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The method of correlated basis functions (CBF) is examined for the special case of a weakly

interacting Bose gas. Using the Hugenholtz-Pines theory, we compute the ground-state ener-

gy exactly to fourth order in. the interaction strength. The resulting expression is compared
term by term with the unperturbed ground-state energy computed in the CBF using a Jastrow
function as the correlating factor. %e find that the three leading orders are all accounted
for by the Jastrow function, while beginning in the fourth order only selected terms are in-
cluded. The use of a correlated wave function in effect corresponds to summations of sel-
lected diagrams to all orders. In particular, the ring diagrams and the ladder diagrams are
most susceptible to these summations. In a separate paper we shall examine effects of
perturbation in the CBF.

I. INTRODUCTION

N

H= 2 2m. V;+Z o(z;,),

and by t e statlstlcs of the particles.
A complete quantum-mechanical solution of the

problem consists of determining all propel ly sym-
metrized eigenfunctions of this Hamiltonian and the
corresponding spectrum of energy eigenvalues.
For all realistic problems, however, ve do not

entertain the hope of obtaining such a complete
solution; nor do ere desire such a detailed desex'ip-
tloIl. In particular, for understanding properties
of mattex' at lour temperatures, we need only in-

%e consider a system of N particles, contained
in a volume 0 and intex acting pair@rise via a po-
tential v(r). N and Il both approach infinity while
the number density Nn /0 remains constant. Such

a system is described by the Hamiltonian

formation concerning the ground state and the low&-

lying excitations. If the interaction v(x) is weak,
good approximation to these states can be found

by applying lour-order perturbative corrections
to free-particle states.

For quantum liquids and solids, vrhich include
liquid and solid helium, Coulomb gases, and nuc-
lear systems, the effects of e(x) are far from in-
significant. In fact, the interparticle corx elations
dominate the pxoperties of these systems. Under
these circumstances, the ordinary low-order per-
turbation theory fails. %'e have on our hands a
many-body problem.

Vfe distinguish in this paper bvo approaches
toward treating the many-body problem: the in-
dependent-particle representation and the corxelated
representation. By the independent-particle rep-
resentation me mean all field-theoretic methods
which employ an independent-particle basis. %hen
divergences arise in the matrix elements of v(r),
or in the perturbative expansion, one turns toward
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partial summation techniques —in the form of dia-
grammatic rearrangements or Green's functions.
By the correlated representation, we mean the
method of correlated basis functions (CBF), which

begins with a set of basis functions containing cor-
relating factors. With the correlating factors suit-
ably chosen, divergences of either nature can be
avoided. One recovers at once the validity and

convenience of a low-order perturbation theory.
The method of CBF has by now been applied to

all conceivable quantum liquids, and in each case
has achieved certain degree of success. We refer
the reader to a recent monograph by Feenberg, '
and to a representative set of publications and the
references quoted therein. It has always appeared
mysterious to many™body theorists trained in the
independent-particle representation as to how and

why the CBF can be so successful, particularly
when it comes to numerical applications. What

diagrams are being summed'? To what order are
they summed accurately'? We begin with this paper
an investigation which we hope will lead toward

illuminating answers to these questions. In the

remaining part of this section, we shall review
briefly the method of CBF, define the specific case
to be investigated here, and outline our method

of attack.
A correlated basis function assumes the form of

a product of two factors. One factor is known as
the model function, and will be denoted by

Pnq ~2, , n&(1, 2, . ~ ~, N). This factor accounts for
the single-particle properties of the system: The
subscripts fn„n„.. . , nN) specify which single-
particle orbitals are occupied, and the function p
is simply a properly symmetrized product of these
single-particle orbitals. By retaining the quantum

numbers suggested by an independent-particle de-
scription, we adopt the prevailing theoretical
practice of picturing low-lying states as elementary
excitations. In this sense, CBF does not deviate
from the mainstream of many-body concepts. The
other factor is known as the correlating factor
E(l, 2, . . . , N), which has the responsibility of
handling correlations characteristic of the inter-
action term in H. In the case of pairwise inter-
actions, it is natural to select as I' a product of
two-particle functions:

Such a correlating factor is known as the Jastrow
function. As long as the properties in which we
are interested depend only on a group of states lying
near one another, the state dependence of I' is un-
important and is usually neglected. Whatever er-
rors are committed by this appproximation will re-
veal themselves in the convergence property of the

perturbation series. The crucial requirement for
the success of a CBF calculation resides in an in-
telligent choice of f(r), or equivalently u(r), which
leads to rapid convergence.

