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this problem one can use the nonequilibrium Green’s
function formalism developed by Kadanoff and
Baym.!® One has to calculate the time change of the
total momentum of the Fermi system for U(T, #)
varying slowly in time, i.e., for a situation close
to local thermodynamic equilibrium. We have been
unsuccessful in carrying out this program even for
a weakly interacting Fermi gas.

The essential approximation which leads from the
above-mentioned microscopic approach to Landau’s
transport equation used in Secs. I-III is the assump-
tion that all quantities vary slowly in space.!® Al-
though this is certainly not true for a hard-sphere
impurity, it seems a good approximation if the im-
purity is large enough.

In closing we would like to mention the work of
Gould and Ma'® who calculate the mobility in a
weakly interacting Fermi gas. Their basic mobility
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formula is obtained by using second-order perturba-
tion theory in the time-dependent part of the im-
purity potential. The treatment takes into account
the density oscillations in the vicinity of the static
impurity but does not allow for density changes
caused by the movement of the impurity. As pointed
out before'! their final result arises as a consequence
of an inconsistent expansion. Without this expansion
it can be shown that the new contributions vanish for
a large impurity. Also the authors of Ref. 10 treat
the fermion interaction to first order, thereby ne-
glecting the effects of quasiparticle collisions.
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A classical vortex with a movable impurity in its core is used to study the interaction of
vortex waves with a trapped ion in rotating HeII. The reflection probability is evaluated in
the long- and short-wavelength limits. An approximate interpolation formula allows a cal-
culation of the low-temperature mobility of an ion along the vortex axis.

I. INTRODUCTION

The mobility of a trapped ion moving along a
vortex line in HelIl is smaller than that of a free
ion. "2 This result is of great interest, for it is
one of the few experiments that can provide in-
formation about the vortex core. At least three

processes can account for the added resistance
to the motion of the ion along the vortex line:
frictional drag arising from trapped rotons, 8
scattering of quanta of vortex waves, 2 and crea-
tion of additional vortex waves. The first is im-
portant at higher temperatures (7> 1 °K) and will
not be considered here. Douglass? treated the
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second mechanism (scattering of vortex waves),
using an approximate matching procedure at the
surface of the ion, As an improved model for the
true quantum system, we here study the classical
scattering of vortex waves by a movable impurity
of size ~A located in the vortex core. The treat-
ment is similar to that of Levine* and Fetter® for
surface waves on an infinite sea. In Sec. II, the
scattering problem is formulated as a linear inte-
gral equation. The long- and short-wavelength
solutions are obtained explicitly (Sec. III), al-
lowing an approximate interpolation formula valid
for all wavelengths, Section IV contains a dis-
cussion of our numerical results.

II. FORMULATION OF PROBLEM

The velocity field of an incompressible irrota-
tional fluid satisfies®

F=-Vo, (1)
v2$=0, (2)

Consider an infinite straight vortex with a hollow
core of radius a surrounded by circulating fluid
with density p;. In equilibrium, the pressure
p) is given by Bernoulli’s equation

—\2
B 3= (5 )

P; Ta

where K is the circulation about the vortex and
Vo= (k/2mr)d is the velocity field. Here ¥=(r, ¢)
is a two-dimensional radial vector perpendicular
to the vortex axis,

We now disturb the inner surface of the core
and examine the resulting small-amplitude os-
cillations when &, and v, are modified by adding
small perturbations ¢’ and ¥’. Bernoulli’s equa-
tion becomes

Do), vz e 2 L(EY
?I‘—+§(V0+V) - 31_2( ), (4)

which yields the total pressure p(r) in the per-
turbed state

p) 1 RV(1 1 K 9%’ odf (5)
0, 2\en)\& ¥%) 2mPoeq ot

Although @’ can be a general function of the time,
we consider only harmonic motion e*#“f, If & is
assumed to take the form

®(F,z,t)=f,(r) expile +ikz —iwt),

a straight-forwardcalculationz"’ gives the disper-
sion relation

~ kakK/(ka) 1/ (6)
ol ]

where Q=k/2ma? and K, is the Bessel function of

oo

imaginary argument that vanishes at infinity. ®
Only the modes I =+1 are thermally excited in

He Il "and, for definiteness, we take /=—-1. With
these assumptions, Eq. (5) can be written

—2 —
%‘f’lzgiﬂf(;—z-;lf)—i(gé—zw)@ﬁ (1)

