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Spontaneous emission from a system of N identical two-level atoms is considered using a
master equation recently derived by the author. The master equation describing the' time
evolution of the phase-space distribution function associated with the reduced density operator
of the atomic system is obtained. This master equation, which is of the type of a Fokker-
Planck equation, is used to derive the equation of motion for the mean values of various atomic
operators characterizing the physical properties of the system. This leads to a hierarchy of
equations, which is decoupled by making a suitable approximation. The intensity of the spon-
taneously emitted radiation is then calculated. Next, , the spontaneous emission from geometri-
cally sma11 systems is considered. For this case, the master equation is solved exactly, and
an exact expression for the radiation rate is obtained. The exact solution of the master equa-
tion is also used to calculate the normally ordered correlation functions for the electric field.
Section V deals with the spontaneous emission from a system of harmonic oscillators, the
size of the system being small compared to a wavelength. The master equation for this prob-
lem is also solved exactly, and itis shown that this system also leads to superradiant emission
in some cases, e.g. , if all the oscillstors are excited initially to some coherent state ( zp).

I. INTRODUCTION

The problem considered in the present paper is
the one studied by Dicke in his classic paper. '
Dicke calculated the radiation rate and the angular
correlation of successive photons emitted from a
collection of identical two-level atoms or mole-
cules. He found that under certain conditions the
radiation rate is proportional to the square of the
number of atoms. This coherent emission of radi-
ation is known as superradiance. This problem
has regained interest only recently because of the
experimental observation of some interesting re-
lated effects such as self-induced transparency
2nd photon echoes. ' In these experiments, a sys-
tem of optically resonant two-level atoms was em-
ployed. This particular problem of superradiance
has also been recently analyzed by Eberly and
Rehler, ' who obtained the radiation rate for spon-
taneous emission and its angular distribution.
Their treatment is valid both for small systems (a
system whose size is small compared to a wave-
length) and large systems.

Another interesting problem which is related to
the above is the interaction of N two-level atoms
with one mode of the radiation field. Exact solu-
tions to this problem have been obtained. The
work on this problem has been mainly concentrated
on the calculation of the eigenfunctions and eigen-
values of the total Hamiltonian.

In this paper we reexamine Dicke's problem by
using the master-equation approach. Our treat-
ment is valid both for small systems and large sys-
tems. For small systems, we have been able to
obtain the exact solutions and have calculated the
radiation rate and some of the normally ordered

correlation functions. For large systems, an ap-
proximate procedure is used to calculate the inten-
sity of spontaneously emitted radiation. The ad-
vantage of our method lies in the fact that one can
clearly see the nature of approximations made at
each stage of the calculation and how to improve
upon them.

Our discussion is based on phase-space methods
which have been recently developed. ' In particu-
lar, the method of Ref. 9 is the most relevant one,
because there we have developed the basic frame-
work for the discussion of problems like the one
under consideration. Equations (4. 36) and (4. 37)
of Ref. 9 are the starting equations for our present
analysis.

In Sec. II, we consider the spontaneous radia-
tion from a system of N two-level atoms. We
obtain the master equation satisfied by the phase-
space distribution function associated with the re-
duced density operator corresponding to the atomic
system alone. The master equation is then used
to derive the equation of motion for mean values
of various atomic operators which characterize the
physical properties of our system. It is shown
that, in general, one obtains a hierarchy of equa-
tions. In Sec. III, this hierarchy is decoupled by
making a suitable approximation, and the intensity
of the spontaneously emitted radiation is calculated.
This result is found to agree with the one obtained
by Eberly and Rehler. In Sec. IV, spontaneous
emission from geometrically small systems is con-
sidered. The master equation for the reduced den-
sity operator is solved exactly. The exact solution
is then used to calculate the radiation rate. Finally in
Sec. V, spontaneous emission from a system of
harmonic oscillators is considered, and it is shown
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that this system does lead to superradiant emission
if all the oscillators are excited initially to some
coherent state IZO).