An ideal CBF calculation proceeds in several
stages, summarized as follows.

(i) Based on a careful study of the Hamiltonian,
an analysis of the properties of the system, and
frequently auxiliary calculations such as a variation-
al calculation for the ground state, a sound choice
of the correlating factor f(r) is made and the cor-
related basis constructed:

= II f(r„)(f& „,„,... „(1,2, ..., N) .

(ii) Matrix elements of H and 1 are computed.
Depending on the choice of I', the computation takes
on various levels of difficulty. In some cases clus-
ter expansion techniques or Monte Carlo methods
are necessary.

(iii) The correlated basis is orthogonalized, i.e. ,
the matrix of 1 is diagonalized. An effective (or
quasiparticle) Hamiltonian is then constructed from
the matrix elements and expressed in a second-
quantized form.

(iv) A low-order perturbation theory usually suf-
fices for extracting the ground-state and low-tem-
perature properties. If not, with the Hamiltonian
second quantized, the entire wealth of field-theoretic
methods is available.

The specific problem chosen to be treated here is
that of a weakly interacting Bose gas. The pairwise
interaction is characterized by a strength parameter
X and by the existence of a Fourier transform:

We compute the ground-state energy as a power
series in ~ using both the independent-particle and
the correlated representations, and make term-by-
term comparison. Results to be reported here have
been summarized in a recent Letter.

Section II reviews our computation of the ground-
state energy to 0(X ) using the independent-particle
representation. The prescription that we follow is
due to Hugenholtz and Pines. In Sec. III we carry
out a zeroth-order CBF calculation of the same,
using as the correlating factor a Jastrow function
which corresponds to the exact liquid structure
factor $(k), the latter computed with the Hugenholtz-
Pines theory. Such a Jastrow functionis not the
optimum choice, in the sense that it does not min-
imize the energy. In Sec. IV we compute the energy
correction which accompanies the optimization of
the Jastrow function. Finally, in Sec. V we briefly
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summarize our findings and speculate on the gen-
eral pattern. In a second paper we formulate the
perturbation theory in the CBF, and compute sec-
ond-order perturbation corrections to the ground-
state energy. We shall demonstrate that the sim-
plest second-order CBF calculation sums energy
exactly up to the fourth order and partially to all
01ders.

II. HUGENHOLTZ-PINES THEORY

For the weakly interacting Bose gas, the Hamil-

toman of Eq. (1) reduces to

where we have extracted the strength parameter X

for explicit display and replaced I and m, =- m by 1.
Second quantization converts Eq. (5) to

H=Q ok Of QP+gXQ Z ('UP y+Uf y)
kfpg

Coupled Dyson-like equations are derived to relate
these functions. We shall refrain from solving
these equations. For the purpose of this work, it
suffices to compute 6, Z», and Zoaby perturbation
theory. The ground-state energy is given by

—' = —,'np, + 4 d )I ds —,'(s+-,'k')G(k, s),

where

nno+
(2 4 t dk de G(ks).

27r
C

The contour C closes in the upper half-plane. The
chemica]. potential p, can be determined by solving
the diffex ential equation

x 5p+f I g 8+~ Q~ Qy cg,

where the creation and destruction operators obey
usual boson commutation relations. The obstacle
to an immediate application of the diagrammatic
perturbation theory comes from Bose condensation.
The ground state does not form a vacuum with re-
spect to a zero-momentum destruction operator go.
Hugenholtz and Pine (hereafter denoted by HP) re-
plac«o and ao by (fino) ~', no being the macroscop-
ic condensate density, a c number. n& is then a
free parameter, restricted only by the fact that it
must not exceed the total number density n. It is
to be determined by minimizing the ground-state
energy E,. The replacement of a~o and a, by c num-

bers leads to another problem: The Hamiltonian
no longer conserves the number of particles. To
overcome this difficulty, HP introduce a I agrange
multiplier: the chemical potential p, , to be deter-
mined by the constx aint

(n') =n —no,

where n' is the number operator for particles out-
side the condensate:

) =z„{0,0) —z„(o,o) .
We carry out the computation using both methods to
assure accux acy.

