~u'). That is, only fields
of the same frequency are correlated. Note that
the mean-square intensity I(ur) = F(~)c/8v. Then
we may define P(iu) such that

p„&p„((u„—(u) E((o')) -=p (v)6((u —(u ') .
Therefore, from the previous equation, we obtain
the useful integral equation

P(&u)= [ W(~) k/vi] [I"„+f((u—(u„)]-'ap

A.. Homogeneous Broadening and Quasimonochromatic Signal

If the Doppler (inhomogeneous) broadening is
negligible compared to the (homogeneous) broaden-
ing owlllg to colllslons ox' pumping and lf the signal
bandwidth is also small compared to the homogene-
ous linewidth, then we have the simplest case for
applying the Eq. (8).

For the quasimonochromatic case, for which
W(x) is sharper in frequency than I, we have

W 1 1I' &+i((u —»z) +— + P((d)
aa bb

W(~)h&p„, I I W
+ —+ —p (M),

gg I gg Fbb 2g

—[r., + f(~ —u,.)]-'Z.,(O) [ W(~)/2, ]

'f, d~~[p(&i) -p'(~i)]

—[I;,+i(~ —~„)]' f (du, /2v)K„( —cu, )

W= J W(e) du& .

So that, upon taking real and imaginary parts of
both sides of the above equation, we have

I'.&I"(~)-(~ -».)I'"(~)=0,
x [ W(i&2) p((u) —P'(~2) W(ru) ], (8)

(a —(u„,) P '(ru) + I'„+— + — — P "(&u)
W 1 1

aa' bb

W(cu) = 2v p„'E(~u)/4h'

is the usual induced transition rate that is propor-
tional to the intensity. A similar equation for p'(v)
is obtained by taking the complex conjugate of Eq.
(8). We now consider cases A-F which are dis-
tinguished by whether the line broadening is homo-
geneous or inhomogeneous, whether the signal is
narrow or broadband, and whether the saturation
is moderate or extreme.

—W(v) 8' &p„,

where p =pep and p =QQp. Therefore~ we have

(« ~u„)'+ I'„+Z.„W[(I/r"„)+(I/I'„,)]v ' '

where the saturated population inversion is

I;.W~ p...[(I/I;.).(I/I' )]. '
"n I„"r„'"' '"' '

( -',.)'+I.„.I., W[(I/I,.)+(I/I„)],-'
0
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ol

& P/& P-I

1 1
( ~ —fi)& ) + r&+ 1 ~l W +

fIfI 5b

Therefore, the spectral power distribution is

P ((d)

r, I, W(v) 8 +6 pII
'

(.~ -~„)'+r.'„+2r., w[(1/r. ,)+(I/r„,)],-I '

The linewidth [r,'1+2r, t w(r, ,' + rI)'))ll ']"'compares
with fl",', + I"„W(I",,'+ rI„I)II ']"' for the truly mono-
chromatic case for which Eels. {V) and (8) would not
hRve the 1Rst gx'oup of terIQsy to RvoId redundRncy
when ( ~ } is omitted and amplitude fluctuations
vRMsh.

B. Homogeneous Broadening, Broadband Signal,
and Moderate Saturation

Though W(&u) may be comparable to or greater
than 1"„and I"», for this case we have W(v) «5)d,
the spectral half-width of W(~~). As can be verified
a posteriori, the last integral in EII. {8},involving
f du&3E„(~ —~uz) p'(&az), may then be neglected. This
Iluantlty ls 1"ougllly R fRc'tol" dw(&d)/dM snlR1161' thR11

the tex'ms that we will keep. This integral does not
VRlllsll tlecRllse )t) (8) ls nof, RIIRlytlc 111 tile llppel'
half-plane Im z &0, because W(z) is not, since ana-
lyticity would imply a vanishing intensity for f & O.

We then have, from Eq. (8), according to proce-
dures similar to those used above, and with

J dura%„(v —~2) W(+2)/2II= W(e)+iA(v},

where g(~) = f 'd~~, W(&u, )/((u, —~~)II (here f ' is the
Cauchy principal-value integral),

p()~) = W(~) )I ~ p„,(&i)-'[r„+W(~)+i(.d -9„)]-I,

This result merely shows the effect of the added
damping rate W(&u) on the lifetimes of the levels.
The saturation of the population inversion by the
factor [1+(I',,'+ I",,') W(~I„)] ' can be obtained from
the rate equations fox' the steady-state populations
under Rll indllced tl'Rllsltloll 1'Rte W(R»). We Ilo'te
that despite the line broadening by an added amount
W(&u), the value of —f d&u ~P "(~), the total power

tpt, '
th xp t df th t dy-

stRte trRnsfex' of populatlonsp and not froQl RRIHan-
type saturation effects. ' The fx equency shift
—Q(&u) is antisymmetric when W(&~) is symmetric
about line center v~, .

