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smaller), when in the initial state one normal
mode is excited, equipartition of the energy is
never achieved. On the contrary, in this case,
when in the initial state the energy is equally dis-
tributed among the normal modes, one has in gen-
eral, during the motion, a nonequipartition in time
average. However, the modes with greater energy
are scattered at random over the whole spectrum
of the normal modes, and one has a coarse-grained
equipartition. Of the many cases studied we pre-
sent in Figs. 1-17 a selection which illustrates
some typical behaviors discussed above.

CONCLUSIONS

The most important conclusion of this paper is
that when the energy of vibration per particle is
equal to or greater than 2 or 3% ot' depth of the po-
tential well and the number of particles is suffi-
ciently large, one has, in time average, equipar-
tition of the energy among the normal modes, in

spite of the fact that there is no evidence for the
system to be ergodic. For lower energies one

has recurrent motions if, in the initial condition,
only one normal mode is excited, as found by FPU.
In this respect one must remark two facts: The

times over which the system is studied, i.e. , some
thousands of longest periods of the unperturbed
system, are in effect rather short. A thousand
longest periods of the system amounts to 5 &&10 ' X
sec, andthat means that for 20-100 atoms, if the

energy is sufficiently great, one reaches equipar-
titon in 10 sec.

The practical difficulty of keeping the numerical
error small over times longer, for some order of
magnitudes, than those over which the system has
been studied makes it difficult to reach numerical
conclusions on the equipartition of the energy for
low excitation of the system. However, in such a
case if the initial state is one of equal distribution
of the energy, such a state is macroscopically con-
served in time average, the more excited modes
being distributed randomly over the whole fre-
quency spe ctrum.

We may conclude by saying that, in the case of
very low total energies, the relaxation mechanism
towards the standard Boltzmann distribution of the
normal modes might act so slowly that the coupling
of the system with a thermal bath could be very
important in determining the approach of the model
towards such a distribution.
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An effective total cross section is calculated for e1astic scattering of a monoenergetic beam
of test particles in a plasma of arbitrary velocity distribution. Closed-form solutions are ob-
tained for the special case of Maxwellian field particles taking into account small-angle scat-
tering. The result are compared with those obtained using the Debye cutoff technique, and it
is shown that such an arbitrary cutoff can lead to erroneous results in the effective cross sec-
tion and can lead to different conclusions with regard to the relative importance of plasma
ions and electrons in test-particle scattering.

I. INTRODUCTION

Recent feasibility studies' ' of possible steady-
state thermonuclear reactors have shown the need
to investigate in detail the behavior of fast charged

particles in energetic plasmas. Such studies are
important in calculating the thermalization rates
of fast test jons, ' the slowing-down time necessary
for these ions to transfer a major fraction of their
energy to the plasma, ' secondary fusion reactions,
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and velocity distributions' which are essential in

studying the dynamic behavior Gf fusion reactors. '
Several investigators have used the Rosenbluth-

MacDonald-Judd6 (RMJ) form of the Fokker-Planck
equation in their studies of this proble. For ex-
ample, Kranzer has determined numerically the
tlllle history of tile probab111ty dlstrlbutlon of fRst
test ions in velocity space for some special cases.
More xecently Kuo-Petravic, Petxavic, and Watson
have used the RMJ equatiGQ to study the energy
transfer from reaction-produced o. particles to
plasma electxons and ions in mirror reactors. 4 A

modified appxoach has previously been taken by
Butler and Buckingham' to calculate the energy-loss
rate from fast test ions. In all of the above work,
the classical Rutherford scattexing cross section
has been used. To avoid the well-known divergence
in integrating over the deflection angles, scattering
for angles smaller than Xo" is neglected where

X,
'"= (/v'„) v, (I)

Rnd ~h~~~ h = 41a~/«&011) Here q& an«y»«he
charges of the test and field particles, respectively,
11 is the reduced mass, v„ is the relative velocity,
&x, is the Debye screening length, and the rest of
the notation is used in the standard manner. The
validity criterion for the use of this classical cutoff
limit rather than the quantum-mechanical cutof f
angle