We now turn to the more interesting case of an
ion or impurity placed in the vortex core, For
simplicity, this object will be approximated as a
cylinder of radius a, length 24, and mass M,
placed in contact with the cylindrical free surface
of the liquid (Fig. 1). In equilibrium, the surface
of the cylinder is given by the equation » =a. When
vortex waves are present, the cylinder will be dis-
placed harmonically, and the corresponding equa-
tion for its surface becomes

-zwe-zwt+€lze-iwe-iwt (8)

’

r=a+€ge

where €, and €, are infinitesimal quantities. Here
the term with €, characterizes the lateral motion
of the cylinder from the center of the vortex, while
the term with €, characterizes the inclination of
the cylinder from the z axis. The pressure p on
the cylinder is obtained by evaluating Eq. (7) on
this displaced surface

P =p;aQ¥(ef+€{z) —ip,(Q+w)P’, (9)

where we define

gg=€pe et el=ze 070 et

The hydrodynamic force on the cylinder is
F=- [pnds, (10)

where the integral is originally taken over the dis-
placed surface. Since Eq. (9) is already of first
order in the small quantities, however, the inte-
gral can instead be evaluated on the unperturbed

§
|
|
|

‘I‘III“’I
m
R

|

VORTEX CORE

FIG. 1. Geometry of the cylinder in the vortex core.
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surface of the cylinder with 7i(= % cos¢ +% sing) the
unit vector normal to the z axis, In this way, Eqgs.
(9) and (10) give the x and y components of the
force:
F,=iF,= = 1ap,(29%Ae,-i(Q +w)f_i dzxla, z))e™t¥t |
(11a)

with the corresponding radial component

E=F, cosg + F,sing =F,e™*’, (11b)

Here, the function y is defined by &= x(»,z)e™**
Xe-i9t The calculation of the torque 7 is very
similar and yields

T, =ity ==i1ap(3 Q2 Aae, - i(Q+w)
x [4zdzx(a,2))e* (12a)

T, =T,COSQ + 7, sing = 7,e™**, (12b)
Newton’s second law determines the motion of
the cylinder through the relations
Ecz—szeoe-iwt~ F;:iMwZEOe-iwt’

. » .
=—ilw?e e 1=-lwle et

where I = ($a% +3A®M is the moment of inertia of
the cylinder about an axis perpendicular to the z
axis. These equations can be combined to give
F=~-Mw?€;, (13a)
T,=-ilwle] . (13Db)
When Eqs. (11) and (12) are substituted into (13a)

and (13b), the resulting expressions can be solved
for €, and €;:

__ . mapy( w+Q ) 4
€=-1i—, stV =p,e2 _Adz x(a,z), (14)

. w+Q 4
€1=—11%2'L<m%m5‘2—>'/; zdzx(a,z), (15)

where V=2ma?A is the volume of the cylinder.
Note that €, and €, vanish in the limit of a fixed
cylinder (M - ),

The remaining step in our formulation is the
determination of the velocity potential y. For |z|
>A, it is clear that y satisfies the free-surface
boundary condition?:?

5}
a—):’:ux for r=a, |z|>A, (16)

where

o)

is appropriate for the wave with /=-1, In the re-
gion |zl <A occupied by the cylinder, the liquid must
remain in contact with the surface, whose normal

component of velocity can be obtained from Eq. (8)
as —iw(€g+€{ z). If 7 denotes the normal to the
displaced surface, we therefore obtain the boundary
condition - iuw(€g+€; 2) = (¥, — V®')-5. A straight-
forward calculation to lowest order in the small
quantities yields

%

ay=i(w+ﬂ)(eo+€1z) for r=a, |z|<A. 1m)

Since xe™? satisfies Laplace’s equation, and x
must remain bounded for # - «, the boundary con-
ditions (14)-(17) complete the specification of our
problem.
The scattering calculation can be simplified with
a Green’s function satisfying the free-surface
boundary condition
v? G(ﬁ, R)=-6(R-R" for 7 v’ >a,
~0<z, 2'<00, (18a)
= -D'
519—(;‘—-—;,f” =vG® B for =g, (18b)

where ﬁ, R’ denote three-dimensional coordinate
vectors. We need retain only the part with the
polar angle dependence e”*‘*~¥"’| and a simple
analysis leads to

1 00
Gy, z;7", 2") = ;T-l dqcosq(z -2")G(q, 7, '),

(19a)
where
Glg, 7, 7")
B gh'(qa) = vI(qa)
—Kl(q1’>)(l1(q1’<) - qu,(lqa) Al pm Kl(qv'<)>-
(19b)

Here 7, and 7, are the larger and smaller of » and
¥’, I is the modified Bessel function of the first
kind, % and the small imaginary term i€ ensures
the outgoing wave condition.