II. MASTER EQUATION FOR THE ATOMIC PHASE-SPACE
DISTRIBUTION FUNCTION

Q [g»z„n pe 0 as +cc],k(CO - fa) ) t

ksg

where the following mapping relations have been
used:

aas as 2 J p i 1 (2. 6)
In this section, we shall derive the equation of

motion obeyed by the phase-space distribution func-
tion associated with the reduced density operator
corresponding to the atomic system alone. The
Hamiltonian, for a collection of N identical two-
level atoms interacting with a quantized radiation
field, can be shown to be given by

a=~, Z S;+Z~„,a,', a„,+QP(S,' ag», +H. c. ).
/=1 0s

2. 1)
In deriving (2. 1), the nonresonant terms have been
ignored (which is the rotating-wave approximation).
Here ~0 denotes the energy separation of two atomic
levels, a„, and a~„are the usual boson creation and
annihilation operators associated with ks mode of the
radiation field. S&"' are the components of the spin
angular momentum operator associated with jth
atom. " g», is the coupling constant and is given by

:1+0 2wc 11/2

g», = — .
I.s ~t,

e
'

s(ea, d), (2. 2)

8) = s (vg vg —ug ug)2 Sy uy v)2
g 1

S& = v&u&,

(j =1, . . . , J)l) (2. 3)

where R& is the position vector of the jth atom and
d is the dipole-moment matrix element. All other
symbols have the usual meaning. In order to obtain
the equation of motion for the phase-space distribu-
tion function, we will express the spin angular mo-
mentum operators in terms of boson operators.
This can be done in several ways. We will use the
Schwinger's coupled boson representation. ' In this
representation, one has

Since we are only interested in spontaneous

emission, the radiation field is taken to be in the

vacuum state at t = 0. The normally ordered equi-

valent

&'"'({za.], {za.}, O)

of the density operator for the field at the initial
time is given by'

(2. 7)

In this case one can easily show that the matrix I'
defined by Eq. (G4. 37b)'3 reduces to

«4 GO (t«'P)

(o o
(2. 8)

The operators S~~" and S~, which are defined by
Eqs. (G4. 35a) and (G4. 35b), respectively, are
given by

Bn, Bny BP, BP,*
(2. 9)

(2. 1o)

The subscript S on these operators denotes the fact
that these act only on atomic variables. Then, by
straightforward but quite lengthy calculations, we
may show that Eqs. (G4. 36) and (G4. 37) lead to the
following equation of motion for the normally ordered
equivalent E'e+({n&], {nf); {p,]; {ps']; t) of the re-
duced density operator:

where u& and v& are two sets of boson operators
satisfying the commutation relations BI', '(t) g (g)()

S 8 r (2. 11)
[uJ, ua] —[Vj, Va] —5», (2. 4)

where
and all other commutators vanish. From now on

we will work in the interaction picture. The inter-
action Hamiltonian in the interaction picture is
given by

Hl(t) = ZZ (g„,a„v, u, e""0 "as" + H. c. ), (2. 5)
ks

where use has been made of Eq. (2. 3). We will
also work with the phase-space distribution function
which is obtained from the density operator by using
the normal rule of mapping. ' lt is evident that the
normally ordered equivalent of (2. 5) is given by

8 8 2S BpSc

(p, p*, n, ~,'"')-. . . (p, p,*~', ))
9 cog 9(Y ~ 9 Qg

92
c (c'2;Sc ) c.c). t2 12)

BP) Bn)

Here the coefficients y;& are given by

y&~
= (2 ~,'/ )))(1/c2 )' 1 )d)% exp [s% ~ (R, —R~)]
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[~d ~'-(~d k~'/&')] [~(IIc-«o)/&] (2. ia)

In deriving (2. 11), we took the limit I,'-~ and have

made use of the Markovian approximation. " We
. have also ignox'ed the fxequency shift terms, which
cause the renormalization of the energy levels.
These terms cause an extra degree of complication
and will be discussed elsewhere.

