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Radiation saith Solids, edited by Adli Bishay (Plenum,
New York, 1967), pp. 693-701. I am obliged to N. A.
Kurnit for the objections to the sorts of measurements
indicated in Sec. VB. He also pointed out that the value
of T& probed by this measurement is not necessarily the
same as the effective T& measured by the stimulated
echo. For a discussion of this point, see the paper by
these authors in the same source as Ref. 17. In L. O.
Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and
A. Javan [Phys. Rev. Letters 17, 233 (1966)], various
phenomena involving the relaxation processes in CO2 are
investigated using pulse techniques and fluorescence
measurements. These phenomena are involved in pro-
ducing the lifetime T& used in the text.

The fact that the second output pulse is independent
of direction strongly indicates that the individual (per-
haps infinitesimally thin) segments of a complex sys-
tem commute with one another provided they conform to
the restrictions given in the text (see Sec. VA). This
commutability can be proved using rate equations, and

also for more general Tq provided that the line shapes are
the same. This suggests, in turn, the following theorem

which can be proved using rate equations and which has
been confirmed to a limited extent using numerical tech-
niques. One starts with two different systems A, and 8
which conform to the restrictions indicated in Sec. V A,
but which may be pumped in very different ways. A

pulse 8& interacts with these systems producing output
Pulses (&I)out from A and (bt)mt from ~ and new systems
A' and I3' that results from this interaction. Then, it is
sufficient that ($&)+«t = ($ &)«& in order that a second
pulse (g&) &„ interacts with 2' and B' to produce outputs

(82)«t = ($2)«t . This result holds independently of the
direction of the pulses, and implies that a series of N
pulses would pass through an amplifier or an attenuator
(it is now essential that T2 «AI) producing outputs that
are independent of the relative directions of the pulses.
Provided one ignores noise, dispersion, scattering losses
and stability requirements, one can conclude from the
above that any steady-state solution of the unidirectional
ring laser that is describable as a single, well-resolved
ultrashort pulse will also be a solution of some suitably
chosen linear laser.
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A model is given that describes the quantum scattering of a Hea impurity from a rectilinear
vortex in liquid He xr; the principal assumption is the existence of an impurity wave function
that satisfies a Schrodinger equation. Various possibilities for the impurity-vortex interaction
are discussed. For certain interactions, the theoretical results are consistent with the ex-
perimental work of Rayfield and Reif provided spatial variations in the superfluid density are
considered. A T-matrix formalism is also developed and applied to the vortex scattering of
impurities, as well as phonons and rotons. The results are compared to existing theoretical
and experimental work; the main discrepancies occur for roton scattering.

I. INTRODUCTION

The scattering of quasiparticles (phonons, ro-
tons, and He impurities) by vortices in liquid
He n has been observed in various experiments. '
The main purpose of this paper is to derive and
investigate a formalism that describes the quan-
tum scattering of a He' quasiparticle from a
quantized rectilinear vortex in superfluid helium.
Models already exist which have been applied to
the corresponding cia,ssical scattering problem. s

The basic model is presented in Sec. II; it as-
sumes the existence of a quasiparticle wave func-
tion that satisfies a Schrodinger equation. In
Sec. III, the model is applied to impurity scatter-

ing when the superfluid density p, is constant.
Various possibilities for the impurity-vortex in-
teraction are discussed. Some peculiarities re-
lated to the Bohm-Aharonov problem occur; the
scattering amplitude appears to diverge as an i.n-
finite series in partial waves, and the incident
state is found to consist of a plane wave modified
by a phase factor. The approximate effects of
spatial variations in p, are considered in Sec. IV.
In Sec. V, the frictional force is derived for the
scattering results of Secs. I-IV; a comparison is
made to the experimental work of Hayfield and
Beif. Finally, in Sec. VI, a T-matrix formalism
is developed and applied to the vortex scattering
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The model used to describe the quantum scat-
tering of a He quasiparticle from a quantized rec-
tilinear vortex in liquid He rr is based on the as-
sumption that all information can be obtained from
a quasiparticle wave function 0 (R, t) that satisfies
the Schrodinger equation (8= 1)

[is/at H(-iv—, R)]y(R, t) = 0 . (1)

The wave function and its first derivatives must
be periodic in the angular variables, regular at
the origin of the force, and continuous everywhere.
In addition, the boundary conditions for scattering
require that @(R, t) asymptotically consists of an
incident wave [corresponding to an initial state
with momentum P and energy E(P), normalized
to one particle per unit volume] and an outgoing
scattered wave. The quantity H(P, R) is the anal-
ogous classical Hamiltonian symmetrized in mo-
mentum-dependent operators. In the absence of
any interactions, '

H=EO+ (2m*) P (2)

The effective mass m* is found from experiment
to range from 2. 2 to 2. 8 He masses. 6' 7

It will also be assumed that when no impurities
are present, the superfluid state consists of a
normal fluid with zero velocity v„and constant
density p„, and a superfluid with velocity v, and
density p, describing a quantized rectilinear vor-
tex. In terms of a Preferred cylindrical coordi-
nate system (r, P„, z) (origin on the vortex axis
and z axis oriented along the direction of vortex
vorticity), '8

v, =(x/r)P„, p, = por'/(r'+a') . (3)

The quantity a is a core radius of order one ang-
strom, the constant p, is the superfluid density
far from the vortex core, and Tc is n@/m4 (n is a
positive integer, m4 is the mass of a He4 atom,
and k is Planck's constant divided by 2w). The
existence of such a superfluid state is an over-
simplification; the normal fluid, viewed as a gas
of phonons and rotons, is certainly influenced by
the vortex.

III. SCATTERING FOR CONSTANT DENSITY

It is necessary to determine the Hamiltonian for
the classical scattering problem in order to obtain
H(P, R). In general, this determination is difficult.

of He3 impurities, phonons, and rotons. Results
for constant p, are derived. In the case of im-
purities, these results agree with those of Sec.
III; for phonons and rotons, the results are com-
pared to existing theoretical' ' and experiment-
al work. '

II. BASIC MODEL

However, if the superfluid density were constant
and the impurity corresponded to a spherical point
particle on which no viscous forces act, the clas-
sical Hamiltonian would be

H =ED+ (2m*) ' (P+ n,m*v, )' ——,
' n,m~v2,

where n, = nz = 3 '0, (classical).p, 5m
1 2

p

Here p, and p are the superfluid and total fluid
densities, 5m is m* —m3, and m3 is the mass of
a He' atom. Thus, at least when p, is nearly con-
stant, Eq. (4) gives an approximate expression
for H(P, 0). However, other possibilities exist.
On the basis of Galilean relativity, Bardeen,
Baym, and Pines'~ (BBP) have also predicted a
Hamiltonian of form (4) with constants

n, =
n, =6 m/ m*, (BBP) .

Further, Eq. (4) can be derived with constants

n, =n, =l, (0 v )

by applying to Eq. (1) a Galilean transformation
with velocity v, (v, slowly varying) from the par-
ticle rest frame to the coordinate system fixed on
the vortex. In both these latter cases, the den-
sity p, is essentially constant.

The scattering results for Hamiltonian (4) will
be investigated in this section for the three choices
of n, and n2 given in the preceding paragraph; the
assumption is one of constant p, . If variations in
p, are not important, a comparison of theory to
experiment should indicate which set of constants
is best. It is interesting to note that regardless
of the values of n, and n„Hamiltonian (4) is
identical to that of an electron of mass m* and
charge q interacting with a vector potential —q-'e
n, m* v, and scalar potential q '(Eo ——', n, m*v', ).
Here, e is the speed of light.