The diagrams are constructed using free-particle
propagators

and the seven kinds of vertices shown in Fig. 1.
The rules for evaluating contributions of diagrams
are derived and stated by HP, and will not be re-
peated hex e. In Fig. 2 we show schematically con-
tributions to G(k, s) up to and including all relevant
fourth-order terms.

Up to this point we have ordered our diagrams by
the number of vertices they contain. This assures
that an mth-order diagram is at least of order m
in the stxength parameter X. Actually Eo depends
on no and p, , both explicitly and implicitly through
G(k, s), while no and p in turn possess power-series
expansions in X. We thus write

n'= —g a1'a„- .
bo

After these maneuvers, the way is clear for a valid
definition of the vacuum, and the linked-cluster
theorem follows.

Three kinds of Green's functions are defined,
corresponding, respectively, to ground-state ex-
pectation values of time-ordered products of one
cx cation and one destruction operator, two destruc-
tion operators, and two creation operators, denoted
by C, C, and G. I ikewise, three types of proper
self-energy parts, Z», Zoa, and ZM, are defined. FIG. 1. Vertices in the Hugenholtz-Pines theory.
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These expansions are substituted into the exyres-
810118 for G, Z)), encl Zoa. ConlpR1'lllg Egs. (10) Rlld

(12) with Egs. (14) Rlld (15) Rnd ldentlfplng ol'del' bp
order, we find in R zigzag fashion the fo1j.owing re-
suj.ts:

3 3

dk++ ", dk dp
(2m)' k (27))'

(j.6)

(2) &
dI

&u

=(2.p J ~ p

)1") = ", dk++ ", dPc I dp=
(2~)3 ~ '(2~P P u'pa

(4) 105
dk ~5 3s

~' '(2.P P ~'p'

@I 6 I 5k B)7+8 (55 +5)T~I)(1 )) + pl)3 2 3

(»)' J u'p' (»)' J p n'(k+p)'[u'+p'+(k+p)']

Vp'V q5'P+y 'OP+~

(»)' p &'[&'+p'+(tl+p)'] (2)r)' J J p yap'q2

These lesuj. ts map now be substituted into the ex-
pressions for the ground-state energy. After re-
Rrranglng in powers of A. , Eo How 1eacls

pm'(m)

S ~ ~ 5g5g,
(2)))' J J P O'P'

3 3
d~ ~I &~&j"+5

(2.p J J P u'p'

r2g I
~ ~ VI, 5p Vp~y

)6 J. p F2~8(k ~)2

(2~)' p f '(k+p)'[u'+p'+()-+p)'] ( )

E,'" —n'
fI, 2(2)))'

Z,") n'
0 (2)))' J

3
d ")"o1))+I

'2(2~/ J p I'p'

(e)

~e ~o ~1+5
(2)))' P )t'[6'+p'+ (j +p)']

gj 3 3

(»)' ' ~'[~' '
(k -p]

n2
d 4 &e&f+e &)t+)t

2(2m)' J J P ~ a'p'q'

etc.
Dlagx'RIQS froIQ which terID8 in Eo Rrjse Rre djs
p»7«1»lge 8(R)-8(j) T»«ompletee our energy
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ho (BOIH I go)
0 Q((0 I (0)

(22)

Ne define the m-particle distribution function

g(r„r„... , r ) by

L
n"g(r„r„.. . , r„) =X(X-l) "~ (X-m+l)

(23)

FIG. 2. COntIibuhOnS to G(k, &).

In particular, the two-particle or radial distribution
function is given by

calculation using the Hugenholtz-Pines theory. We

next turn to a corresponding calculation using the
zeroth-order CBF method.

III. ZEROTH-ORDER CBF

n'g(r )=~(X-i) ' "-~"dr

d&&, 2, ...,n
in terms of which

&0/fl = 8
n' f g'(r)u'(r)dr+ ,'n' f g(r)—e(r)dr,

(24)

For a Bose gas, the model functions in a corre-
lated basis are symmetrized products of plane
waves. The momentum labels (k&, k~, . .. , k„)
serve as the quantum numbers. For the ground
state, all k; = 0. The model function is simply 1.
Excited states are formed when particles evaporate
out of the condensate. For example, a one-particle
excited state has k& 4 0 and k& = 0 for i& &. Upon
symmetrization the model function becomes

a(r) =Z &V"'(r) (26)

u(r)=Q X"u' '(r), (27)