Eq. (2. 11) is our Fokker-Planck equation. As is
mell known, equations of this type are very useful
in calculating the correlation functions and in par-
ticular the mean values. This equation, as it
stands, is too complex to be solved exactly. How-

ever, me use it to obtain the equations of motion
for the mean values. It is obvious that the mean
value of 8', is given by

(Sg& I f (&S& PeP )FI&)

8

st &
S'S ) + 2yo& Si S ) = -'y (& (S'+-.') (S'+ l)) —l),

(2. 1S&

mhere

—( (Sl+ 2) (Sg+.)&= —4yo&(S1+2) (S~+ 2)&

(2. 19)

211'«, 1 '
dg~5 (kc —«0) ~, Id k]'

Yo

(2. 2o)

The last of the Eqs. (2. 17)-(2.19) is easily integra-
ble. This solution is to be used in (2. 18) to solve
fol' ( Sl S2), wlllcll in turn Should be llsed II1 (2. IV)
to solve for (S';).

We now consider the expectation value pgt) of the
operator

['fi (s;+~2)]:

(2. 14) PII(t) =(6 (-'+ s';) & (2. 21)

We mill'tlply both sides of (2. 11) by ~2(III &I PI pI)
and integrate. The right-hand side of the equation
mhich is obtained is simplified by integration by
parts. This pxocedure leads to the following equa-
tion of motion for ( S', ):

It is obvious that pI/t) denotes the probability that
all the N atoms mould be found in an excited state
at time t. Using (2. 11), we obtain the equation of
Illo'tloll fol' p g(t):

—„(S;) + P y„(S;S;)+P y„(S;S;) = O . (2. 5)

One can similarly obtain the equation of motion for
{S,"SI) for f &j. The result of a rather lengthy cal-
culation is

sp~(t) = —2Nyo p„(t),
Bt

which leads to

(2. 22)

(2. 23)

9—(S;SI& = —(y„+yII) (SI Sj) +y I{(I+2SI )S'I&

+y, t((1+2SI)S;)'+ Z 2yII(s;Sf S,)

Q 2y„(S;S',S;), (t&j) (2. 16)

We thus obtain the folloming very interesting re-
sult: The probability that all the atoms would be
found in an excited state decays exponentially, re-
gardless of the size of the system, the decay con-
stant being 2Nyo, which is N times the decay con-
stant for a single atom.

and so on.
One thus sees that the equation of motion for

(S;) is coupled to that for (S,'SI&, which in turn is
coupled to that for one higher-order correlation
function. In this way, one obtains a hierarchy
(which is of finite order) of equations. These
coupled differential equations are of first order in
time and can in principle be solved by using Lap-
lace transform techniques. However, in practice,
these can be handled easily if N is very small (e.g.
%=1, 2, 3). For example, for X=2, on has the
following:

(SI& +2yo(SI SI) +y12((SIS~& +(Slsa) ) = 0

III. APPROXIMATE EXPRESSION FOR THE INTENSITY
OF SPONTANEOUSLY EMITTED RADIATION

In order to obtain an approximate expression for
the intensity of spontaneously emitted radiation,
we consider Eq. (2. 15) and make the following aP-
Pxoxi nation:

&S;S') =(S;& &S;) (' '). (3. 1)

It should be noted that this approximation does got
necessarily imply that the density operator p is the
direct product of density matrices corresponding
to individual atoms. ' The total energy W of the
atomic system, in units of vo, is given by

(2. I'7)
W=Z (S;)=-,' Z &o', &, (3. 2)



MASTER-Ea«»ON APPROA«*

where v', are Pauli spin matrices. Equation (2. 15),
on summing over all values of E, leads to vo ~ d k

—Z &a', }+Zy~, (&r', oj}=0.

To simplify (3. 3) we use the following relation:

Z &(T)vj) 'YJ( = Z 3'y(&o). &Ty
—0 j~o(') +F3'yy(0 y~(7'j) ~

(s.4)

On combining (3.1), (3. 3), and (3.4) we obtain

—E&&f} ++ x)g&2pgg I}-+Z, x„&o,'aj}
j

{s.12)
On using Eqs. (3. 2), (3.7), and (3. 11), we find that
W satisfies the following equation of motion:

It should be noted that Eq. (3.13) is exactly the
same as the one derived and solved by Eberly and
Rehler using Dicke's expression for the state of
the system at time t. The result is

~Zi &ol})'
N

{s.5)
W(f) = - -,' X([1+{pX)-']tanh ~-'(f - f,) —(plV)-') .