Consider Hamiltonian (4). The corresponding
wave function

4 (5, t) = e "' ' 0' @(R)

where 4(R) is a solution to

[- (2m~) 'v' in, v, v+-,'(n', -—n, )m*v~ —Z]

x 4(R) =0,
must represent a scattering state with initial mo-
mentum P and energy E(P) =(2m*) 'P~. In the
preferred coordinate system of Sec. II, the inter-
action in (9) is independent of z and momentum is
conserved in the z direction. The time-indepen-
dent wave function must be of the form e '~" P (r, Q„)
and the scattering is two dimensional in nature.
[The cylindrical components of 0 will be denoted
by (P, e„p.). ]
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The periodicity requirement for the wave func-
tion can be satisfied by expanding )) (r, Q, ) in par-
tial waves

)I)(r, y„)= Z„e' " a )I) (r),

a partial-wave expansion for f(p, )f).
for g, &y &2m —

yo are

y(r y )
eitl(lr-x) ei)) 5.yr-)/xf (P y)ei()~-~/4) (20)

where the sum extends over all integers m and X

The Fourier coefficients g„(r) are so-
lutions to Bessel's equation'9

[D(r) —v' r '+ p']g„(r) = 0,
where D(r) is the differential operator

1 d d
D(r) = r- —

h' dh' dh' '

and v' = (m+ v)' —)i)', )) = n, m*x,

10 = Qx(m K)

One notes from Eq. (11) that a„)1)„(r)is a linear
combination of Besselfunctions Z,

,
(it)r) and

~,„(Pr). The linear combination must be chosen
so that the asymptotic form of ((r, P, ) consists of
an incident wave (corresponding to a particle with

momentum p, normalized to one particle per unit

area) and an outgoing scattered wave. Since the

scattering is two dimensional, one would normal-

ly expect

g(r p ) ei8 ~ Fyr )/xf(p X)
ei(pr w/i) -(14)

where y becomes the scattering angle in the as-
ymptotic region and f(p, )f) is the scattering am-
plitude. If f(p, y) and e'~' ~ are expanded in partial
waves, and Eq. (14) is used for an asymptotic
evaluation, it is not difficult to show that

eire iI l~l/xei&„q (r)

f(f) y) (2))&)- / g e' x(e"'~ —1) . (16)

The phase shifts 5 are defined by the asymptotic
condition

)I) (r) (2/iaaf)r-))/' cos(pr —,'w —-', rim— l+6 ). (1"/)

Consider the case ixx = 0. For ))) (r) to simulta-
neously satisfy (11), (1V), and the regularity con-
dition at the origin, one must have

g (r) = ~),.)(pr).

The asymptotic behavior of Bessel functions for
large arguments' then yields

(19)

With phase shift (19), the scattering amplitude in

(16) diverges as an infinite series in m. (The
geometric series g,

" e diverges for all lel&1. )
The difficulty lies in an incorrect asymptotic eval-
uation. Indeed in Appendix A, the asymptotic be-
havior of )t)(r, Q„) is evaluated without resorting to

f(p, y) = (2))p)-"'e" o' '/""sin())v) csc(-,'y). (21)

Here )f0=(8/pr)' and mo is the integer that satis-
fies the inequality —1 & no+ e & 0. It should how-

ever be noted that scattering amplitude (21) is
identical to that obtained from (16) and (19) if the

infinite series in (16) is summed in the Abel

sense

(22)

The additional phase in the incident asymptotic
state is a result of the long-range nature of the
P v, component of the potential. Indeed if one

assumes a better representation of the three-
dimensional incident state is a plane wave multi-

plied by the factor exp(i JF dR), where the inte-
gral is path independent, a direct substitution into

Eq. (9) yields

(r y e) eiv(s'-x) ei)) )t 0()t(2))

Equation (23) is valid even when n, 40 and physi-
cally represents a particle whose probability cur-
rent is (m*) 'P.

It thus appears that plane waves are not valid
incident states for the impurity-vortex problem;
the impurity always feels the long-range nature of
the force. However, it is important to note that
identical scattering results a.re obtained with in-
cident plane waves provided infinite sums are in-
terpreted in the Abel sense.

With Hamiltonian (4), an impurity interacts with

a vortex field in the same way an electron inter-
acts with certain electromagnetic fields. The ad-
ditional phase in the incident state should thus ap-
pea, r whenever an electron is scattered by a vector
potentia. l proportional to Q„/r. Bohm and Aharonov
have studied this latter problem when the scalar
potential vanishes. They also were able to find
an explicit expression for the asymptotic wave
function, similar to (20), without expanding the
scattering amplitude in partial waves. The work
in Appendix A is an alternative derivation of their
results.

Consider the case a.2&0. The wave function can
be decomposed into two parts, one part corre-
sponding to the solution when n2=0. With this de-
composition, ((r, P„) is given by Eq. (15) with
phase-shift definition (1V). The asymptotic be-
havior of g(r, Q„) is given by (20) where the scat-
tering amplitude f(p, y) is the sum of (21) and
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f '( p, X) =(2&&) "'&.s' "

x[ 2E5~ et~(lmf-lm+vl)q (24)

Equation (16) may also be used as a representation
of f(P, y) provided the sum is evaluated in the Abel
sense.

In order to satisfy (11) and (1V),

g„(r) = cosb„' J„(pr) —sinb' F„(pr),
where 6„' = 2 v(v„—Im I)+6 . The constant 6'
is determined by the regularity condition at the
origin. As long as v is real, regularity demands
that 6„' vanish; a unique solution for P (r) is ob-
tained with phase shift

b„= -', w(~m~ —v„) . (26)

However, when v is imaginary, a unique solution
for g„(r) is not obtained from the regularity con-
dition; the constant 5„is arbitrary and an infinite
number of solutions is possible, some even cor-
responding to the absorption and emission of par-
ticles. The difficulty with imaginary v also oc-
curs in the classical scattering problem ' where
for the corresponding values of angular momenta,
the particle spirals into the center of the vortex
and is removed from the incident beam. It shall
thus be assumed in the quantum problem that cap-
ture occurs for those values of m where v is
imaginary; elsewhere the phase shifts are given
by (26). The classical differential cross section
(K 0) is derived in Appendix B from quantum ex-
pressions (21), (24), and (26).

IV. SCATTERING WlTH VARIABLE DENSITY

When Eq. (4) was used for H(P, R), no unique
solutions existed for certain partial-wave coef-
ficients g (r) and a capture assumption had to be
invoked. The difficulty probably lies in the fact
that (4) was derived for a constant superfluid den-
sity; in actuality p, has the approximate spatial
dependence given in Eq. (3). The author has been
unable to derive the classical Hamiltonian for the
variable-density case. However, since p, is slow-
ly varying, it may be reasonable that H(P, R) is
still given by (4) where constants o., and nz are
altered by replacing p, /p by

p, /p = (p,'/p') r'/(r'+ b') . (2V)

The quantity b is a core radius a(p„/p )" . How-
ever it is also conceivable in analogy to existing
work on phonon-vortex scattering" ' that
n, P v, should remain proportional to r ' for all
r. In this latter case, only n~ could have spatial
dependence (2V). The first of these approxima-
tions will be referred to as model (i), the second
as model (ii).