(25)

the prime denoting differentiation with respect to
the argument. Expanding g(r) and u(r) in power
series of X:

Q e-ikg rg (20) and introducing Fourier transforms:

+(m) f d (m)( )
-~j.P

Higher configurations can be formed in a similar
way. We shall postpone this discussion to a later
paper. Combining the model functions with the
Jastrow correlating factor of Eg. (2), the correlated
wave function for the ground state becomes

u(")=f dru'"'(r)e-'"'" '

we can express So in the power series

(29)

~,(l, 2, ... , Z = g "'"'~"' , (21)

which has been used often as the trial wave function
for Bose systems, including liquid He and charged
Bose gas. For the one-particle excitation of Eq.
(20), we note that the correlated wave function is
given by p„-E, or p"„(0, the phonon wave function of
Feynman in his calculation of the phonon spectrum
in liquid He .

A perturbation theory in the correlated repre-
sentation requires the knowledge of all matrix ele-
ments between the correlated basis functions. The
Hamiltonian matrix thus constructed is diagonalized
by regarding the diagonal elements as unperturbed.
Thus in zeroth order, the ground-state energy is
given by the expectation value of II with respect to

Other matrix elements do not enter the calcu-
lation until the second order. Our task reduces
then to the evaluation of

h, /n = Z„~"S&"&/fl,

where

g &0&/fl O

g(&)/g 1

&o) (b) (c) (d)

(e)

(h)

FIG~ 3, COIltl'l4UtlO118 tO AM gI'OUDd-S tRte eI16I'~ EO ~
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g "&/fl =-'n'Z-)sa ")s( ")+-'naZ-g ")
(&

g(s&/g i ap pa( ( i&n(a) + (a)n (i&]

(Sl} Kirkwood- Yvon) equation

Vlg(+&a) =g(a'ia) +&N (&ia)+nf g'(rip rap rs)

xv) Q ('Yis) d 1's.
i ap g(a)~

, ")Ifl= s n'~„-&'[ga"' na"' +ga"' na"' +ga"' ns"']
Since g (r„r„r,) can be expressed in terms of the
radial distribution functions:

g (ru ra~ rs) =g (a'ia)g ()"aa)g ()'si) exp&(r» ra~ rs},

We must now (i) express s(a("& in terms of g(,"', so
that Ss/A can be written as a functional of g("' alone
and (ii) compute g("'.

u ()') and g () ) are related to each other and to the
three-particle distribution function g(ri, ra, rs) by
the so-called BBGKY (Bogoliubov-Born-Green-

&( [g () ss) —l]d(&,+0 (naxs)+ "., (SS)

we have a usque relation between a(() ) and g () ) to
any desired order in X. Going over to the Fourier
transforms, we find

( & g () g g fi&g (a& g g (i&g (i'g ("-2ng ( 'gs@+n [ga ]k~ 3 $~ ~ ~ R-y-e

etc. ;

thus,

g, (s&/fl = 0,
g, ("/O= ,'na(&(&,-

g (a&/n=-'n'p &'[g ("]a+-'n'Z g «'(

hs"'/fl = ~an'Zf)) f 2ga ga a gs ~&&ga gm 5-
g ('&/g--'nap ~ag(a)&g (a)- -'Z g '"g- -"'-n Ig "'5+-n'~f )i'g. "g

ap ya (i&( (s& Q g (i&g „(»,ig..g (»g «&g. ..(»- 2ng, "'g, '"+na [g.("]s]'.

To computeg, ' ', first we recognize t at

S,=l+n jdr [g() )- l]e '"'t

Hugenholtz and Pines relate S~ to the correlation
functions Jl, (&o):

+gggy +gg gy +o o o
(I) 3 (3) (Se)

The quantity of interest is therefore the stetic struc-
ture factor S~. In this section we compute 8~ via
the Hugenholtz-Pines theory. Clearly the S„ob-
tained 18 exact in every order. It col responds to
some Zastrow function, through Eqs. (S6), (S4), (29),
and (2V), but not the Jastrow function that minimizes
80. %e regard the Jastrow function vrhich corre-
sponds to the emmet S~ as an initial guess.

where C' closes either above or below the real axis,
and
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Setting ga and aa to the c number (Qna)' gives rise
to three classes of Fa (f):