C. Homogeneous Broadening, Broadband Signal,
and Extreme Saturation

One can approximate

W(~) J d(u, Z„((u —~,)P'(V, )/21I

by

p'(~) J d~& &.&(~ —~&) W(~2)/2II

in the last integral of Eq. (8), since p'(v) is pro-
portional to W(~), and since the width of p'(cu)/W(&u) is
much gx'eRter thRn I g@ of I yy fox' th18 CRse. %e will
avoid the compbcated transition from the preceding
case to this one, when the approximate bnewidth
goes from I"„+W(~„) to [I",,+2 W(~~„)r„]"'»t)~.
Then, from Eq. (8), we have

—W((u)g((u —~„)[ap ff+K„(O)f d(ul P "{&dI)]
I + 2 f d(u, W(~~, )I.(d, ~,)

I (&, &q) =Re t[r,l+i(w —~a„)] IK,,(&u —vl)/2v) .
Here, we have g(~&) = Re [r,I, +i&a] '/II. Then, inte-
grating both sides of this equation over & and solving
for f P"(~u)d(u yields

f P "(~)d~ = -aIlpa[I+X. ,(O) C]-I,

&p8al=~p[I+&a~{o) ~j ') "Ia=~)u-"(~) )

w(~)[r„+ w(~) jd~/&
(~ —~.)'+ [I„+W((d)]'

= W(ru„) for W(v) «t)v .
Then, from the imaginax'y part of the above equation
for p(~~), we have

w(~ )e»p[r.,+ w(~)]m-'

(~ —~„)'+[r„+w(~)]'

x[1+(r;,'+ I,) w(~„)j-' .

W{w)g((o —ur„) d(u

I+ 2f d&u2 W(~~) I, (v, ~~)

If we approximate I, (~, ~~) by

L (QJ )'d 1))

we obtain for P"(v), provided 5v» I;, and I'»

i I( )
W(~) C'('+ '+&a) I+psat
I+g(~ —(o„)2II W(v)

—W(v) r„)I&p„I/)I
((d —4& ) + I l+ 2 W('d)r 1
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where hp, « —=hp[1+ K»(0) G] ' and

w(«) g (« —&d») d«
1+2g(&« -&«„,) W(«)

w(«) d«r. &, /m

(« —~„) + 2 I;, w(«) + r, t,

pli these results apply only when [1'„+2W(«~.)I.b]
2 1/2

» g~» Z I'„. When ~~«1"„I"bb the quasimono-

chromatic case applies.

D. Inhomogeneous Broadening and Quasimonochromatic Signal

With inhomogeneous broadening (e.g. , due to
thermal Doppler effects) we replace «„by «„(v)-=«„(I+ v/c). We assign a probability gv(v) dv to
the differential number of molecules with this ve-
locity, f gv(v) dv = 1. The Doppler width S&~v will
be assumed large compared with [I',„+2F„W
x (F.,'+ I'»')/rr] "'. We have

dv W(«)r, g@~p(v)l'v(v)/~ =, ( ) " p~v ' " (l3)P" «-=) [, („)]2+p +(2F W/„)[(1/r„)+(i/r„)] (r'., +2F„W[(1/r..)+ (1/Fb&)] ~ ]

where

w= f w(«)d«
0

is the frequency-integrated rate of transition (sec )
and

g'v(« —».) = [s«& &~1 exp[ —(« —«&.) /s«& ]

is the corresponding Doppler line shape in frequency
rather than in velocity.

E. Inhomogeneous Broadening, Broadband Signal,
and Moderate Saturation

By similar reasoning, upon using Eq. (11), we

obtain

t W(«) [r„+W(«)] enp„, (v)g (v) dv/w

[« —&«„(v)]'+[r., + W(.d)]'

where the population inversion at velocity v is

&p «(v) = Sp [I+K.,(O)G]-',

1 1
&p.«(v)=~p 1+ r +Fl aa bb

w(«) d«r„/g
[&« —&~„(v)]'+F,'„+2F„W(«I

1 1=~p 1+ —+-

ncaa

wr„/,
[«0 —«&„(v)] + F»+ 21„W(&do)

where we have assumed that W(&~) is peaked at &u

= v0, not necessarily the line-center frequency.
After the integration over v, and assuming 5(ia
«S«, we obtain Eq. (12) again. For

s«, »[r,', + 2w(«, .)r.,]"'» s&. ,

we obtain

and

«„,(v) = «„(1+v/c) —n(«), w( )r„a npz, (,
[r g + 2r b w(«0) + (r„'+ r„' ) w r.,/, ]"

(i5)

& &

(
W(«) k«kpgv (~Jp «&& &&)

1+(r,.'+ r;,') w(«) (i4)

since the integrand is sharply peaked at «b, (v) = «,
upon neglecting Q(&e).