Kith either model, an examination of differen-
tial equation (9) shows that a unique solution for
g~(r) is obtained from the regularity condition for
all m. Since the solutions do not exist in closed
form, the following cruder approximations, based
on the replacement

(r'+b') ' -r=' -r & b

=b, r &b

are made for the partial-wave equations

for

[D(r) —v„'r '+ p'] ( (r) = 0, (i, ii)

(26)

(29)

for r &5

[D(r) m'r —-'+p'+(zo'-2mv) b-']

x q„(r) =o, (i) (30)

[D(r) —(m+v)'r '+p'+u'b ']

x |I (r)=0, (ii) . (31)

Here D(r) is differential operator (12). The so-
lution for r &b consistent with (1V) is given by Eq.
(25). For r & b, regularity demands

t) (r)=A J) )(r[p2+(nF —2mv)b 2]"2]; (i) (32)

P (r) =B„J( ~( [r(p'+m'b ')"'], (ii). (33)

The phase shifts are determined by the continuity
of the logarithmic derivative of tit (r) at r= b.
%'hen v is real,

6 ' = —,
'

v + arg[ pb a„'.&»(pb) —A. be &»(pb)],

(34)

where If+'(Pb) is the Hankel function of the sec-
ond kind" and A is the logarithmic derivative of

P (r) evaluated as r-b from below. When v„ is
imaginary,

/

tan(-, w~m~ —6 ) =tanh(i-, nv„) cotK„, (35)

V. FRICTIONAL FORCE

The theoretical quantity that can be compared
to experiment in quasiparticle-vortex scattering
is the frictional force

F(u) = (2m) 'J,n(Z, -P, u), ' (2~)-'

3x d P~(P) —Py) de(
for a small velocity u. Here do&, is the differen-

(36)

K.=arg[PbJ„' (Pb) —A. b J„(Pb)] .
The expressions for A„are obtained from (32) and
(33).
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(2 ~)-'fd'J'n(E) (3'7)

is the number of quasiparticles per unit volume.
Physically, u ~ F(u) is proportional to the energy
loss per distance for a gas of quasiparticles with
drift velocity u interacting with a stationary vor-
tex.

For the impurity-vortex scattering considered
in Secs. III and IV, the energy and g component
of momentum are conserved, and the scattering
amplitude f(p;, y) is a function only of p; and

Consequently,

do„=(»)'P ' I lf V' x)l'
BP2

x5(E, —E,.) 5(p„-p„), (38)

where I. is the infinite length of the rectilinear
vortex. Using (36) and (38), one finds to lowest
order ln u

F,

=-ufo'(

m2)
'

tial cross section for the scattering of a particle
with group velocity IBE/SPI from an initial state
i (momentum P„energy E,) to a final state f (mo-
mentum P&, energy E&); the total cross section
would be (2n) fd'P&do&; . The quantity n(E&) is
the initial quasiparticle distribution function and
is such that

tential to the temperature and particle density;
it may be inverted to give ILt,

' as an expansion in
the Fermi degeneracy temperature T„=(3v ns)
x(2m*k, ) ',

e "=-',(2v)'(2m*keT) ' ' n,

x[1+—,'(2/ )'~s(T /T)s s+ ~ ~ ]. (44)

The frictional force can also be expressed as

f df. f df n(E)S[f 'g.(P)]/Sf
f dP, f dpn(E)2P

( 1)s+1 -3 2 e-y, 'sg~(e)
( I)ssl 3/2 -P's (46)

g,(p) =po, (p), (47)

g, (s) =2f qsdqe '
g, [(2m~ksT/s)'nq]. (48)

To express g,(p) in terms of phase shifts, one
must use the decomposed form for the scattering
amplitude. Equation (16), even interpreted as an
Abel sum in &, is not uniformly convergent in &

and cannot be squared and integrated term by term
with weight factor 1 —e'". However these opera-
tions can be applied to f '(p, y) since (24) converges
uniformly on 0&X&2m. Using Eqs. (21) and (24),
one finds after some algebra

dPg dP] P] O'C Pg . (39) g, (p) =i sin(2vv)+Z„[1 — "e"m- ms. i&] . (49)

The real part of the complex quantity Il, is the
force in the u direction while the imaginary part
is the force in the z ~u direction. The P, inte-
gration limits are + and those of p are 0 and +~.
The function o,(P) is the complex transport cross
section

;(~)=f 'dx(1- *")IfV' X)l'

The impurity distribution

n(E) = 2 ]exp[(E —p, )/ke T] + I]. '

(4o)

(41)

is the Fermi function for spin- —, particles at
chemical potential p, and temperature T. Here
E=Es+(2m*) ~P and k~ is Boltzmann's constant.
The total number of impurities per unit volume
ns is given by Eq. (37). The impurity contribution
to the normal fluid density is

p„,= ——s(2r) d P P =m*ns.an(E)
(42)

When p' = (Eo —p)/ke T & 1, Eq. (37) may be in-
tegrated; in particular,

ns ——2(2') (27fmskeT) ~ g (-1) s e ~ e s s (43)

where the sum extends over zero and all positive
integers. Equation (43) relates the chemical po-

5,„,= 5 [1 —C(m)/pro], C(m) «pro

(euro/2 l
m

l ) '"', lm l
» pro. (51)

The function C(m), at least when lm l
is large, is

linear in m; the phase shift 5 is that calculated
without cutoff. When (47) is determined with the
cutoff phase shifts,

g,(P, r ) = H„(1—exp[2i(6„,„—6„„,„)]]. (52)

Equation (52) does not converge uniformly in ro,
and in general g,(p, ~) does not equal gs(P) [Eq.
(49)] calculated without cutoff. Indeed if consec-
utive phase-shift differences are vanishingly small,
it is easy to see that

g,(p) =i[-2mv+sin(2vv)], g,(p, ~) =O. (53)

It is worthwhile to digress and consider the case
where phase shifts are determined by introducing
a cutoff in the potential (for r greater than some
large ro, the velocity v, is equal to zero). One
then finds

q(r, y„)-e" "+r-'~'f('p, ~, r, ) e"~" '" (-5O)

where f(p, g, ro) is given by (16). The resulting
phase shifts are such that
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o,'(P) = iP '[-2vv+ sin(2mv)] (55)

must be added to that calculated from cutoff if the
results are to agree with scattering in an infinite
medium. This problem also appears in classical
impurity-vortex scattering and is not strictly a
quantum effect. It is evident from (45) that Eq.
(55) is equivalent to a transverse frictional force

Z,'= tuL, n, [- n,mox+ sin(n, mox)] .

When n, =1, the first term in (56) would be iden-
tical to the Iordanskii force'4 -iuLp„, ~ since p„,
= nz*~; Iordanskii calculated the frictional force
by introducing a cutoff.

The only experimental results to compare with
are those obtained from Rayfield and Reif's work
with vortex rings. 4 (A la.rge vortex ring may be
approximated by two parallel rectilinear vortices
with opposing circulations. ) The experiments
were carried out at tempertures T and impurity
(molar) concentrations X such that T~«T. (As
long as X& 10 ~ and T ) 0. 1 K, it can be shown
that Ts (T. ) It is convenient to define F, by

Il, =uLg3g, .

Table I gives the values of Re(g, ) obtained from
Rayheld and Reif's work. The imaginary part of
g, vanishes by symmetry for vortex rings. The
errors quoted originate frorp uncertainties in the
measurements of energy losses and molar con-
centrations. For the 0.61 'K value, it was nec-
essary to subtract out the experimental roton con-
tribution to E„consequently, the corresponding
error in Re(g, ) may be larger than that indicated.
For the other two values, the experimental phonon
and roton contributions were negligible.

With the scattering results of Sec. III, the phase
shifts are independent of momentum. Thus, Eqs.
(45) and (49) predict that g, =g, for all T below the
X transition. Numerical results for g, are given
in Table II and correspond to T & 1 'K, values
(5)-(f) for n, and ns, and M= m*/ms values 2. 2,

TABLE I. Rayfield and Heif experimental values for
Re@0) as a function of temperature T and impurity (mo-
lar) concentration X.