F'„(f)=F;(f)+F,'(f)+F', (f),
where

= —i Ana(0~ T([at~ (f)+ta„-(f)][s'„-(0)+~„-(o))]'~o&,

(43)

terminals, and may be related to the Green's func-
tions, thus:

F; (ur) = n, fG"„(~)+G .„(-&o) + Gg(&u) + G-„(&o)) . (45)

F„(t) are three-terminal diagrams; to order A, they
make no contribution toward S~. Among the various
four-terminal diagrams for F&'&(t), only one contri-
butes in 0(& ). We find

g(0)

+[a„-(0)+a„-(0)]Z-ai(f)a„--(f)] ~0), (43)

= —i (Ana)'~ (0
~
T([a a(f)+a„(t)] Z-ala, ",(0) a;(0)

(g)
—2V

ga

2(,) 6nv,
ga k4 y )a

2

dp p +(3 )a p gapa

2

(»)'. pa(k, -)a
' (46)

F; (f) = -a(0~ T(Z,-a-', -, (f) a;(f) Z;a~„-(0)a-, (0)]~0) .

(44)

F', (f) consists of diagrams possessing just two

Substituting Eqs. (46) into Eqs. (35), we note that
terms involving g~"' cancel out. This is why in
computing S~ we did not bother to proceed beyond
O(A. '). We find

8,("=0,
0

g
=zft Vp )

S(2) —n'

fI 2(2m)a „'

(3) 3 t~' 3 2

(2.)' ' k' 3(»)'.

5g ~ v~ 3Ã ]Il p g+ y

g 3(»)a k' 3(2m)'„„ka a(k -)a (3a)' ~ . k'P'

"+' "+' + — dk d dp q + (3)a-
' p

4(3a) „„„kq'(p+Q) 6(3v)'„. „pa a(k+ )a

etc.

In comparison to Eq. (19), we find

Z,"&/n= h,"&/n, a= 3. (46)

I

not appear in Eq. (47). Instead, we have in

ga~ &/0 a group of three terms (in curlybrackets)
whose structure is totally unfamiliar. We shall
deal with them in Sec. IV.

In O(X'), the ring diagram (e) of Eq. (19) is re-
covered, as is the ladder diagram (j). The two-

ring diagram, either the ring-ladder combination

(g), or the "cross-bar" diagram (h), or the "side-
loop" diagram (i), is partially recovered. The
&' contribution of the two-vertex diagram (f) does

IV. OPTIMIZATION OF JASTROW FUNCTION

Jackson and Feenberg' constructed a set of
correlated basis functions, as shown in Eq. (3),
where the model functions are density fluctuations.
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8» =8» [1+230»/e»1 "'
where

(49)

We shall refer to these correlated basic functions
as (independent) phonon wave functions. They con-
sidered the subspace spanned by the unperturbed
ground state and all two-phonon wave functions, and
carried out a Bogoliubov transformation in this
"paired-phonon space" which r esulted in an improved
description of the ground state. The transformation
generates an equation that maximizes the improve-
ment:

and g„' '. g~
' is replaced by

(2) (2) + (2)=gI +

where

2
(2) 1 ~ 5p 1 d~ ~vvg+ p)

(2)()3 p p4 (2&))3 p p'(k+p)'
(56)

Using Eq. (35), we find 60 &/Q to $03&/A unchanged.
This is just as expected. 6 04&/A takes on the correc-
tion

e»=k /28»

~, =8,'/8, + k'(8, —I)/48, ,
with

3

8» = V» + ~ [g(r1, r2, r3) -g( 12)g( 13)]eN

(50)

(51)

~ '4) — ' - V' '
II 8(2&()' J J P'&I'

2 2 2n P VPV~ VII++
4(2~)0 P q k4 2( )2

n ~y&a~2+ s'Ui+ e

(
)0-- dk dp

)
dq 2 2(k )2

(57)
n

&& v*(r, 2)dr, 23 +p~ J [g(r1, r„r3 14) -g(r»)

)&g(r34) (4g(r13) 3)]e 34v (r12)+r&234

V» = n f e ' ' 'g(r) v *(r)Er,

(52)

(53)

v*(r) =v(r) ——,
' V'u(r) . (54)

One substitutes Eqs. (50)-(54) in Eq. (49) to ob-
tain S~, and then regards S, as the new S„, from
which one Fourier transforms to obtain a corre-
sponding g(r) and re-solves the BBGKY equation to
obtain a corresponding u(r). Using the new 8„
g(r), and u(r), e, and u)» may be recomputed, and
the whole procedure is repeated. This iterative
process stops when S,= S, .