F. Inhomogeneous Broadening, Broadband Signal,
and Extreme Saturation

When the transition rate W(«) for l&d —«„~» S« is
much larger than S«[the half-width of W(«) itself],
we have from the expressions just preceding Eq.
(i2)

W(«)[l „+W(&~)] d«/&&

[« —~,.(v)]'+ [r., + w(«)]'

when I'„+W(«|„)«S&«, the spectral half-width of
W(«). Then, the integral over v, for large S&~v and
6w, yields the following power spectrum:

III. COMPARISON WITH PREVIOUS WORK

As already mentioned, the spectral power distri-
bution for the quasimonochromatic case A agrees
with the results for the true monochromatic case
(as given by Javan when all damping constants
equal 7' ' and by Heer and Settles') except for a dou-
bling of the term proportional to the intensity in the
linewidth squared. This doubling has been correctly
described by Bender in his perturbation analysis
as due to the amplitude fluctuations thatarenot pres-
ent in the true monochromatic case. However, in
evaluating the saturation in this weak-signal approxi-
mation, Bender has incorrectly integrated the equa-
tions of motion for his second-order density-matrix
elements found at the top of p. 563 of Ref. 2; thus
the coefficient for self-saturation I1 should be given
by
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I, =2Re (I+ix) '
l . +
( I'+ ix I' —jy

r 1 1
+ . + --.— dx dy,1"+ i(x —y) I'+iy 1" iy—

I'dx I'dy z

where

= po(~) [1+(I,,'+ I,,') W(~)] ', (16)

Po(~) = (2v)'l l .b I'~p~rn(~ —~b.)(@e) '

is the unsaturated gain coefficient. This expression
clearly reduces to the mell-known unsaturated in-
homogeneously broadened gain coefficient when W(&u)

terms are neglected in Eq. (16). However, Heer's
expression for p(&~), given in our notation and ob-
tained from his Eq. (34) after integrating over the
Doppler distribution for inhomogeneous broadening,
differs from Eq. (16) by having W(~) divided by 2v.
The saturation of the population inversion when a
broadband signal is present removes population at
a rate W(&u), not W(~)/27&, compared to the rates
I' and lbb. Indeed, Eq. (16) is easily obtained from
the rate equations for the steady-state populations.
However, rate equations are applicable only when

where I2 is the coefficient for cross saturation by a
signal of opposite circular polarization connecting
level a with another level c which has similar prop-
erties to that of b. For simplicity, the signal was
assumed by Bender to be uniform in intensity over
a bandwidth ~, and the levels were assumed to have
the same damping factor I'. For 6» 1" (the broad-
band case B) we have I,= 2ia+O(I'/&), where O(I"/&)
denotes the negligible contribution of the term in I&

that contains [1 +i(x —y)] '. For the quasimono-
chromatic case, this term contributes equally to
the others making I&= 4', as reported by Bender.
When corrected and trivially reinterpreted, Ben-
der's analysis would agree with the spectral power
distribution that we obtained in case B above if we

expand our result in powers of 2 W(~)I'»[(~ —~~„)'
+ I"„]' and then compare the resulting first-order
term with the integrand in Bender's self-saturation
term in ( Il,"), the stimulated emission rate that
he calculated up to fourth order in the electric field.
The result obtained by us for the broadband case E,
dealing with an inhomogeneously broadened r eso-
nance and moderate saturation rate, disagrees with

that of Heer with regard to line shape and to popula-
tion saturation. In order to compare quantities
similar to Heer's, we obtain the saturated gain
coefficient P (&u) (cm ') from the quantity —

& &P (w)
in Eq. (14) by dividing it by the intensity, that is,

p((u) = —8gvI' "(,u)/F(&u)e.

the line broadening effect of the rate W(&u) on a given
molecule can be neglected. Heer's Eq. (34) neglects
line broadening by W(~), but our corresponding Eq.
(11)does not.