Re Eg,)

It appears in general that with phase shifts (51),

g,(p) =g,(p, ~) +i[- 2vv+ sin(2mv)] . (54)

Consequently, when a cutoff is introduced, an ad-
ditional transverse transport cross section

TABLE II. Theoretical values of g, for temperatures
less than 1'K, several effective-mass ratios, and vari-
ous choices [Eqs. (5)- (7)] for the interaction constants
Q( and Q2'

P'vs
m /m3 Re(P,) Im(p, )

BBP
Re(go) Irn(g'o)

Classical
ReEg ) Ime')

2.2
2.5
2.8

6.60 —0.31
7.46 + 0,69
7.63 + 1.64

4.32 —0.71
4.81 + 1,03
5.69 +0.51

7.60 —0.67
9.32 + 0.63

10.48 —p.7p

8,0-

6.0—
Re(j )

4.0—
'c

2.0—

z (g)

I I I I I I

02 04 06 0.8 (0 ).2 ).8 h6 I.8 2.0
T(o K)

2. 5, and 2. 8. Figure 1 illustrates the tempera-
ture dependence of g, when constants a, and n, are
given by (5), X«1, and M=2. 2; the relative max-
ima and minima for large T arise from the cap-
ture assumption.

In comparing Tables I and II, one notes that the
experimental results do not agree with those ob-
tained from the BBP constants. However, pro-
vided M™2.5, the P ~ v, constants give results
consistent with the 0. 28 'K values. The results
for the classical constants are consistent with the
0. 28 K values when M=2. 2 and with the 0. 61 K
value when M=2. 8. However, in all cases, the
theoretical results are temperature independent
for a given m*; the temperature increase in
Re(g, ) indicated by experiment is not predicted.
This discrepancy could be due to an underestima-
tion of the experimental errors; more likely it
results from an inadequacy of Hamiltonian (4) to
consider the spatial dependence of p, .

The work in Sec. IV attempted to consider spa-
tial variations of p, in an approximate fashion;
Hamiltonian (4) was used with constants (5) altered
by replacing p, by its approximate analytic form
given in Eq. (2). With further approximations,
the phase shifts 5„, and consequently g,(P), were
found to depend on the momentum only through the
product pb, where b = a(p„/pc)'is. In terms of the
dimensionless integration parameter q of Eq. (48),

0.28
0.28
0.61

2.84 x 10
7.55 x 10
7.55xlp 6

7.16+0.22
7.75 + 0.44

10.15+ 0.36

FIG. 1. Temperature dependence of g0 for O'K& T
&2'K, classical coefficients, constant p8, and molar
concentrations less than 10 . The relative maxima and
minima are due to the capture assumption.
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the productP, b equals Pq, where f = (2m*ksTba)"~.
[When b is expressed in angstroms and T in '

K,
the constant f is equal to 0. 351(TMb )' . ] Assum-
ing g is small enough so that 5„and g,(p) may be
expanded in powers of f q, one finds the following
approximate behavior for the phase shifts:

5„~—,v(i m
i

— ve)+ 5„(,'fq—)"", v„real (58) 0.28
0.61

Model (i), a=0.4 A

Be(P~) Im(g, )

6.78 +0.50
9.74 —1.77

Model (ii), a= 9 A

Be(g'g Im Q',)

7.50 + 1.96
10.03 + 0.64

TABLE III. Best values of g~ (for comparison to
Table I) using models (i) and (ii) of Sec. IV when the
effective-mass ratio is 2.38. The quantity a is the
radius of the vortex core.

5„=c„ln(—', fq) + d„, v„ imaginary . (58)

One would thus expect to lowest order in f that

g, =g, (Sec. III)

+ [oscillating function of In(-, f)] . (60)

iR (-

2
3

Figure 2 illustrates a typical behavior for g, as a
function of ln(2$) to order (,'f)2 w—hen M= 2. 38 and
T~«T & 1 'K. [For these temperatures, g, equals
g,(l) of Eq. (48). ] Results for both model (i) and

(ii) are included; the horizontal lines represent
g, (Sec. III). The expansion breaks down for
&1. The exact analytic expressions used for a
numerical evaluation of g, are omitted; they are
rather involved and offer no new insight into the
physics of the scattering problem. A comparison
with experiment (Table I) indicates that the best
agreement for model (i) occurs when the core ra-
dius a isabout 0. 4 A and for model (ii) when a is

0
about 9 A. These results are summarized in Table
III and are consistent with experiment considering
the possible experimental errors quoted in Table
I.

It thus appears from the preceding work that
with the proper effective mass, core radius, and
model describing spatial variations in p„Hamil-
tonian (4) with constants (5) yield results consis-
tent with the experimental work of Rayfield and

Reif. However, as is shown elsewhere, "con-
sistent results can also be obtained with the P. vs

0
interaction provided a vortex core of about 0.45 A
rotates with a velocity proportional to x while p,
remains constant. It would thus be interesting to
investigate the many-body formulation for im-
purity-vortex scattering in order to properly con-
sider spatial ~density variations and to determine
the effective interaction in a quantum-mechanical
fashion.

For better comparison to experiment, it would
be advantageous to repeat Hayfield and Reif's work
over a broader range of temperatures and concen-
trations. Second-sound experiments' ' could also
be done in the presence of impurities. A rough
estimate for the second-sound coefficients yields
8=land 8'= |0.2l when'&10 'andT 0. 5'K the
exact values depend on the model used to describe
the spatial variations of p, .

VI. T-MATRIX FORMALISM

General Results

The purpose of this section is to develop a T-
matrix formalism to describe the quantum scat-
tering of a quasiparticle from a rectilinear vortex
in a superfluid with constant p, . The results will
be applied to He impurities and to the quasipar-
ticles of pure He (phonons and rotons).

The quasiparticleis assumedto be stable against
decay and have a state vector ) @(f))satisfying the
Schrodinger equation

4—
C i—-I 4t =0. (61)

-(0 -8

$n( f/2)

-2

FIG. 2. Behavior of g~ for the classical constants as
a function of ln(2$), where f = (2m*k&Tb )' and T&«T
&1'K. Curves 1 and 3 are the results for models (i)
and (ii) (Sec. IV); curve 2 is the result for constant p~
(Sec. III). E = cI', c = 237 m/sec, (62)

A 5-function normalization is chosen correspond-
ing to one particle per unit volume. The Hamilto-
nian II consists of an unperturbed part Ho and an
interaction V. The unperturbed energy spectrum
for impurities is given by Eq. (2). The energy
spectrum for a quasiparticle of pure He' has been
measured experimentally. ~' The regions of the
spectrum most important for thermal averages
occur for/&0. 75 A ' and P=1.9 A . In the
former case,
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The potential V for impurities is assumed to be
given by the appropriate part of Eq. (4). For the
quasiparticles of pure He, the interaction is tak-
en to be a symmetrized5 ~ v„ this choice would
result from a Galilean transformation on Eq. (61)
Rnd 18 conslsteQt with exlstlng wolk on phonon-
vortex scattering. " ' Any interaction among the
various quasiparticles themselves is neglected.

The details of the scattering process are as fol-
lows. Initially the quasiparticle has momentum
P, and energy E;(P;); its time-independent state
vector I e,(i)& satisfies

(a, z)ie, (-i)) =0. (66)

As time progresses, the quasiparticle interacts
with the potential and is scattered into a final state
with time-independent state vector 14'0(f)). The
scattering may be studied by using the Lippmann-
Schwinger equations '

)e'(i)& = ~q, (i)&+(E;-H ~i~) 'vlq"'(i)&

= ~e,(i)&+(E;-H~ie) 'Vlqo(i)& (66)

which follow from (61) and (66)
[@+(i)) and [@ (i)) are the time-indePendent Por-
tions of the state vectors that develop in time ac-
cording to the full Hamiltonian II, but equal

l@0(i)& in the remote past and distant future, re-
spectively.