(3. 14)

%here P» is the permutation operator defined by

P„=—,
' (1+(r, .o, ) . (s. 5)

This operator corresponds to the interchange of
1th and jth atoms. Since the original Hamiltonian

is invariant under the permutation of indices l and

j, we conclude that &P„)=1, and t.hen Eq. (3. 5)
leRds t.o

—Z &&r', } + Z ~„-' ——' +»,&o o }= o8 , 1 —{P~ &o', })
jl

The constant Io is determined from initial condition
and 7. is given by

v ' = y o(pN+ I). (s. 15)

The expression for the intensity of spontaneous ra-
diation is obtained by using the principle of detailed
balance and is given by

I{t)= —ruo W= (or,yo/2g)(pN+1) secha 7 '(f —fo).

The quantity ),&„'Y;, is given by

(mw'w')
(

1)'f; ll(ke —Io, )
'

(3.7)
We thus see that we have been able to obtain the

radiation rate by just making the approximation
(S. 1). At present it is not clear how good this ap-
proximation'~' is. This approximation is also inher-
ent 1n Dlcke s %'ork, where he hRs used Rn explicit
expression for states of the system at time t. This
explicit expression is essentially of the form'5

~I3 t d'k
I

'
$$a (f~ Qg) 3

k
p(f) = Iiy [2 —Sg cos8 + 2'f (Sy 0j —8j ERE ) sin8]~

The term)'», e'"'' & "~' can be written as

&' =X'[1(k) —(I/~) ],jl

(s. 9)

cos8 = —2(S ~},

fQ&= exp(- hlot+fk R&+iso),

(3. 1aa)

(3.1sb)

where I'(k) is given by

(s. 10)

Here &},„denotes the average over the position of
all. atoms. On combining (S.3) and (3.9) we obtain

dk
5(f c -~,) I"(k)

+go 27k

(Id. k
I

/~ )]-(I/lv) =~'~o~,.

(s. 11)

Again there does not appear to be any s p~fo~f justi-
fication for using this expression except some ana-
logies drawn from the semiclassical treatment. "
%'e believe that an improvement over the approxi-
mation (S.1) can be obtained by using Eq. (2. 16).

IV. SPONTANEOUS EMISSION FROM SMALL,
SYSTEMS: SOME EXACT RESULTS

%e now consider the spontaneous emission from
small systems, i.e. , systems whose size is small
compared to the %'Rvelength. In th18 cRse 1t 1s not
necessary to make the approximation (S.1), and it
1s possible to obtain exRct results. For small sys-
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tems, we may introduce the following operators: ( =(S-m+1)(S+m) . (4. 6)

s'=P, s;, s'=P, s', . (4. 1)

The operators 8', 8' satisfy the angular momentum
commutation relations. Furthermore, it can be
shown that S is a constant of motion. ' Ne may
show that the phase-space equation of motion (2. 11)
is equivalent to the following equation for the re-
duced density operator p, :

We can solve the set of different differential equa-
tions (4. 5) by iteration. It turns out that we have

m+y m+y

o., ((()= & II ~ II (((+~))o,:,, ~(0),,
y&0 ye=m+1 yt=m

(4. V)

where p„„(P) is the Laplace transform of p„„(t),
i. e. ,

9t
= —Q y))(s( S)p —S)ps()+H. c. ] . (4. 2)

p„„(p)= f, e 'p„„(r)dv (Rep & 0) . (4. 8)

The proof of this result is given in the Appendix.
For small systems, we can make dipole approxi-
mation and find that y;&- yo independent of i and j.
Using (4. 1) and (4. 2), we obtain the equation'

We assume that all the atoms were in the excited
state at time t=O, so that we have g=-,'Rand
p„„(0)=5 „@. Then the exact expression for the
energy of the system is

—= ——,'(S'S p —2S ps'+ ps'S ),O'T
(4. 8)

(S (p)) = f,
"

e "(S'(t)-) dt

(4. 4)

Let I m) denote the angular momentum eigenstate
corresponding to a given eigenvalue S(S+ 1) of S
and m of 8'. Then on taking the matrix element of
(4. 3), we find that