20' = &/ 11vs & v (2)

is discussed by several authors. The use of the
Rutherford cross section is limited to situations in
which the orbital model for scattexing can be used,
Rnd tile Valldlty cl'liel'1011 fol' tile use Of illis llR8 been
discussed by %'illiams, ' Bohr, "Everhart, Stone,
and Carbone, ' and Lane and Everhart. ' In cases
when the particle's wave properties must be con-
sidered, the Born approximation should. be used.
The px esent authors have treated the problem of
slowing down of fast test ions in plasmas in the
limit of g„—-v„where v, is the test-particle veloc-,
ity. 9'4 In this case the Born approximation can be
used for deflection angles from 0 to m, and no cutoff
angle need be assigned to get a closed-form solu-

n. For the general evaluation of energy degrada-
tion of ions released from thermonuclear reactions
in a plasma, , both the classical and quantum-me-
chanical formulas for the cross section must be
used since they are valid for mutually exclusive
velocity ranges. Lane and Everhart'~ have examined
a similar situation in calculating the total cross
section for scattering from Coulomb potentials with
exponential screening for the interaction of bvo col-
liding atoms. Theix' technique is adopted here to
include all angles of deflection in the calculations
and to obtain results which are valid for the com-
plete velocity range.

It is the purpose of this paper to calculate the ef-
fective total scattering cross section for the inter-
action between a test particle or a, beam of mono-
energetic pa, rticles in a plasma which has an arbi-
trary velocity distribution. The thermal motion of
the field particles affects the cross section greatly
lf tile test pR1'tlcle llloves wltll R velocity 1688 tllRll

or equal to the mean thermal velocity of the field
particles. Closed-form solutions are obtained for
the special case of Maxwellian field particles.

The total cross section obtained can not be mea-
sured owing to the dominant contribution of immea-
surable small-angle encounters, " however, its use
is essential in calculating the steady-state distribu-
tion of charged fusion reaction products in a thermo-
nuclear plasma from the transport equation. In
addition, the relative importance of plasma ions and
ele"txons is found for the special case of a Maxwell-
ian plasma. The results obtained here are compared
with the results obtained using different limits fox
the cutoff angle.

The diffex'eDtlal cross sectioDS fox' elastic scat-
tering by an expoQentlally screened Coulomb poteD-
tial are taken for the different angular regions as

~,"'(v„,y) = ($/2v2)' sin-' —,
' g, y,

'"( g ~ v

0,"'(v„,y)= ($/2va)'(sin'-, '11+-,'g,') ', 0 «g(g,"'
(4)

There is an uncertainty about the transition legion
in which neither expression is valid. However, ex-
tending the range of validity of Eqs. (3) and (4) to
y= yt' leads to an uncertainty in the effective total
cross section of a factor of —,'. Since the uncertainty
resides within a small numerical factor, the results
are qualitatively correct. Quantitatively, we have
included angular regions which have pxeviously been
neglected in the cutoff technique, and thus the re-
sults are expected to be numerically more rigorous
than those using the classical scattering cross sec-
tion, and a comparison is made in Sec. VI.

II, BINARY ENCOUNTERS

Consider the elastic scattering of a charged test
particle whose speed lies between ~ and v+ dv by a
charged field particle whose speed lies between t/"

and V+d V. As viewed in the c.m. frame of refer-
ence the test particle will Only cI1aQge its dix'ectioD
after an encountex', and therefore we can write its
speed in the laboratory system as

3 M 3 2M
5 = 5~+ p~+ U~ 'U~ cosg

We use standa, rd notation where m and M are, re-
spectively, the masses of the test and fieM particles,
g isthe speed of the test particle after anencounter,
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g ls the deflection angle 1n the e. m. system and

v„ is the velocity of the center of momentum. The
interaction between the two charged particles is
described by a screened Coulomb potential, and the
differential cross sections for such an interaction
are given by Eqs. (3) and (4).