Our main interest is the reflection and trans-
mission probability, which requires the form of
the Green’s function for |z —z’|=, I the inte-
gration path in Eq. (19a) is deformed from the
real to the imaginary axis, a detailed calculation
gives

Glr,z; 7', 2') = [8V2 (rr) Va1, 13,2 2, u7%)

+iCate™ =\ K (br)K, (k')

—-}j;dqe'“""" [ano(qa)+(va+1)J1,(qa)] .

H® (qv)H{® (g7")
qaH®(qa) + (va + 1)HP (qa)

HO (gD (g7
+ané”zqa) + (Vclz +1)HP (qa)/ (20)
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Here
u=2rr' ) [(z—- 2" B+ ri+v?],

Jy, HY and H® are Bessel functions and Hankel
functions, respectively, ® ,F; is the hypergeometric
function, ® and C is a dimensionless quantity de-
fined by

Cl=ralKyka) - ka K (ka) F + 2K o(ka)K y(ka).

This form of G is very convenient because the
asymptotic behavior for |z -2z’|- can be deter-
mined by inspection to be

G(r,z; 7', 2")~iCa te ™ ="' K, (kK ,(k7") ,
|z =2"|=w. (21)

Green’s theorem now allows us to formulate an
integral equation for the velocity potential x(7, z)

das’ 9G (7, z; 7', 2")
X(7, 2) = Xine (7, Z)+f§7—<x(1”, Z’)—W—

’ ’
~G(r, z;?f’,z’)%@) , (22)
where G is given in Eq. (19) and the integral is
taken over the surface of the cylinder in contact
with the liquid. In accordance with the scattering
boundary conditions, we have added the incident
Wave Xin = Xo € *K,(kv), which satisfies the I=-1
projection of Laplace’s equation with the free-
surface boundary condition. It is convenient to
separate Eq. (22) into symmetric and antisym-
metric parts:

X(r, 2) = x4(7, 2) +X,(7, 2),
where
X7, = 2) =X, 2) and X,(7, = 2) = = X,(7, 2).
For the symmetric (antisymmetric) case, the €,
(€) term of Eq. (17) vanishes. Thus the sym-

metric and antisymmetric parts satisfy the inte-
gral equations

4
Xs(7, 2) = Xgcos kzK(k7) +[ dz'aG(r,z;a,z’)

~A

x[vxsla, z’) = i(w + Q)€,], (23)

A
Xo(7, 2) =% Xo sinkzK, (k7) +/ dz'aG(v,z;a,2’)

-A
X[vxq(a, 2') = i(w +Q)ez"], (24)

where the boundary conditions (16), (17), and (18b)
have been used to simplify the integrand. For
large 1z1, Eq. (23) approaches the asymptotic
limit

(Ase-ikx+ Bs eikZ)KI(k’r), A
Xs(’V, Z) {(Aseikz+ Bse-ikz)Kl(k’V), 2 —co (253.)
where
AS= %XO:
B,=3Xo+iCK;(ka) f_ﬁ dz’ cos kz’
(25Db)

X[vx,(a, 2") =i (w+ Q€]

Similarly, the antisymmetric part becomes

(A et 1 B, ™)K (), 2z~ (26a)

Xol7, 2)~
—(A,e*** + B, e *)K, (ky), z~=—
where
Aa == %XO s

B,=Xo+ CKi(ka) [ dz’sinkz’
x[vx la, 2) =i(w+Q)z"€;1). (26b)
The actual solution x for a wave incident from z

= — is the sum of the symmetric and antisym -
metric parts, and we find

X(7, 2) = x4(7, 2) + x4(7, 2)

(Bg+B,) e'* K, (kv), z=

~ . . (27)
[xoe™*+ (B, - B,) e *]K, (k7)
2= =,
Consequently, the reflection and transmission
amplitudes are given by
R=xg(B,-B,), T=x;(B,+B,). (28)

From the above expressions, it is evident that
the function x is needed only in the restricted
range v=a, |zI<A, which allows us to simplify
the calculation. Apply the operator 8/98# to both
sides of Egs. (23) and (24), and then set »=a with
lzl<A. The integrand can be rewritten with the
relation