The line broadening terms are not negligible and

may be identified with Raman-type self-saturation
terms having the factor 1[I'+i(x—y)] ' in our cor-
rected form of Bender's coefficient I,. For moder-
ate saturation, we have found that these terms, how-
ever, contribute to the i~tegvated power output only
to order (F/6) compared to the dominant terms for
weak signals of bandwidth 4, in agreement with
Bender. However, when the transition rate W(&~)

becomes comparable to its own bandwidth, then
these Raman-type terms become significant even
in the integrated power output, the results resem-
bling that for the quasimonochromatic case.

IV. STEADY TRAVELLING-WAVE BROADBAND MASER
AMPLIFIER

The increase of maser intensity I(x, &~) with dis-
tance x, assuming propagation only along this direc-
tion, will now be equated to the power generated at
frequency ~ for the case E. Or, in terms of the
gain coefficient p(x, ru) Eq. (16), the x dependence
being now included, we have

dI(x, ~) = p(x, u))I(x, &u)+y(x, ~),

where y(x, ~) is the power generated per unit volume
due to spontaneous emission, a process which we
will not include hereafter. The amplifier will be
considered to act on a weak input intensity Io(v) at
x= 0. The results will not differ substantially
whether I,(&~) has a very flat spectrum or a width

equal to the Doppler width, that is, the width of

p(0, ~). The inclusion of spontaneous emission
y(x, &u) will likewise not appreciably alter the re-
sults, and furthermore it is usually a weak source,
ofwidthcomparable to thatof P(x, &&), for the cosmic
masers. Figure 1 shows the intensity calculated
from Eqs. (16) and (17) as a function of frequency,
measured from line center and in units of the Dop-
pler half-width 6&D at e ' of maximum. Each curve
corresponds to a value of nx, where n equals the
line-center value of the unsaturated gain coefficient
pb(&~). Note the na.rrowing and then the broadening
of the line as saturation sets in.

The line narrowing by a factor of approximately
(nx) " of a broadband signal due to travelling-wave
amplification over a length x is well known, but the
behavior of the linewidth after saturation occurs is
rarely discussed. If the intensity I(x, ~) at some
position x along the propagation path and at some
frequency ~ (measured relative to the line-center
frequency ~b, ) is parametrized by a nearly Gaussian
shape, with amplitude and bandwidth which are func-
tions of x alone, then we have
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term. - Upon equating the leading terms in the power
series expansion in u, we obtain

0—
40
C

C and

I(x)/I, =n (x -x,)+1—in[1+ a(x-x, )] for xo- x,
(19)
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FIG. 1. Logarithm of the output maser intensity (divided

by the saturation parameter I~) as a function of frequency
(measured from resonance line center and in units of the
Doppler half-width at e of maximum) for ten different dis-
tances along the amplifier (multiplied by the unsaturated
gain coefficient at line center). The input intensity Io

equals 10 ' I~. The input spectrum is flat. The half-
widths at e of maximum are marked for the calculated
intensities.

I(x,d) I(x) e-4t /ELtll(&:&

The emission rate, obtained from Eq. (14), is
set equal to the increase of intensity with distance:

dI(x (u) I(x ~u)e" &'"o
(18)

ndx 1+I(x, (u)/I,

Equation (18) is integrated to yield

1n([I(x)/Io]e '" & ' 'I+[I(x)/I, ]e ' ~ " Io/I, -

4] / 60)g2 2

where x, = (1/o&) [ln(I, /Io) + 1] is the distance at which
nearly exponential growth (the second term of unity
being due to saturation) would bring the intensity up
to the value I,. The last three terms arise from
the approximate expression for I(x, v) in the "ln"

The boundary condition at x = 0 that I= Io and ~ u = ,
i.e. , that there is a broad continuum at the input,
has been incorporated in the above solution. In the
saturated case, with large amplification (I, »IO),
we have

I(x) „a&~„a I(x) „a&,„a
I I ~,„2 s+ln —- axe " "D+ —nx +1

S S

(I/I, ) + 1 n x
2 P,g2

D

Therefore, we have

&(u/&'&vz& —- [o.(x —x,) —in[1+ n(x —x,)] + 2 j
x[ox]»a- 1. as x-~ . (2O)

dr(x, (u)

dx

2 2
= a&lxw& (e

' ~"
,—— d» &&x, w &A

Io o

where the kernel A„„. involves an integral over
the velocity distribution, I,(&u) is the incident spec-
tral intensity having a bandwidth equal to the Doppler
width. The saturation parameter is S = 87I I p.„t
xl, v"m6~D(25acI„I'») &, while the saturation inten-
sity I, in Eq. (18) is found to be