It is not difficult to show from Eq. (66) that the

differential cross section do&; [probability per unit

'tlnle peI' 111cldellt flux fol' a 't1'aIlsltloll fI'onl )'ko(i))
to l4,(f))] is

d „.=2 e(z, z,.)', ' ~r„~'-, (ev)

where T&, =(4'0(f)
~
T (E,) ~@0. (i)&

and T(z)= V+V{E—Iio+is) 'Z'(Z).

(68)

(69)

Consequently, do&; is known when the energy-shell
values of the T matrix (values for E, = E&) are de-
termined. The matrix elements T&& satisfy the in-
tegral equation

Tq, = Vq, + (211) ' f Vq, (Z, —E„+i&) IT„, (VO)

which results from (68) and (69). The symbol f
represents a sum and integration over the discrete
and continuous variables of [40(k)&. It will be as-

and the quasiparticle is called a phonon; in the
latter case, the quasiparticle is called a roton and
has an energy spectrum

E=a+(2iI) '(P —P,)',
with constants

b/ks=8. 6'K, p/m4=0. 16, Po= 1.91 A ', (64)

sumed in this section that the spatial representa-
tion of j4'0(k)& is the plane wave

(%le,(k)) =exp(iR P, ) . (Vl

As was seen in Sec. III, this assumption is not
strictly valid; a quasiparticle always feels the
presence of a vortex and its incident state is mod-
ified correspondingly. However, identical scat-
tering results CRQ be obtRlned by using plRne-
wave states and summing resulting partial-wave
series in an Abel sense.

At times it is convenient to determine T&& by in-
troducing the 8 operator and its matrix elements

Ii(z) = v+ pv[v(z —a,)-'z(z)],
z„=(q,(f) ~ff(z)

~
e,(i)) .

(V2)

(Ve)

Sf1 211e(pgf pg1) Sfg(pf ~ pf & pgl & )() &

Sq, = (211) 'Z„e'""S„(p~,p„p„),
(ve)

(vv)

where 8 represents T, 8, or V. The scattering
angle y is P&

—Q, . The spherical and cylindrical
components of P are denoted by (P, 8, Q) and (p,
p, p, ), respectively. With definitions (V6) and (VV),

The symbol PV implies a Cauchy principal value.
The matrix element B«satisfies the integral equa-
tion

If~, = VgI+{2w) PV f Vy1,(E1 —E1,) 'B~„(V4)
and is Hermitian provided E& =E&. The quantity

T&; is related to 8&& by the Heitler equation

T„=If„i~.(2v) '-f If„e(-Z, Z, ) r„,,-(Ve)
derived from (VO) and (V4).

The energy-shell values of T&; may also be
found indirectly by examining the asymptotic be-
havior of the spatial wave function (R14 ') for large
R; this usually involves solving the integral equa-
tion for (R!4") resulting from (66). However
when IIo is a quadratic function of momentum, a
differential equation for the wave function may be
obtained by operating on both sides of (66) with
E; —Ho and replacing P by —iV; this latter method
w Rs the approach used in Sec. III.

The remainder of this section is concerned with
determining T&, by integral equation (V4) for 8«.
(In general, perturbation theory will not be valid. )
The principal disadvantage is the necessity to find
all the values of T&; in order to obtain the desired
energy-shell values. The analogous difficulty in
the wave-function approach is the need to know
(R

~
q ') for all R although only the asymptotic form

contains the 8CRttex'lng information.
Consider quasiparticle scattering expressed in

the Preferred coordinate system of Sec. II. Using
the fact that V is independent of z and expanding in
partial waves, one may write



The sum over k in (V9) is over those states where

E;(P;,P„) equals E»(P», P„). The density of states
'gp ls defined as

P» sE
-2

Note that (78) is an integral equation for R in
variable p& while (79) is a set of algebraic equations
determining T in terms of 8 .

The potential V is a linear combination of a sym-
metrized P ~ v, and —,

' nz*v, . The partial-wave ma-
trix elements for V may be evaluated using plane
waves (71) in which case

v-(Pg P») = »'z(p&/P))g»

x [o!s+z(o.'s —&2) /7m~/m] sgn(m) . (81)

Here sgn(m) is m/1m I, and (p&/p))&» is the ratio
of the lesser of the pair (p» p, ) to the greater.
For impurities, n, and o.2 may take values (5)—(7)
for phonons and rotons, it is assumed that n, = n~
= 1. The partial-wave potential for nz = 0 is inter-
preted as the limit of (81) as m-0 from positive
or negative values.

As a function of momentum, the quantity

V„(x, x')[x=P&/P; x' =P»/P;] has a, discontinuous
slope

dy x, +6

lim
Q dX g& 6

=-2lml v„(1, 1) (82)

at x= x and satisfies the differential equation

[D(x) - m'x-']V (x, x') = -2l m
l V.(1, i)x-'5(x-x'),

(88)
with boundary conditions

V.(x, x')-o, as x-o, -,
V (x, x') continuous on 0 —x —~ .

(84)

Here D(x) is differential operator (12). The right
side of (83) is equivalent to slope discontinuity
(82).

Using (83) and operating on (78) with [D(x)
—m'x '], one finds that R„(x) satisfies the differ-
ential equation

(D(x)-m x +2lmlv. (1, 1)(2~) P;[E;-&y(x)] ]
x«(x) = —2 lm I v.(1, 1)5(x-1) (85)

with boundary conditions analogous to (84). The
determination of 8 has thus been reduced to the

it follows from Eqs. (74) and (V5) that

R (P~, P;, P„)= v (Py, P;)+(2&)»f P dP

x«V (P, P )(&; &)-'R (P, P, P, ),
(Va)

T„(pq, p ), p„.) = R (pq, p, , p„) —iz Z»'f]»

xR„(py, p» p;) T~(p» P; P»;) (79)

Consider impurity-vortex scattering. Since E,
is a quadratic function of momentum [Eq. (2)], the
substitutions

y=x', I, (y)=x' "R„(x), y=l+ lml,

P=»(lml —~ ), o'=y-P —1, ]'„=(m+v)' —s]',
(86)

reduce the homogeneous part of (85) to the hyper-
geometric equation~~

o0 v)o„]~ -(~ o—~ ~)s]„--~o)I.„(o—)=o.

(87)

When n —P = v is real, the boundary conditions at
zero and infinity require

R„(x)=~,x'-'F(~, p, y; x'), O= x= 1

=A„x' F(c], —P, n P+l, x '), -1~x~~, (88)

where for l z I & 1 and y, neither zero nor a negative

integer,

F(n, P, y;z)= Z — ',~z', (n), =- . (89)(o])((P)~, &(o.+f)

Here 1'(o,) is a, gamma function with argument n.
If v is imaginary, the boundary condition at in-

finity does not specify a single solution for R„(x)
on the interval 1~ g~~. Thus, just as in Sec. III,
a capture assumption is invoked for those values

of m where v is imaginary.
The continuity and discontinuity of R (x) at x = 1

determine constants Ao and A„. To apply these
conditions, it is necessary to know the following

analytic continuation which holds for y- n —P= 1»~:

&(o.)1'(P)F(o', P, y' z)

=1(y)(1 —z)g(1+p, 1+ n, 2; 1 —z), (9o)

where for larg(1 —z) I &z and n and p neither zero
nor a negative integer,

(1 —z) g(l + p, 1+ o., 2; 1 —z) = (c]p) '

solution of a differential equation in which R„(x)
behaves like a Green's function. To find R (x),
it is necessary to know the homogeneous solutions
of (85) in the regions between the singularities.
(The differential equation has at least three singu-
lar points 0, 1, and ~. ) By applying the boundary
conditions at zero and infinity and the appropriate
continuity and discontinuity conditions for R~(x)
at each singularity, all arbitrary constants may be
evaluated. However the method requires knowl-

edge of the analytic continuations of the homoge-
neous solutions between consecutive singular
points„ this information may be difficult to obtain.