({%’G(n z; a, z')),,,I: -(1/a)d(z = 2")+ vGla, 2; a, 2") ,
(29)

which can be proved from the integral representa-
tion (19). Thus we obtain

Xsla, 2) = kv xo cos(kz)Ki(ka) + f_‘: dz'aG(a, z; a, 2')
xlvxs(a, 2) =i (w+ Q)€ (30)

Xaola, 2)=ikv1X, sin(kz)K{(ka)+f_i dz'aGla, z; a, 2')
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X[vxola, 2%) = i(w+Q)2" ¢ ]. (31)
It is helpful to introduce dimensionless quantities
X&) =x(a, 2)/x0, E=2/A, &'=2'/A,
K=ka, a=A/a, vo=VA,
po=pyw+ Q)z/[Mwa/ V“PxQzL

With these new variables, Eqs. (30) and (31) re-
duce to

Xs(€) =Ky (k) cos akt +vo [} dE"G(E, £)xs(E")

—zapy [} dE'GE, £ [ dEx ), (32)

Xa(£) = iK; (k) sin ot + v, [} dE'G(E, EXq(4")

~Sapg [LAE'E'G(E, £ [1 deTER(ET),
(33)

where we have used the identity axK{(k)= 1, K; (k).
The factor G(¢, £') can be obtained directly from
Eq. (19):

G(, t")=aGla, 2; a, 2°)
_1 = _cosam(t-t')
Wz;[ an(n)—F(x)-—ie
=ieiomle-t'¢ C[Kl(K)]2+W'i/‘w'dne'a"”-mp(n, K),
o

(34)
where the second line is derived with the relation
Ky mEn) =LmK{n)=n"
Here we have introduced the abbreviations

xKo(x)
Kl(x) ’

F(x)=

2/7
"o m) + FGORm F+ n¥om) + FR Y, (M

The reflection and transmission amplitudes can
also be written in dimensionless form:

R=S-@, T=1+S+Q, (35)

with
S= ivoCKI(x)j_'l1 Xs(E) cos akt dt

"P(n, k)

—iaCugKy(k) 2 K""‘[ Xs()d, (36a)

@=yCK;(k) [ xq(£)sin axé dt

-3ozCu.oK1(K)sm QK — QK COS alcf xa(E)E dt,

(ak)®
(36b)

where the explicit forms of € and €, [Egs. (14)
and (15)] have been used. Finally, it is interesting
to evaluate the ratio of the radial amplitude of the
cylinder €g to that of the incident wave, which is
given by

_iw+Q)eg  ap,
" kxoKi(ka) " 2vK; (k) )

d£ Xs(€) . (37

HI. APPROXIMATE SOLUTION

Our basic problem has now been reduced to the
linear integral equations (32) and (33). Unfortu-
nately, it is not possible to solve them exactly,
and we therefore rely on approximation schemes.
In a previous study of a dock on a semi-infinite
sea, ° the solutions were expanded in Fourier
series. Although a similar approach is possible
here, the first-order approximation has the un-
physical feature of perfect transmission at kA=,
2m, ..., which is precisely the important range
of wavelengths for an ion in HeIl. Furthermore,
higher-order approximations become very com-
plicated and do not seem useful. Hence we in-
stead derive an explicit solution for long and short
wavelengths and make a simple interpolation be-
tween the two limits. As shown below, this rather
crude procedure works well in practice.

Consider the long-wavelength limit (x - 0), when
the dimensionless Green’s function (34) can be
approximated as (y~0. 577is Euler’s constant)

G(t, £")~iC[K, (k)]Zeioxle-t' |
772 ~anlg=¢'|

/ e ey =]+« In(2/k) =712+ (3mn )2

i
z,ZK[ln(Z/ K) =7 =3]

17, s
¥ 2".[ Y22 kx) =]+ In(2/x) - YR+ (314°)°
(38)

The dominant contribution to the integral arises
from the region x~ 1. In the limit k=0 , it follows
that the denommator may be approximated as
[In(2/k) =v(##+1)%, and Eq. (38) takes the form

r ~ z L
G, & )NZK[II’I(Z/K)- _§]+8K[ln(2/K)—“/Tz

“wmeoen [ odmim) o

We now expand Eq. (32) and (33) for small «:

i = apg)
X~ m/—ﬁ‘q

Xo(£)=0(1) . (40D)

d& X&), (40a)
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In the same limit, it is easily verified that the

factor y, - ap, reduces to
mvaM( OV 1y M s 2
Vp— Qo™ an, <Q) NgQ Vp,K [In(2/k) = 7]*,
(41)
and Eq. (40a) becomes
a M
Xs(€)~ +%— —Ks[ln(2/ k) =7] I de"x () .
(42)

Integrate Eq. (42) from -1 to 1; the result may
be solved to give

[} e xon2(1-52 2 niarg )

~ (43a)

s

=00 =

while

f "t Exe)=00) . (43b)
-1

These expressions allow us to evaluate § and @
[Egs. (36)] explicitly in the long-wavelength limit

S~ tia(M/Vp)k¥[In(2/k) -] |

@ = ok’ [In(2/k) =71} .