I, = [4q
~ I .,~'(r..'+ r„')/(@'c)]-

upon comparing Eqs. (16) and (18). The kernel

2 2
A „.= 2 v» (I",

&, /|!AD) e " » 5(&u —v )

when I'„«6&&», as assumed in Eqs. (14}, (16}, and
(18). We now see that the Parks equation is just
Eq. (18) with [1+I(x, u)/I, ]

' approximated by
1 I(x, a&)I,.The linewid-th calculated by Parks when

Therefore, the bandwidth which was narrowed by
(ox, /2) ", the extra factor of K2 being due to sat-
uration effects up to x =x„ is then broadened in
saturated growth by the factor

jn(x-x, ) — l[n1 +o( x- x)]+2j'"(2 /x x}'"forx&x, .

x, is the distance at which saturation js becoming
dominant. Eventually, the width approaches the
Doppler width. For example, if nx, ~34, for am-
plification by 10' at x„ then at x = 2x, the linewidth
is that at x„namely, e&v»/(12)'&', but then multi-
plied by a factor of 2. 4 due to the wave propagation
from x, to 2x„resulting in a linewidth Bury —0.76&uD,

which is about 157(} higher than obtained in Fig. 1.
Finally, we compare these results with the per-

turbation analysis given by Parks, ' who has derived
an approximate radiative transport equation like
Eq. (18) from the polarization 4 (&o))&, Eq, (4), cal-
culated only to third order in eletric fields. His
equation, given in our notation where appropriate,
is
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8=5&10 and I",~=10 5m& for ex& 12 is slightly
larger than our calculated linewidths for the cor-
responding parameters:

I SI", ' 10~ = 2am " = and nx, =8. 8 .I, 5~D

According to an extension of the analysis leading
to Eqs. (19) and (20) so that ne at x =0 is 6~n in-
stead of infinity, we merely replace nx by ax+1
in the denominator of the expression (20) for &v/
6&uD. Equation (20) so modified gives for x=x„
h~/5~ ~ =0.45, the same as Parks's result.

We mention that the signal bandwidth for the in-
homogeneously broadened case C has also been
found, similarly to Eq. (20), to be

where W(0) is the transition rate at line center in-
duced by the intensity I(x), a complicated monotonic
function of the a,mplification distance. The rapid
broadening implied here occurs only when A~» I;~.
However, when A~, -„ I',~, slower broadening with
increasing x is expected, a different conclusion
than reached by Icsevgi and Lamb. '

V. CONCLUDING REMARKS

The spectral power distribution as presented
here has limited application mainly because of the
use of Gaussian statistics. While examination of
the OH maser data so far has justified this assump-
tion, numerous examples of amplifiers of coherent
pulses exist in the laboratory. Another limitation
concerns our lack of a description of the transition
region as a function of intensity between the case
of moderate saturation and that of extreme satura-
tion, although this could be obtained from a solution
of the integral equation (8). From estimates of the
saturation rate W(~) & 10 sec ' for the OH and H20
masers and the known signal bandwidths Geo-—10—
10' sec ', we think it probable that the transition to
extreme saturation when W(~) & Aced need not arise. '

Time variations observed over weeks in the H20
emission have suggested that the amplifier is not
saturated, while the usually steady OH emission
over months or years would strongly suggest satur-
ation. The narrow OH lines then imply that the
kinetic temperatures are low, sometimes less than
10 'K, rather than that unsaturated maser narrowing
has occurxed at hundreds of degrees. Cross-re-
laxation processes within the molecular velocity
distribution have not been included in our analysis.
These would prevent line broadening despite popula-

tion saturation if the cross-relaxation rate exceeds
W(~!), but I'„or I"» do not. 3 Collisions by hydrogen
atoms or molecules are the most likely means of
sufficiently fast cross relaxation, but then I'„and
I yy would also be large owing to such collisions-
too large for saturation to occur. The behavior of
the bandwidth with distance for cases for which the
signal bandwidth is comparable to the homogeneous
linewidth mill be dealt with in a future paper.