Clearly, in Eq. (52), g(r1, r2, r3) and g(r1, r2, r3 14)
must be replaced by functionals in g(r). These
functionals appear as infinite series which can be
truncated in various ways, forming the so-called
generalized Kirkwood superposition approximation,
the convolution approximation, etc. To all orders
in & of interest to us, these approximations lead
to identical expressions.

Campbell and Feenberge recently showed that
under such a paired-phonon analysis, the improved
description of the ground state remains within the
Jastrow-function space. The procedure described
above thus effects an optimization of the Jastrow
function. We apply this procedure to the present
problem, initiating with the exact S, derived in
Sec. III, Eqs. (36) and (46). We seek corrections
to g,' ', g,'", and g~ ', i.e. , corrections to S, up
to O() ').

After one iteration we find no correction to g'„'

2 ~ k2 J g2( &1) &1& ) )„3( (1)u (2) + (2& (1)
]

+ ~ ~ ~ (58)

But

(T)=Z; —,'k'n, . (59)

Thus

f= n0/n = 1 —X» n»/n

= 1 —Z "f)( [—'ng"'u'"]+~'[-'ng'"u' '

+-,' ng„"'u',"]+~ ~ ) . (60)

With the aid of Eqs. (14), (34), and (46), we obtain

f (0&

f(1& 0

f&3) & p ( (1) (2) &2) (1)]

which immediately eliminates the group of three
terms in the curly brackets of Eq. (47).

The second iteration makes no more modification
ong,' &. Corrections enter through O(A. 3). The
optimization of the Jastrow function to 0()( ) in the
energy is thus accomplished in just one iteration.

It is possible to study also how well the Jastrow
function handles the depletion effect. From Eqs.
(25)-(29) we find that the kinetic energy of the
system equals

(V') =-3'n»n f g'(r)u'(r) dr
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etc. , (6s)

in comp1ete agreement with Eq. (16), the results of
Hugenholtz-Pines theory, to order ~'.

V. SUMMARY

4IIIe have demonstrated that, ln the case of a
weakly interacting Bose gas, if one carxies out a
CBF calculation using a Jastrow correlating factor,
the energy obtained corresponds to partial summa-
tions of energy diagrams in the independent-particle
representation. In particular, in zeroth-order CBF,

an optimized Jastrow function sums the leading
three ordexs exactly, "most" of the fourth order,
and in part all higher orders. In the fourth order,
it is noted that the ring diagram and the ladder
diagram are completely included. Two-ring dia-
grams which include the ring-ladder combination,
the (vertex-renormalizing) cross-bar diagram,
and the (propagator-renormalizing) side-loop dia-
gram are summed in part. However, the ~ con-
tribution of the two-vertex ring diagram is missing.
Aside from this difficulty, it appears that the op-
timized Jastrow function is capable of summing all
rings and ladders, and partially all other diagrams,
to infinite ordex's.
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Continuing the diagrammatic analysis of the method of correlated basis functions (CBF) for
the weakly interacting Bose gas, as reported in the preceding paper, we take off from the un-

perturbed problem, which is solved essentially by a variational method using a Jastrow cor-
relating factor as the trial wave function. We compute low-order corrections to the unper-
turbed energy, using a set of correlated basis functions, It is found that the simplest second-
order correction in the CBF accounts for all discrepancies (between the Hugenholtz-Pines
theory and the unperturbed CBF calculation) which arise in the fourth order of the interaction
strength O(X4). It is also demonstrated indirectly that the Jastrow function sums rings and

ladders at least up to O(X5).

I. INTRODUCTION

In the preceding papex, ' hereaftex referred to as
I, we discussed the role of a Jastrow correlating
factor in the method of correlated basis functions
(CBF). We carried out in detail the calculation of
the ground-state energy, using at first a Jastrow

function which corresponds to the exact liquid struc-
ture factor S„, then proceeding to an improved cal-
culation which optimi. zes the Jastrow function.

"Optimizing" in the above context refers to the
minimization of the unperturbed ground-state energy.
Cleaxly the variational principle has been invoked.
The contents of I can therefore be interpreted as an