= (& +s& +s) P +s,a+i —z(~m+ &,)P,, ~ (4 5)

where we have set

(-,'N+m)!, (p+ v„)

(4. 9)

(S'(t)) is obtained by inverting (4. 9). It should be
noted that the expression (4. 9) involves poles of
order 1 and 2, and that the poles of order 2 com-
plicate the final expression for (S'(t)). As an ex-
ample, when N= odd, (S'(P)) can be written as

NjR !„( 1 p, t (((/2 -1/2

m=-L'((((ga&-i& (2&+m)! ((=(2~&
(4. 10)

In this expression we have shown explicitly the simple and double poles of (S (p)). Now the standard com-

plex variable techniques lead to the following expression for (S*(r)):

N/2 ~ ~( I ~ ) N/2 &/2
(Sg( )) g m(¹)(2N m) ~ p p y g ( )

(-,'X+ m)!

(2++ m) 0= 2- ((( (= (((
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m= - t(N/2}-1]

N /2 N /2 -1/2
m(N )(N-m). y ( )y g ( ), g( )2 p,

(aN+m)! a-2- "' ' i.2 -~a

m= - f. (N/2)" 13

m(N! )(-', N —m)! 7 [r(v„,-v, ) —1](v,g, -v, ) 1I (v(-va) II (v. -pa)-2 2 ~v

(-', N+m)! l"-2" m r=m4k

N/2

(v~ —v~) (v( —v), )
m-. [&N/2&-1] 6&" + & ' k m l =2 m p=2-m4 l

-$2 N/2

x ]I (p„—p, )-' — p 2(v„-v„) '(v„, —v, ) II (v( —v )
r=mek r"-mWk l-2 m &"-maker

(4. 11)

As an example, for X= 3, one easily finds that which on substitution in (4. 18) leads to

(S'(f)) = [Ge "—3e "+127'e "——,
' ], (4. 12) [S e ]=e J, dye'S =(e"-1)e"'S'. (4. 18)

where 7 is given by (4. 4). A similar expression
holds when N is an even number. These expres-
sions can then be used to compute the radiation
rate. In particular, when N = 1-4 and 8, these ex-
pressions lead to the results of Dillard and Robl."

It can further be shown that the Fourier compo-
nent of the spontaneously radiated intensity is given

by

Substituting (4. 18) in (4. 15) leads to

q 2 g( ))/(2&( )( 1) i{Sos xsg)
8T 2

which on using the relation

S'S- = —,'N(-,'N+1) —!S')'+S'

reduces to

(4. 19)

f((()) = f I(v) e '"'dr = (f(d{s'(j(())) pN), —(4. 13)

q(&, &) ={«pf- &[-',N+S'{~)]}). (4. 14)

Since [2N+S ] is a positive semidefmxte bounded

operator, it is clear that the expectation value

(4. 14) is bounded. From (4. 14) and (4. 3) we find

that

= —,'( [S', e "'
]S ) exp(- x2N)

87-

wh~~e (S'(&~)) is given by (4. 9) with p replaced by
Z('d.

For numerical analysis, it appears to be advan-
tageous to solve a partial differential equation which
we will now derive. Consider the following genera-
ting function:

—= —(e"—1) ——
~ + (N+ 1)—

~
Q .eq „8' e )

BT Bg &g j
(4. 20)

sq(x, ~)
eg

(4. 21)

Having obtained the exact expression for the inten-

sity of the spontaneously emitted radiation, we now

proceed to calculate the correlation functions for
the emitted radiation. It is seen from (4. 8) that

{s'(P))=Q p „„(p)(,„„)~~2

This differential equation should be solved subject to
the initial condition q(x, 0) = exp(- Nx) and the bound-

ary condition Q(0, f) =1. Once the solution is known,

expectation value of energy can be obtained from
the formula

+-,'(S'[e"",S ]) exp(-g,'N) . (4. 15)

The commutator [S', e "e
] can be evalutated by

using an identity" due to Kubo:

[S', exp(- xs')]= —f dye (" "' [S;S'] e '"
J"dy e-o(-)))AS+ e-))8~.
0

but we have
e' S'e ' =S'+(y/1!) [S', S']