Impurities
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p (1 )»y» (1+n)»(1+ p)» [@(I I)
(2),l t

+ 0'(I + P + l) —4(2+I)- 0 (1+l) + ln(1- z)]. (91)

The quantity 4'(z) in Eq. (Sl) is the psi function~8

@(s)= &'(z)/&(z) = e(I+a)- s ' = e(I- z) —
»» cot z .

(92)

In particular, one finds for 0 ~ g ~ 1,

R ( ) =R„(I)[&(I+ )F(I+P)/F(r)] "'F(, P, r; ')

=R (1)nPx'" (1-x2)g(1+P, 1+n, 2; 1 —x ),
(93)

and for 1~x~~,
R„(x)= R.(I)[r(1+n)r(l-P)/r(1+n —P)]x' "

x E(n, —P, 1+n —P;x ~)

=R„(1)nPx~ '(x '-l)g(I-P, 1+n, 2; 1-x '),
(94)where R„(l)= -(»r»)» ) 'tan6„,

6 =vp= —,'v(ImI —» ) . (95)

From a scattering point of view, the only value
of R„(x) needed is the energy-conserving matrix
element R (1). It then follows from (VS) and (95)
that the corresponding T-matrix element is

T (p„p„p„)=(-»»»)») 'e"~si n5„. (96)

Consider a quasiparticle of pure He . It is im-
possible to solve (85) in closed form. One obvious
reason is that E&(x) is a function of (x + cot28»)'~.
known only graphically except near the phonon and
roton regions where analytic forms (62) and (63)
may be used. Further, when the initial energy ex-
ceeds the roton minimum ~, there are three dif-
ferent momenta solutions for E» =E&(x) (there are
three scattering channels that conserve energy)
and differential equation (85) has five singularities.

One possible method of approximation would be
to define a Green's function r (x, x') having the
same boundary conditions as R (x) and satisfying
a dif ferential equation

H(x)r (x, x') = —2
I
m

I
V„(l, 1)x '6(x- x'), (9V)

where H(x) is some differential ope ator. Equa-
tion (85) can then be expressed as a integral
equation

R„(x)= r„(x, 1) + f x' dx'r„(x, x')

Equation (96) is consistent with scattering ampli-
tude (16) and phase shifts (26) [see Eqs. (38), (6V),
(76), and (V7)].

Phonons

H(x) =D(x) —m'x '+2ImI V (1, I)(2»»)
'

x [a,(l-x')-'+h, x-']. (99)

Here h, = 2P& = 2c P, ,

g 8P» 8(P, '8E, /8P, ),
ha —2 san 8]J')

BP]

= ——,'c 'P»(sin'8»). (100)

With this approximation, the resulting equation for
r (x, x') is identical to the impurity differential
equation provided n, P, and p are redefined. In
particular, to lowest order in perturbation series
(98), one finds that R„(l) and T„(l) are given by
(95) and (96) where now

5m 2P sgn 8@
m7 —m 7 +Km

& = 2h, (2»») V (1, 1) sgn(m) = 2P»»»c ',
r'- I = -2l, (2v) 'V.(1, 1)/Im I =&sin'8»/4m,

q, =(2v) 'P, , ' -=(2v)-'P, c-'.8

i

A unique solution is again possible only if 7' and
are real (capture must otherwise be assumed);

for phonons this requires that X must be less than
1, or for a singly quantized vortex, P, be less
than 0. 75 A '. The thermal averages of interest
will require scattering results only for very small
P» and Eq. (101) may be assumed to hold for all m
and P) ~

The frictional force (36) is the quantity that
must be calculated to compare theory to experi-
ment. Using (6V) and (V6), and introducing the
complex notation E„one finds to lowest order
in g

&& [2Im V.(1, 1)] '(D(x') -m'x' '+2lml V.(1, 1)

x (2»») p,[E, —Ey(x')] ' —H(x')'fR„(x ') . (98)

The trick is to choose H(x) so that (98) may be
solved by interation and, to lowest order, R„(x)
= r (x, 1). For impurities, H(x) was chosen so
that the parenthesis in (98) vanished; in this case,
R (x) is identically equal to r„(x, 1). For a quasi-
particle of pure He, the problem is more diffi-
cult.

Consider phonon-vortex scattering (P, & O. V5 A ').
The only scattering channel of importance is the
direct channel P&=P,. (If E, &~, the direct chan-
nel is the only channel. ) A good approximation
for the energy-conserving 8 -matrix element
should thus be obtained by expanding the energy
denominator in (98) about x' = 1 and setting
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P, = N—L»»(2»»)
' P, dP, d(cos8, )

0 -1

P» o,(P„sin8,),BE]
BP)

where P»o, (P„sin8») = (2»»)z

(lo2)

&&~» f dX[I —(f Ij;)e*"]n»n»l&»» I' (1O3)

P,a,(P», sin8») = i sin—45,„
[1 ez»(zm-6 m+1»] (lo4)

The phonon contribution to the frictional force may
now be evaluated using Eqs. (101)-(104)and the
phonon distribution function [exp(cP»/k»»T) —1] '.
When T is sufficiently small, the main contribu-
tion to F, comes from small momenta. Thus, 5

and o,(P», sin8, ) may be expanded in powers of X,

and F, expanded in powers of z'= 2nk»»T/m»c'. The
lowest-order expressions are then

6 = ——,
'

»»X sgn(m), m»»0
(lo5)

= 0, m=0,

P»»7, (P„sin&,) = (-,'»»~)' —z(-', w&)', (106)

The sum over k in (103) is over the energy-con-
serving states. The quantity z)» is density of states
(80).

In the direct-channel approximation, the com-
plex cross section (103) may be expressed in terms
of phase shifts (101). In particular, provided the
divergent part of the T matrix is summed in the
Abel sense before insertion into (103), one finds

celed by the first term in Eq. (104).
Finally the theoretical expression for Re(F,) is

found to be consistent with Hayfield and Reif's
work provided the density effect of Iordanskii is
considered. No data are available for the phonon

contributions in second-sound experiments; it is
extremely difficult to propagate second sound for
T &1 'K unless impurities are present.

Rotons
0

Consider roton-vortex scattering (P, = 2 A ').
Even an approximate solution to (98) is difficult.
The principal reason is that when P& lies in the
roton region, the equation E» = E&(x) has three so-
lutions corresponding to the energy-conserving
channels:

Py=p]

indirect roton channel P& = 2PO —P; (109)

indirect phonon channel P& = c i[6+ (2 tz) '(P»-PO)z].

These channels give rise to a complicated singu-
larity structure in any resulting integral or differ-
ential equation. Some simplifications result: The
phonon channel may be neglected since it is far re-
moved in momentum space from the initial roton
channel; also the calculation of thermal averages
will require the scattering results only for P,
very close to Po.

