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A one-dimensional system of particles in an external periodic potential interacting via two-
body hard-core repulsions is considered as a qualitatively valid model of a submonolayer film
adsorbed on a solid substrate. At particular values of the hard-core diameter, the free energy
is found exactly for all coverages in both the classical and the quantum regimes. We conclude

that the thermal implications of adsorbed particle localization (i.e. , "mobility" ) proposed by
Hill and developed by Dash and co-workers are qualitatively Nnchanged by including hard-core
interactions for both classical films and quantum films obeying Fermi statistics. The effects
of dimensionality on Bose systems appear to be too drastic to reach any firm conclusions on

the basis of a one-dimensional model.

I. INTRODUCTION

Classical investigations of submonolayer films
adsorbed on solid substrates are largely concerned
with the thermal implications of particle localiza-
tion. Consider a dilute submonolayer where an
independent particle picture is valid. At high tem-
peratures, the adsorbed particle may move quite
freely over the substrate surface ("mobile" adsorp-
tion). In the low-temperature limit, the adsorbed
particle may be localized at a "site" ("immobile"
adsorption). Of course the particie can diffuse
from one site to another because of random thermal
activation or because of quantum tunneling. This
latter process has been extensively investigated by
Dash and eo-workers, 3 and is of prime importance
in the study of helium submonolayers. The purpose
of this paper is examine the extent to which the

above picture remains valid when the submonolayer
is not dilute and the adsorbed particles strongly
interact with one another.

Ideally the thermal properties of films should be
computed from a strictly three-dimensional view-
point. Here we consider a one-dimensional model:

cp(x+ a) = y(x)

is the periodic substrate potential and

v(x) =0 if ~xl &b, v(x)=~ if [x~ &b,

is a two-body hard-core interaction. The hope is
that the disadvantages of unphysical dimensionality
are surmounted by the advantages of an exact ana-
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lytic expression for the free energy in this strongly
interacting model. However, recent investigations
of long-range order in Bose systems' indicate ex-
treme sensitivity to dimensionality. Therefore, we

restrict our attention to classical films and quantum

films obeying Fermi statistics.

II. STATISTICAL THERMODYNAMICS

functions can usually be reduced to an eigenvalue
problem. 6

Since u(x, "x„)is a symmetric function, the
relevant region of integration is

R:0&x&&x2& "x&&L .
The effect of the hard core is to limit this region
of integration from R to

The free energy of our model is calculated from
the canonical partition function

QN(L T) = tr(s g&e

via the usual thermodynamic limit

0: 0 &y&&y2& ~ ~ ~ &y„&L —b(N-1),

where

x~=y~+ (j —1)b

(18)

f(8, T) = —(kT8/b) lim'N In QN (L = Nb/8, T)

as N ~, (5)

where b is the hard-core diameter and 8 is the sub-
monolayer coverage (normalized to 8 = 1 for a
complete submonolayer). The thermal properties
follow from

f(x) = exp[- q&(x)/kT] .
We define the sequence of functions

(18)

Therefore, we have

Q„(L, T)=& "f dy, " dy„~ f[y;+(j —1)b],
(I~)

where

df = —sd T + ud(8/b). (8)
Zo(x, o)=e '""

In particular, the heat capacity per adsorbed par-
ticle is given by

and the adsorption isotherms are found by equating
b(ef/88) r to the chemical potential of an ideal gas
at the appropriate vapor pressure.

Alternatively, the spreading pressure ensemble
may be used:

Z„.,(x, o)=X-' f" f(y)Z„(y+b, o)dx .

These functions have the properties

Z„(x+a, o) =e "Z„(x,o),

d d" =~-'f(x)Z„(x.b, .),
ZN+1 xr o

Z „(o, T) = Z „(x= O, o) .