+(y'/2!) [s', [s', s'11+

=r(v„.,)' 'r. 1(v:„.,v„„)
m n&0 k&1

~ [P+!{p„.,+p.„.„)] p„.„,„,„„(O) .
k"- 0

This equation can also be written as

(&*(p))=&(v..i)'" & n v ..«.. .)m ff&0 k-1

=S'+ (y/1! ) S'+ {y /2! ) S'+ ~ ~

= e'S', (4. IV) k~0
+ l'm+k+ l'm+1+k ~m+n»
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&&(s'ln+m) (n +m l). (4. 23)

(s'(S)s (0)) =E(r .,)'"Z nr ., r„...,)m n~~0 =1

n

+ 2 Vm4 y + Vm+y+1 Vm+n+1

x(s'ln+m) (n+ml s ), (4. 24)

which on simplification leads to

n

(s'(S)s (0)) = E(r, , ) n(r, r„,&, )m nv0

n I

+2 Vm+~+Vm+0+1 Vm+n+1

In order to calculate (S'(P)S (0)) we now make use
of the quantum regression theorem, which allows
us to calculate the two time correlation functions
in terms of one time correlation functions. The re-
sult of this calculation can be shown to be

emission from a system of harmonic oscillators.
Then the procedure outlined in Sec. II leads to the
following equation of motion for the antinormally
ordered equivalent of the density operator:

+S ~ (A)
W)

rr =Z
S

(r, pr ) ~ L. L.)~ g
(5. 1)

@exp y t —— g Ps g. g ' 0
ig i

a 8
=exp y0teA A exp y0t

A
A*

(5. 2)

This equation is the generalization of Eq. (G5. 19)
for the case of N harmonic oscillators emitting
spontaneously. The solution to Eq. (5. 1) is

su) ((p, ) (»",); () = exP(yI( Z (zq))
i

Pm» n» 1 ~ m» n» 1(0)

The initial condition is

Pmn»1 »r nm»1(0») 5m» n» 1 r &1/2/)')

On substituting (4. 26) in (4. 25), we find that

~(E 2 1)

( S (p)S (0)) = (" ~
' ' ' »/2

m =-&/2

(N/2-1)

I S+ l(r~ ~ rr. i)l)
A-«m

Thus the correlation function is given by

( S'(p) S (0)) = f e ' ( S'(r) S (0)) d7

(4. 25)

(4. 26)

(4. 2V)

where

(5. 8)

We recall the following identity, which is easily
proved':

exp y t —A =-exp Ny I; exp e ~0 —1 —A—8 ~y~
BA N BA

(5. 4)

where [ ]~ means that in the expansion of the term
in parentheseis all the derivatives 8/BA stand to the
right of /i. On using (5. 4) we may show that (5. 2)
reduces to

&'"'((z] (z*] t)=&'"'((Z] (z*] 0) "'" (5 5)

(N/2+ m)!

As an example for N = 2, we find that

(4. 28)

where

r = z + —(e"o'" —1) X z
1

i i
i=1

Relations (5.6) are easily inverted to give

(5.6)

( S'(t) S (0)) = [4 exp(- yot) —2 exp(- 2yot)]. (4. 28)

It can further be shown, by using the Heisenberg
equations of motion, that the normally ordered cor-
relations function of order 2 for the electric field
in the radiation zone is directly proportional to
(S'(t)S (0)). Hence, (4. 28) also gives the power
spectrum of spontaneously emitted radiation. We
can use similar methods to obtain intensity correla-
tions. 2'

V. SPONTANEOUS EMISSION FROM A SYSTEM OF
HARMONIC OSCILLATIONS

In this section we shall consider the spontaneous

N

z =g —(1 eros&) Pg (5.7)

We now compute the average energy (in units of
(do) of the system which is given by

~~(~I«)e(«)& =&(fd"(z(/~] l&(l'&o"'((&~] (&(],t) .
(5.8)

It is obvious from (5.8) and (5.5) that the energy
of the system depends on the initial state of the
system. We shall discuss two cases below and
show that in one case the system leads to superra-
diant emission and that in the other case it does
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not.
We first assume that at t = 0 that phase-space

distribution function I"~"' satisfies the following
conditions:

Z,'"'(f, ,},( *,},0) = Q S," ( „,*,0), &,(0)) = 0 .
(5.9)

On using Eqs. (5. 5), (5. 6), and (5.9) we can easily
show that (5.6} reduces to

Z, &a", («a, (t)) =&,&",(0)a,(0)& „-[{fi—I}+""""].
(5. io)

We thus find that the radiation rate is given by the

following:

state) for two-level atoms. It is also worth noting
that the decay constant is N times larger than that
for a single oscillator.
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APPENDIX: PROOF OF THE RELATION (4.2)

%e apply the mapping operator A "' corresponding
to the normal rule of mapping to both sides of Eq.
(2. ll), to find the following:

&(~) &(N) &(w') g &(N )8
S + 8 S

f(t)=- —& & "(t) {t)&

=2ro o
"""~

& ',(o),(o)&

= 2y, e "O'" W(0), (5.ii)

01

Ps g(N) g F(N) 0+ 8 8

%'e will now use the following identities 2:

(Ai)

F,'"'((e,},(e*, },0}= Zf v6"'(e —eo) . {5.i2)

On substituting (5.12) and (5.5) in (5.8), we obtain

the following expression for the energy of the

system:

where ~(0) is the energy of the syste~ at time t = 0.
We therefore conclude that a system of harmonic
oscillators, svhieh axe excited in a state des''ibed
by Eq. (5.9) does not lead to superradiant emission.

We now consider a system of harmonic oscillators
which are excited at t = 0 so that cack of them is 'En

a coaerent state Iso&. Then Z,'"'((z, j, (e*,},0) is
given by

[G(a, at), a'] = 0'"' —[E'"'(z, z*)]

Here G(a, a") is an arbitrary function of boson oper-
ators a and a, and E'"'(z, z~) is the normally or-
dered equivalent of G(a, at). Using these identities
we can show, by straightforward but long calcula-
tions, that

~s &s I= ~ u. us ("&us' pst't' 5a'us'»)](% (W') I Y Ir
B'

[uJ'»"s'us~ 5H [[t'g'i uy p sou]~ &y]

+[u„[u, , u,'.~', ps]]}&,, +H. c. (A4)

Z, &a',(t)a, (t)&=NIz, I'e '"o'" .

The radiation rate is then given by

(5. iS) Equation (A4), on simplification, leads to
(N)o (N) Y I t0 ~s Fs = 2, rgi(5yuyf/geuji ps upi Ujipsggu )'

f(t) = -(u, —Z, &a-t,(t) a,(t)) +H. c. (A5)

= 2yo(a)OI zoI ti e 0 ", (5. i4)

mhich leads us to conclude that the radiation rate
is proportional to the square of the number of os-
cillators, when each of the oscillators is initially
excited to a coherent state I z,&. Therefore, state
lao& for the case of harmonic oscillators is the
analog of the state IX/2, 0& (in which half of the
atoms are in excited state and half of them in ground

which on using Schwinger's coupled boson repre-
sentation {2.2) reduces to

II(s) g P(N) P, (S S ~ S-, S )

(A6}
On substituting (A6) in (Al) we obtain the desired
result (4.2), viz. ,

~Ps
[ ~ ya'(SySj' ps Sy ps')+H. c.]. (AV)
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The. absence of exact periodicity in the oscillation of the energy expectation value between

a coupled linear oscillator and an angular momentum oscillator, even when the oscillators are
macroscopic, is shown to be a consequence of the uncertainty principle.

The resonant interaction between a field mode

and a spin system (or a number of two-level sys-
tems) has received considerable theoretical atten-
tion, ' because it represents an idealized form of

the interaction involved in quantum-electronic sys-
tems such as lasers and optical parametric ampli-

fiers. The analysis has been carried out both clas-
sically and quantum mechanieaDy, in a perturbative
and nonperturbative manner. The quantum-mechan-
ical nonperturbative solutions of greatest aeeuraey
have been obtained by numerical methods (for spec-
ial cases) since exact solutions with easily dis-