(44)

Consequently, the reflection amplitude becomes

R=~ fia(M/Vp,) *[In2/k) =v] , (45)
with the corresponding reflection probability

a_(( M _\? 56 o 46

B[ (g ) i@/ =T (46)

where we have used the relation V=27a?A. In the
long-wavelength limit, it is notable that |R|?is
independent of the length A of the cylinder, de-
pending only on the effective mass M of the ion and
the core radius a. This result can also be derived
with the truncation procedure used in Ref. 5.

The relative radial amplitude of the cylinder (37)
is easily calculated for k-0 and yields

k=0. (47)

Thus the cylinder moves with the fluid, as is usual
for the surface waves on a sea or channel.

The short-wavelength limit is studied in the
Appendix, where |R|?is shown to have the expected
behavior

|R[*~1,
Since |R!? is known in both limits (k<< 1 and x> 1),
it is natural to suggest the interpolation formula

|R|2=H/(1+ H?) (49)

where

o~1,

K= o, (48)

A. L. FETTER AND I.

IGUCHI 2
H=(M/8na’p )xk3[In(2/k) - v]
= (ME/8mp ) [In(2/ka) -] . (50)

Apart from the logarithmic dependence on the
core radius a, the resulting approximate |R|% de-
pends only on the model-independent parameters
M,k, and p;.

An ion moving along a vortex line experiences a
drag force owing to collisions with the thermally
excited vortex waves. This effect reduces the
mobility 1 of a trapped ion relative to that of a
free one. We shall compute the drag force in
terms of the reflection probability, which leads
to the expression®

1_ 21

i dkkz =R, (51)

where e is the charge on the cylinder, |R(k) 12 is

the reflection probability in the rest frame of the

ion, and n(k) is the Bose-Einstein distribution for
the vortex waves. The same expression remains
valid if the thermal motion of the ion is taken into
account with a Boltzmann distribution.

IV. RESULTS AND DISCUSSION

Figure 2 shows our approximate reflection
probability |R|% for a=1A and various values of
M, together with that of Douglass.? Note that Eq.
(49) has a spurious zero at ka~ 1, which fortu-
nately lies well above the range of thermal wave-
lengths for vortex waves in HeII. For the same
reason, any possible resonant behavior at
w= Q(p,V/M)'2 [arising from the factor i, in Egs.
(32) and (33)] is irrelevant for He I, where
/by~ 10 °K.

The reflection probability in Fig. 2 was used
to evaluate the temperature-dependent mobility
[Eq. (51)] for a=1A4, with the results indicated in
Fig. 3. We see that the lightest effective mass

L0~

DOUGLASSI/

IRI2

0.5

| |
1 2 3 4 5 6 KA (A=20R)

0,05 0.0 0.5 020 025 0,30 ka
FIG. 2. Approximate reflection probability [Eq. (49)]
for a=1 Aand various effective masses (50 myge =M
=300my,), together with Douglass’ s numerical curve
for A=20A. Curves are labeled with the value of M/mg,.
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leads to the largest mobility, as is plausible from
physical considerations. The experimental
curve'? is also shown for comparison. At low
temperatures (7 51 °K), the vortex waves clearly
make an important contribution to the drag force

on the trapped ion and must be included in any com-
plete theory. At higher temperatures, however,
the observed mobility decreases more rapidly

than predicted here, owing to the enhanced roton
density. 8

The mobility is quite sensitive to the parameters
M and a, as is illustrated in Fig. 4. For a given
effective mass, the mobility decreases rapidly
as a increases. In particular, the reasonable
values M ~100m , and a~1A provide an acceptable
fit to the experiments at low temperature.

The present approximate calculation has been
restricted to the drag force on a moving trapped
ion arising from the scattering of vortex waves
previously present. The creation of more vortex
waves can lead to an additional drag force, which
we hope to examine in a subsequent paper.