(2o)

(21)

(23)

Z,(o, T) =~-' f" e-"q„,(L, T) dL, ,

where

~ = (2va'/mkT)'~'

(8) Let

C (x) = lim[Z„(x, o)/Z„(x = 0, o)] as N- ~ .
(24)

(1o)

(11)dC = sd T + (8/b)d p. ,

Equations (8) and (11) are thermodynamically equiv-

alent:

is the thermal wavelength. If C denotes the spreading
pressure of the film, then as N- ~,

p(C, T) = —kT limN ' lnZ„(o= C/kT, T),
dC(x) = —p'(x) e(x+ b),

dx

C (x +a) = e "0 (x),
which yields f as a function of o. The thermal
properties follow from

(25b)

Then C(x) is a solution of the eigenvalue problem

f= —C+ u8/b . (12)
p, =kTln(XK), 4 =kTo . (28)

III. CLASSICAL STATISTICS

The canonical partition function in the classical
regime is given by

The eigenvalue problem is easily solved for the
following special cases:

Case (i). There is no external potential. Then
we obtain

Q„(L, T)= „,f dx, " f dx„e "~', (lS)

where

u(x, "x„)= Z. y(x, )+Z v(x,. —x,.) . (14)

The evaluation of one-dimensional classical partition

f(x) =1, @(x)=e '", g=oe",

p, (C, T) =kTln(&C/kT)+ Cb .
This is the well-known Takahashi~ result.

Case (ii). The hard-core diameter is zero.
Then we find

(2V)

(28)
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In@(x) = —g f" f(y)dy, oa= 0 f' f(x)dx, (29)

lL(e, T) =kTIn[X4~a/bT f ' f(x)dx] .

Thi.s corresponds to the classical independent-
particle model.
Case (iii). The hard-core diameter is one of the

crltl cal values

(SO)

(Sl)

IV. CLASSICAL FILMS

The adsorption isotherm implied by Eq. (33) can
be computed from the thermodynamic relation
8 = b(se/8P)r:

p(8, T) = I T in[8/(I 8)]—+I T8/(I 8)+—l '(T). (34)

The first term is the Langmuir adsorption loga.—

rithm; the second term is a hard-core volume ex-
clusion effect; and p.

t depends on temperature
alone. The question of adsorbed particle "mobility"
is connected to the behavior of the specific heat

Cg ~

Assume that the external potential q(x) = y(x+a)
is a smoothly varying function of x with one oscil-
latorlike minimum per cell (i. e. , per period of
variation). At sufficiently high temperatures the
external potential y(x) is unimportant and the kinet-
ic energy is the sole contributor to the specific
heat:

lime 8= 2 k

For sufficiently low temperatures the particles are
localized at the oscillatorlike minima, so that
equipartition of energy implies

limce= k as T-0. (35)

This argument is independent of hard-core inter-
actions and coverage Equ. ations (35) and (36) fol-
low from Eq. {33)via straightforward (but some-
what lengthy) thermodynamic differentiation. How-

ever, Eq. (33) is only rigorously exact for the
"special" values of the hard-core diameter given
in Eq. (Sl). We wish to argue that these values
are not "critical" in a physical sense, but merely
"convenient" for obtaining an analytical formula.
In the high-temperature limit, Eq. (35) holds for
any b since case (i) is a good approximation. In the
low-temperature limit f(x)~ ~„&(x—x„), where
x„denotes the positions of particle localization.
Equation (32) is then approximately valid for all b.
We therefore conclude that Eq. (33) is rigorously
exact for all coverages when h = 0, a, 2a, 3a, .. . , and

For these values of 5, we find

In@(x) =- ge '' f'f(y)dy, aa= ge '~ f f(x)dx, (32)

p(C, T) = b@ +k Tin(Xa C/k Tf, e ""'~'rdx) . (33)

qualitatively correct for all values of b. For math-
ematical convenience we restrict the values of b to
integer multiples of a in the considerations which
follow. There are no restrictions on the coverage
8.

V. QUANTUM STATISTICS

Associated with the external potential is a spec-
trum of single-particle eigenvalues

—(h'/2m)g, "(x)+ cp(x)g, (x) =E,g, (x)

g (8, E) = (I —8)"'g(E), (39)

and the free energy for all coverages is found by
eliminating the parameter Z from the equations

f(8, T) = (kT8/b) 1nZ —kT f g(8, E) In(1+Ze e~'r)dE,

(40)

8 =b f g(,8E)(Z-' e'"'+l)dE. (41)

The change in the thermal properties of the film
due to the hard-core interactions is rigorously de-
termined by the simple renormalization g(E) -g(8, E)
for all temperatures and coverages.