The principal scattering is thus confined to two
channels. It is convenient to express the energy-
conserving 8 and T„m tari xelements (four each)
in terms of two phase shifts 5 and 5' and a mixing
parameter 4 . ' In particular& with

0(5) . L(6)
F» »z»Lpn&»»»» 5z'-&(4) -z15»zr

&(4)
(loV)

& (j,k) =(zt») &~(j, k)(zt»)', j, k=1, 2 (110)

one finds

The quantity

p„»=4»» zc '(ksT)»f(4) (106)

is the phonon contribution to the normal fluid den-
sityz and L(n) isthe Riemann Zeta function of order
n. zo A calculation of the corrections to (105)-(107)
indicate the lowest-order expressions are good to
lo%%uo when T & 0. 6 'K.

In comparing the direct-channel results for pho-
non-vortex scattering to those previously obtained

by other individuals, one finds agreement with

Refs. 12 and 13. However, in Ref. 14, Iordanskii
finds two important corrections to (105) and (10V).
The first occurs because density variations of the

superfluid near the vortex core significantly alter
the m =+1 phase shift; this effect decreases E, by
about a factor of 2. The other correction is the
addition of an Iordanskii force —iuLp„a onto ex-
pression (10V). The reason this latter contribu-
tion is not obtained in this paper is that it is can-

—»zB~(1, 1)=cos C~tan6 +sin C tang',

—»»B„(2, 2) =sin C„tan6„+cos @ tan6„', (111)

—»»B„(l, 2) = —»zB (2, 1) = —,
'

sin2C „(tan6 —tang'„).

Here the indices 1 and 2 refer to the channels
P &Po and P &P~, respectively. Further, g~ is the
roton density of states (2»»)

'
»» t)» I ', where $»

= (P„—Po)/P». For P» very close to Po, the quan-
tities g, and q, are equal. Similar expressions
exist for T except that tan5 is replaced by
exp(i6„) sin6

For sufficiently large )m ), the scattering should
be semiclassical and the direct channel should
dominate. The approximation used in the phonon
case should be valid and analogous phase-shift ex-
pressions can be obtained. An order of estimate
for the correction terms in (98) indicates that the
direct-channel results are valid for rotons pro-
vided the parameter
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(op = (1s ( )))csc8p Xp ) ])p= 2/K (112) XI&ll) Pit [Z Z (2)] —fly))R (x )

r,'= 1 —sgn(m) up(4P„~, )-' . (114)

The remaining problem is to determine an ap-
proximation for R (x) that includes the effects of
both scattering channels and is valid at least for
v~ & 1. Perhaps the most direct approximation
[0($) & 8& & v —0($)] is obtained by expanding the en-
ergy denominator in (98) about each singular point
and setting

Jf(x) = D(x) —m' x-'

—&pm csc'8,(x- 1) '(x- x,) '.
Here x, is 1-2),cscP8, . The resulting differential
equation for r (x, x') has four regular singular-
ities (0, 1, x;, ~) and is of the type originally stud-
ied by Heun in 1889.33 Unfortunately, there is in-
sufficient information of the analytic continuations
of the solutions to this differential equation to de-
termine a useful expression for r (x, x'). Some
progress can be made by expanding solutions in
terms of hypergeometic functions. However,
if this expansion technique is used, it becomes
necessary to evaluate infinite series that converge
very slowly, thereby rendering the procedure in-
applicable.

An alternate method for determining R„(x)
arises from the fact that for g and g' close to 1
and x&, an adequate representation for potential
(81) is

1' (»x)=I' (»1)exp[- I~l lx-x'I] (»6)
Actually, (116) is only valid provided & I m I (x -x')
is much less than 1. However if —,

'
I m I(x —x') is

greater than 1, both (81) and (116) are negligible.
One would thus expect (116) to give the dominant
behavior for R„(x) close to 1 and x, . [There is
one restriction arising from the Hermiticity of
V„and R; when (116) is used, the Hermitian
property is only preserved for P, close to Po.
However since thermal averages will only require
results for P, close to Po, this difficulty is of no
great importance. ]

With potential (116), the corresponding R ma-
trix elements satisfy the integral equation

is greater than 1. The corresponding phase shifts
may be simplified and one finds

= —v]).p sgn(m)/4r, ( &J, (113)
t]'„=—vXp sgn(m)/4v', ( $p(, C „=0,

where r„(x, x') is the solutionto the differential
equation

ff(x)r (x x') = - 2(~ I
1'.(I, I)6(x-x'),

with boundary conditions

r„(x,x')-0, as x-+~
r„(x, x') continuous for —~~ x~~ .

(118)

(119)

Equation (117) is derived in a manner similar to
that used to derive (98). The direct-channel limit
for large ]m1 is found by setting

d 2 2 Rom
2 ' —

2(,(.-l) (120)

6' =6 =-X [Q(p) )]

x ln (4[@(~,)]"'/e~ ],
1@'m= 4& ~

fl(~p) ——.&p]p +&p+. ~p —
pp ~p.2 -2 j 2 g 3

(122)

m&0,

(123)

It is immaterial in (122) and (123) whether k is 1
or 2; only lowest-order results are of interest.

Figures 3 and 4 show how 5' varies as a func-
tion of co, . The phase shifts and mixing parameter
are given by (113)when vp &0. 64 (m positive) and
p) p

& l. 0 (m negative); for the other values of p) p,

Eq. (122) is used. Near ep =0. 64 (m positive) and
&op= l. 0 (m negative), the various approximations
break down; the mixing parameter decreases from
4n to 0 in this transition region.

It is convenient in the roton problem to express
frictional force (102) in the form

The resulting differential equation can be solved
(confluent hypergeometric functions) and gives re-
sults identical to those of Eq. (113).

Both channels may be considered by choosing

2

a(x) = - m'-] pm csc'8,(x- 1)-'(x-x,) '. (»I)
d

By appropriate substitutions, the resulting equa-
tion for r„(x, x') can be reduced to the spheroidal
differential equation. 3' ' Sufficient information
is available on spheroidal functions to determine
the phase shifts and mixing parameter as an ex-
pansion in v~, valid when co~ is less than 1. In
particular, after much algebra, one finds for P,
close to Po

6'„=6„--',v =-,'v--,'xXp(], (
'[- A(-~,)]"', m &0,

R„(x)=r„(x, 1)+ dx'r„(x, x')
Eq = QLp~ vg((T~) ) (124)

d2
x [2(m(V„(1, 1)]-' „"„-m'+2(m(V„(1,1)

where p« is the roton contribution to the normal
fluid density
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Ia =f)m
b=&mI

c=ftm
d=3 I

to 2~ order

to I" order

to 2"4 order

to 3'4 order

fof tel large

for te small

for jul small

for a1, small

g= —0. 60 —1[)&o (X 8+ —) ],
( )

g, =- —', -'(I [-,'8'$, ) (),csc'8, --,')"'p.

FIG. 3. Behavior of the roton-vortex phase shift P~
for positive m. For a roton vrith initial momentum

P]= (P;, |I);, ft);) greater than I'0, and energy E) ——&+(2p)
x (P; —Po), the parameters are +=2@7,4= (P, —PD)/P&,

and u~ = tm ) I $;csco. J2/Q.

p„„=-', (2 ) "'P,'(p/k T)"'e p(- n/k T), (125)

and v~ is the average roton group velocity

t, = (2',T/)1m)"'. (128)

The quantity (o,) is given by

(o',) = &f &xexp(-x)( 1+x/ ox)'I xlf' d(co88)

i,O

,8—

I
a = &m

c=&mI

d'&mI

to 2"4 order far a11 large

to I" order for 14 small

Io 2"' order for wl small

to d' order for tet small

&& sin'8 o,[(2)1ke7)"'(x+x,), sin8j, (127)

where x, =P,(2)1k'') '~'~11. 757 ' ', and fo»1
close to I'„

P,o,(P„sin8, ) = (2w)'

x f,
"

d()(I—e*")[l&il()()I'+ I&1a()() I'] (»&)

The quantity go is large for 0. 5 K &T&1.8 K.
Thus within this temperature range, one may ex-
pRlld ((Tq) 111 powel'8 of xe Rlld oq(Pr, sln81) 111 pow-
ers of (&. (This is why it was only necessary to
find the scattering results as P;-Pe. ) Using the
various expressions for the phase shifts and mix-
ing parameter, and converting certain sums to in-
tegrals, one finds

Pea, (P„sin8, ) =2+-,'ll Xecsc 8,(g, +ga) —itrXe)1',
(120)

The thermal average (o,) can also be calculated.
For a singly quantized vortex in the temperature
range between 0. 5 and 1.8 'K,

(o,) = 5. 'IPs' —i'm, '= (3 —lli) A.