APPENDIX

We here consider the problem of short wave-
lengths, and, for simplicity, treat only a fixed
cylinder (M - =), The basic integral equation for
X=Xs+Xq 18

(&) =Ki(k)e ¢+ vy [T dE'G(E, £x(EN).  (Al)

In the limit ax|& —=£’] =, we need only the first
term of Eq. (34), which reduces to the asymptotic
form G(£, £') ~ie?™*"-t" ag k-, In the separate

(cm2/V-+sec)
m

L ey

FIG. 3. Temperature-dependent mobility [Eq. (51)]
evaluated with Eq. (49), where a=1 A and M takes
various values. Curves are labeled with the value of
M/mye.
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T=0.83°K
1.4|-100
200
1.2 300
<
?.’ 1ol— e EXPERIMENTAL VALUE
R
o~
€
s
3 08
06—
0.4
| | | |
0.6 0.8 1.0 1.2 1.4

FIG. 4. Predicted mobility at T=0.83°K as a function
of the core radius a for various effective masses. The
experimental value is Reg 1 cmz/V sec. The curves
are labeled with the value of M/my,.

regions £ >1 and £ < -1, the asymptotic solution
becomes

x> () ~Ky(k)et ™t +ivgA(L)ei* | £>1  (A2a)
X (&) ~Ky(k)et ™ + iy B(=1)e" ¢ <1 (A2D)
where
A(E)= [} ety (£ de’,
(A3)

B()= [ et (&),

Similarly, the wave for [£]<1 can be written
X(£) = Ky (k)e ¢ + jye * A () +iyge T ¥ B(¢). (A4)

Differentiate Eq. (A3) with respect to £. A com-
bination with Eq. (A4) gives a pair of coupled equa-
tions for A and B:

_dgg(g) =K, (k) + i A(£) + ivpe 2 ¢ B(£),
(A5)
dfiég) = = Ky (k)e® **¢ — iype® **A(8) — ivy BE).

Eliminating B(¢) from the above equations, we
derive

2
gﬁ(—g—g—) +2iaK i’;—g(—g—) +2akyA(¢)=2iak K,(k). (AB)

This ordinary differential equation can be solved
to give

A() = cre™™ et 4 cpe ™Mb et 1 K (k) 1.

AT
where (A7)
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A= ak, Ag=(a®k®+ 2aky)t e, (A8)

The constants ¢; and ¢, must be chosen to satisfy
the boundary conditions A(-1)=B(1)=0, which

yields
Ae) = iKy (k) 1K, (k) oML
Y 14
e OO Ly =) = Aau-e’(x, + U+ Ag)
0,71y ) o+ g7 0
(A9a)
B(g)=iK1(K)[e“"1m1"‘3) ettt D) (Agb)

P20, 4 = 1y) — e T2, + Y+ Ap)

Equation (A2) shows that the quantities of physical

IGUCHI 2

interest are A(1) and B(-1).
limit, we find

A1) ~ivg K, (k),

In short-wavelength

-
)

with the corresponding transmission and reflection
amplitudes

Ki(k) + v A1)

(A10)
B(=1)~» = v3K,(k)e 2o

T= Ki(x) =0, Koo . (A11)
R e
1k ’

Thus |T1%~0 and |RI?~1 as k~«, which proves
the assertion in Sec. IIL
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Intensity correlation measurements of lasers oscillating in many transverse modes are found
to be very sensitive to slight misalignment of the beams that have to be superimposed on each
other for such measurements. This fact is shown to be due to the lack of spatial coherence in
such lasers. It is theoretically shown that if the modes oscillate independently of each other,
the fluctuation behavior becomes different for different points of the beam profile. This fact
is demonstrated experimentally. An analysis of intensity correlation measurements of mode-
locked lasers oscillating in many transverse modes is presented. The effects of slight mis-
alignments on measurements of contrast ratios in two-photon fluorescence (TPF) patterns
and second-harmonic measurements are discussed. In TPF measurements, even minute mis-

alignments effectively reduce the contrast ratio from 3:1 to 2:1.

may be explained in this way.

INTRODUCTION

Intensity correlation measurements have recently
become a popular means of obtaining information
about the time behavior of laser light signals in
times shorter than the resolution time oi electronic
detection systems. Such measurements make use
of optical nonlinear response characteristics. In
one case, the second-order intensity correlation

Previously published data

function! G ®(7) defined as
GO(N=(IIt+71)) 48]

is directly measured by a process involving second-
harmonic generation.?”* In a further method® in-
volving two-photon absorption-induced fluorescence
(TPF) the intensity correlation is superimposed on
a constant background. One measures®”