VI. CONCLUSIONS

In a one-dimensional problem with hard cores,
the unique and permanent ordering of particles
permits an analytic solution. The result is simply
interpreted in terms of a volume exclusion effect.
Higher-dimensional systems are quantitatively
more difficult to analyze since the particles "move
around each others hard cores. " Nevertheless, the
simple volume exclusion effect remains qualitatively
valid although extrapolations to higher dimensions
are quantitatively crude.

What is to be expected for a He' submonolayer
film 'P In the dilute submonolayer region the film
acts like an ideal "two-dimensional" Fermi gas
with a density of states g(E). There should be clear
evidence of a linear term in the specific heat in
the low-tempexature limit. As the coverage is in-
creased, the coefficient of the linear term should
become smaller owing to "volume" exclusion from

and a density of states

g(E)=(2v) ' f' 5{Z-E,)du.

%e assume that this single-particle problem has
been solved and that g (E) is a known function. What
is the effect of including hard-core interactions'P

The hard-core quantum system in the absence
of a periodic potential in one dimension has been
discussed in detail by Lieb and Mattis. The major
effect is a renormalization of the single-particle
spectrum. Introduction of a periodic potential
[restricted by Eq. (31)]leaves their arguments
virtually unchanged. The density of states is simply
renormalized to



hard cores. Finally, the linear term should vanish
at monolayer coverage. These qualitative expecta-

tions are in agreement with experiment, especially
the most recent data of Stewart and Dash.
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The mobility of a large hard-sphere impurity in a Fermi liquid has been calculated by sol-
ving the transport equation for the quasiparticles exactly to order 72. Using the Landau pa-
rametels known for He', the correction to the zero-temperature mobility, %'hich was prev1-
ously found to be proportional to T, turns out to be somewhat too sma11. The temperature
dependence is ln agreement with experiment

I. INTRODUCTION

Over the past years, considerable attention has
been given to the transport properties of Fermi
liquids. On the experimental side, there are the
accurate measurements by %heatley and co-workers'
on He and He -He mixtures, while on the theoret-
ical side, Abrikosov and Khalatnikov were the first
to obtain approximate solutions of the quasiparticle
transport equation. A brief summary of recent the-
oretical developments can be found in the paper by
Dy and Pethick. 3

While tile moblllty of Rll 1IIlpul'lty ill tile Eel'o-ielll-
perature limit does not depend on the transport
properties of the Fermi llquld, thiQ is not tx'ue Rt
finite temperatures where quaslpax'tlcle colllslons
become important. Fol" T ~0 the quasipaI"ticle
mean fx'ee pRth A divex'ges like T Rnd eventuRlly
becomes much larger than the size g of the impur-
ity —R sltllatioll oftell CRlled tile Knudsen llnlit. In
this case the distribution of quasipaxticles is es-
sentially undistorted in the vicinity of the impurity.
The mobility of an impurity in the Knudsen limit
has been calculated for a Fermi liquid by various
methods.

In a previous paper" we ha,ve suggested t,hat the

Increase of the mobility with temperature observed
by Anderson et ul. '~ and Kuchnir et gl. '3 with ne-
gatively chRrged impurities ln He Rx'lses Rs R con"
sequence of quasiparticle collisions. The quasi-
particles scattered off the moving impurity will alter
the distribution around the impurity by such colli-
sions. In I we solved the problem fox a Boltzmann
gas and showed that generally the effect is of ordex'
g/& and increases the mobility. Thus in a Fermi
liquid the first correction to the Knudsen limit leads
to a contribution proportional to T .

In this paper, the quasiparticle transport equRtlon
is solved exactly to order T' and the mobility of a
large hard-sphere impurity is found in terms of
Landau'8 Fermi-liquid parameters. ' * 5 In sec. II
we will derive a general expression for the mobility
and in Sec. ID the expression is evaluated to order
T . The comparison with experiments'~'~ in Sec.
IV shows fair agreement. Also in Sec. IV some
deficiencies of our treatment are pointed out and R
different explanation of the temperature rise of the
mobility' is discussed.

%'e will adopt the notation of Ref. 15. The trans-
port equation for the quasiparticle distribution func-