Also, E,=uLp~lt(3 2x,.' —i) .

(131)

(132)

If (132) ls coIllpR1 ed to 'tile tlleol'etlcRl 1'eslllts of
Lifshitz and Pitaevskii, M it is found that Re(E,) in

(132) is about four times larger than that in Ref.
10; the Im(E, ) in (132) agrees in magnitude when

the Iordanskii force' is excluded but not in sign;
when the Iordanskii force is included, Ref. 10
gives Im(E, ) = 0. The work of Ref. 10 is semi-
classical in nature. If one would use the semi-
classical lowest-order direct-channel results ob-
tained in this paper, one would find that Im(E, ) is
zero. Rayfield and Reif's work indicates that

Re((o,)) is about 8. 4A; Lucas's analysis of second-
sound dataa gives Re((o,))= 11 A and Im(((r, ) )

—5 p, .
One thus notes that the theoretical results do not

exhibit close agreement with experiment. Improve-
ment could perhaps be made by using better ap-
proximations to calculate E, (sums were converted
to integrals). However, the roton-vortex inter-
action may not be a symmetrized P v, and the
structure of the roton may a].so be important. A

theory which is less phenomenological is needed.

VII. CONCLUSION

The model presented in Secs. II-V to describe
impurity-vortex scattering gives results consistent
with Rayfield and Reif's limited experimental data
provided spatial variations in the superfluid den-

sity are considered. The model lies between a
classical and many-body theory. The T-matrix
formalism of Sec. VI gives results consistent with

those of Sec. III in the ca,se of impurity-vortex
scattering. For phonons, the results agree with

existing theoretical and experimental work, ex-
cept for the question of the Iordanskii force. In
the case of rotons, there is apparent agreement
between existing theories, but not experiment; the
discrepancy could be due to an incorrect roton-
vortex interaction and a neglect of roton structure.
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APPENDIX A

Consider the Bohm-Aharonov wave function

11)(& X) P e»m»X+r)e- »rim+ v»/2Z (P»,) (Al)

obtained from (15), (18), and (19). Since (A1) con-
verges for all X, Abel's limit theorem ~ can be
used to express IC)(4, X) as the limit z-0' of

Ii)(r, ReX, e) =g, (2, X, v, m»))

+ q, (2, —2v-X*, —v, -m2 —1), (A2)

x e(ReX —2ws+II-e')e(21»s-ReX-e ),
(AV)

where the sum extends over all integers s. The

quantity a' is a small constant that vanishes when

e 0' and e()») is the step function

e(x)= 1, x)0
e(x)= o, x&0 ~

(AS)

Using (A2), (A7), and the symmetry of C2 and C2,
one finds

where

(Z X, V, m ) —Z e»mX e»r(m v)/2g-(2) (AS)
~+1

The integer mo is defined by the inequality —1
~mo+v&0 while z=px and X=ReX+i&. The + in
Eq. (A2) denotes complex conjugation.

Equation (AS) may be explicitly summed by using
the integral representation

(2) (2V) 1f e-»s s»vs e»vs dy (A4)
1

where C1 is the complex contour illustrated in

Fig. 5. In particular,

Ii) (2, X, v, m ) = f I»(X, »P)d»P, (AS)

&
& (mo+1) (e+x ~ /2)

e-»ss»ss e»v»V r/2)-
X, ~ y 2

& & i &f(»I2+X+ffl8)

(AS)

C, is deformed into contours C2 and C, (see Fig.
S; contour C2 is symmetric about »p = ——,)1 and C1
is symmetric about »p = —2»I'), Eq. (A5) becomes

Ii) (2 X v m ) f I»(X»P)d»P +Q e»scvsx ev »Nr-sxr
Cps C3

-»CO

FIG. 5. Complex contours used in an evaluation of
the Bohm-Aharonov wave function. The contour C& goes
from —m +i ~ to —n. to ~ to 7(+i ~. The contour C2 ranges
from —Yt + i ~ to —i ~ and is symmetric about ft) = —2 m.

The contour C3 goes from -i ~ to ~+i ~ and is symmetric
about ft) = 2' ~

gsv(), X)=(2»/) 'Sin(IIV)P. V. f dc e»svvso

X eave&~™0+1/2)(X+I CSC j f~+ (All)

(A12)

f(p, X) =(2))p) "'e»»" ») '"""sin(I)v)(csc-,'X),
Xo&X &»-Xo

(AIS)

f(p, X)= (2)»p) "'i(2m2+2v+1)sin(»»v), X =0, 2»I.
(A14)

The quantity X») is (S/p) )'/2. Thus as long as X2
&X &2& Xo

II)(r, X)-e»" ' x)e»N'Si1 1/2f(p X)e»»»
— /4) (AIS)

where f(p, X) is given by Eq. (AIS).

APPENDIX 8

Consider the scattering amplitude (0 & X & 2v)
obtained from Eqs. (21), (24), and (2S). In this
case,

Here P. V. implies a Cauchy principal value, the
symbol »)v 2„ is the Kronecker delta, and 4=Q+m.

The quantity g„(x, X) may be evaluated by the
method of steepest descents when z is large, in
which case for 0 —X —2m

&-)/2f(p „)e»»rr r/4)-

y(4', x) =q„,(r, x)+y,.(r x)

Ii)„,(r, x) = Z, e""'" cos(IIV) ex „,
&g coIX&&v(2rs-X-t)+~s

&& e(X- 2»/s+ 2v)e(2)»s- X),

(A9)

(Alo)

(21/p)' f(p, X) = e" 2" '" sin(1»v) csc(—,'X)

I
e»m»X-r)[e-»rvm e-»r»mvvlj (al)

where v„= [(m+ v) —402]'/2, the prime indicates
the sum is only over those values of m where v
is real, and mo is defined by the inequality —1
~ m»)+ v &0. Since m equals (angular momentum)/



@, the summation in (Bl) may be replaced by an
integration in the classical limit (g-0) provided
the phase is slowly varying; this latter require-
ment may be obtained by adding 2vms (s an in-
teger) to the phase in (Bl). 'o Thus, for each s,

j d l2sms

x[(2e-1+ X/m) -I] e'~'""', (B3)

(B4)+ u mj(2s —l + y/v)' -l]"'.
The classical differential cross section is thus

The method of stationary phase may now be used
to evaluate (B2).4' For every s 40 (there is no

stationary phase for s =0), the dominant contribu-
tion in (Bl) and (B2) comes from the factor
exp(-Arv„); in this case, it is not difficult to show

that

(2') f(P y, s) = (2so)"'

dx geo

= (vP) 'gg Q t'(2s —l+g/v)' —l] ' '. (B5)

Equation (B5) agrees with the differential cross
section found from classical theory when the scat-
tering angle lies between 0 and 2m.
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