Finally, the neglect of spontaneous emission is
perhaps justified for the interstellar masers, con-
sidering that the interferometer sizes of the several
emitting points in a given region appear to be much
smaller than the amplifier sizes implied by the time
variati. ons. This implies that we are observing
images of "hot spots" or apparent sources in a
large amplifier. For the OH near Hn regions, the
signal is usually highly circularly polarized, an ef-
fect believed to be caused by saturation and non-
linear competition between oppositely polarized
modes. If spontaneous emission were important
compared to the hot-spot emission, the interfero-
meter sizes would be comparable to that of the am-
plifier. The spontaneous emission may not compete
well for saturating the amplifier, not only because
of low (negative) excitation temperatures, but also
because radial flow velocities would restrict the
solid angles over which spontaneous emission coming
from remote regions would be resonant with mole-
cules at a given point in the amplifier. Perhaps
filamentary structure to the amplifier is also im-
plied. In the output intensity and linewidth derived
in Sec. IV, we assumed that the saturation param-
eter I, was independent of distance along the am-
plifier. This appears reasonable since the solid
angle over which there is appreciable maser inten-
sity (at any point in the amplifier) and also the
damping constants may be decreasing with the
square of the distance along the amplifier, that is,
the distance from the apparent microwave source.
The radiative transport equation (17) then is trivial-
ly reinterpreted to apply to the brightness, the in-
tensity per stexadian. But I, involves the brightness
integrated over the local solid angle to determine
the total saturation rate acting on a molecule divided
by an effective damping rate. This rate is probably
determined either by optical pumping that decreases
with the square of the dista, nce from the pump
sources, which we assume lie inthe vicinityof orper-
haps coincide with the apparent microwave sources
or by collisions, with a rate that decreases similar-
ly because the density is likely to decrease nearly
as the square of the distance from condensed objects
such as these. 4'
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The quasistationary-state formalism for describing all manner of resonant collision pro-
cesses and the diabatic states of molecules is made unique by defining the hitherto arbitrary
quasistationary-state energy uniquely. The unique quasistationary-state energy E„(together
with its wave function) is defined by a pair of eigenvalue equations which require that it re-
main unshifted by coupling to the continuum. Two alternate and equivalent definitions are al-
so given, and the results are generalized first to the many-resonance case and secondly in

the unusual direction of negative energies, where the quasistationary state produces a reso-
nance among the discrete set of Rydberg levels. This last generalization is necessary for
the principal present application of the states, i.e. , to the diabatic states mediating molec-
ular transitions, since the energy of these diabatjc states moves freely between the continuum
and the negative-energy region of the Rydberg states.

I. INTRODUCTION

For the mathematical description of either reso-
nant elastic and inelastic scattering' or of rear-
rangement and other diatomic collision processes
proceeding through a resonant state, 3'3 probably the
most simple, elegant, and practical approach is the
quasistationary-state formalism whose essential
points trace back to Dirac. '

In the quasistationary-state formalism, one first
defines a bounded wave function y„which should be
some approximation to the close-in part of the
scattering wave function at resonance and which de-
fines the quasistationary- state energy &„. The full
wave function and Hamiltonian are then partitioned
by the use of a projection operator onto this func-
tion, and the Schrodinger equation is formally
solved in such a way as to exhibit the dependence
on the resonance parameters most explicitly.

The quasistationary-state function X„upon which
the formalism hinges is mathematically quite arbi-
trary, thus making its energy &„ arbitrary, a fact
which is both a strength and a weakness. lts
strength lies in the flexibility it allows to anyone
doing a fully ab initio theoretical calculation, a
flexibility which is widely exploited in a variety of
calculational methods. ~ Its weakness, which is

more of a conceptual than a practical one, shows
up either in semiempirical analyses of experiments
(which seem to be the most fruitful way of exploiting
the theory) or in very general or formal descriptions
of what is happening. In either case, one really
would like not just an arbitrary quasistationary-
state energy but a unique state, a point which has
been well made by Smith. The fact that the final
answers in the quasistationary-state formalism
are unique in any application, thanks to a compen-
sating level shift ~, is not satisfying enough from
a conceptual point of view, and a need for a unique
definition of the quasistationary-state energy is
seriously felt. To fill this need is the purpose of
the present paper.

Section II briefly reviews the quasistationary-
state formalism description of resonant elastic or
inelastic scattering, in order to introduce and de-
fine the necessary concepts. The unique definition
of the quasistationary state is presented in Sec. III
and then restated in two equivalent ways. In Sec.
IV the many-resonance generalizations of Secs. II
and III are given. Section V generalizes the result
in a different direction, to quasistationary states
whose energy lies not in the continuum but at neg-
ative energy, among a discrete set of Rydberg en-
ergy levels. This is necessary for any application