The probability g(v, v, V, cose)dv' that a test.
particle of velocity between v and v+dv will emerge
within a velocity interval between v' and v +dv
after an encounter with a field particle of velocity
1/" whose direction makes an angle 8 with the direc-
tion of the test particle is given by

~.(v„X)dQ(X)
Os«r&

where dQ(X) is the element of solid angle and o, (v„)
is the total elastic cross section integrated over
all deflection angles as given in Ref. 13. By the
use of Eqs. (3)-(5) the probability given in Eq. (6)
can be expressed in terms of velocity as

g(v; v, V, cose)

(0,
2v)'v'(v'. —v')

[ 2 — »2+ & (())R(V~ —d)]2

2m&'v'(v', —v')

III. TOTAL CROSS SECTION FOR ARBITRARY VELOCITY
MSTRIBUTION

Consider the interaction between a charged test
particle and field particles of number density n with
an angular velocity distribution N(v, Q(8)). The
encounter rate per unit volume is

v„o,(v„)n~(v, Q(e))dQ(e)d V,
which can also be expressed as

vndo, (v, V, Q(8))

Here do, (v, V, Q(8)) is the microscopic cross sec-
tion for a test particle to encounter a field particle
whose velocity lies in a direction contained in the
solid angle Q(8) relative to the initial test-particle
velocity. Equating both results gives an expression
for the differential cross section defined by Eq. (9),

»l. e. )

do, (v, V, Q(e)) = (v„/v)o, (v„)X(v, Q(e))dQ(e)d V . (1O)

Now the total cross section for elastic scattering
between the test particle under question and the
field particles is obtained by multiplying Eq. (10)
by the probability given in Eq. (7) and integrating
over v', V, and Q(8), that is,

o, (v)= J J J g(v';v, V, cose)der, (v, V, Q(8))dv' .
v a(e) (11)

For a given distribution, Eqs. (7) and (10) can be
substituted into Eq. (11) and the solution gives the
desired cross section.

40, v &v

where v„vo, and v are the values of v a,t y= 0,
X = Xo, and y = g, respectively.

Consider a single-species Maxwellian plasma, of
energy kT where Eq. (11) can be written explicitly
as

"" '""' v'V'('- ') MV'
2mkT „„'q ~ v„(v, —v

,

"»~"
~

' v V(v, —v ) exp(—MV /2kT)d cose dv dV
„„', 1, ~ I, v',[v'. —v"+ fi'(v, —v')/4gPv', x~v]' (12)

%'hile the evaluation oi this equation is tedious, it
is straightforward and gives the result

ir, (e)= sm(»' ') (~) er((x),

for elastic scattering by a fixed scattering center.
Since a plasma is composed of two or more species,
it is more convenient to describe the medium by a
total macroscopic cross section Z„ that is

where x is the dimensionless velocity (Mv /2kT)
In the limit of x&1, the error function asymptoti-
cally approaches unity. The expression preceeding
the error function is in fact the total cross section

&& [kT, erf(x, )+ Z& kT& erf(x&)],

where the summation ls over all ion species.

(14)
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V. SCATTERING PROBABILITIES IN A THERMONUCLEAR
PLASMA

The probability per unit time that a charged test
particle will undergo scattering is related to the
total cross section by the relation

g(.„;., V, cosg)dv, = "4p, mv A2 v dv
3v~8

The probability per unit speed that the velocity of a
test particle is reduced to v is

P, (v) = vZ, (v) . ~k 5 dv„g(v; v, V, cos8)dv =
1210 vr&Dvm

(i9)

Consider the interaction of an energetic ionproduced
through a fusion reaction with the background ther-
monuclear plasma. In this case, x, &1 and x; &1,
and the scattering probability is approximately given
by

(2/Wv)x, x & 1erfx =
x&1.

More terms can be included for greater accuracy,
but here we are only interested in the investigation
of the relative probability of scattering by different
species. The values of the dimensionless velocity
x for charged fusion reaction products in plasmas
of thermonuclear interest are always greater than
unity for ions and less than unity for electrons so
long as T, &10 keV.

For all eases considered here the probability that
an ion produced from the fusion reaction will scatter
via plasma ions is larger than the probability that
it will scatter via electrons. Because the reaction-
produced particle is degraded in energy due to col-
lisions and therefore eventually x; &1 and x, «1,
thus Eq. (16) is not valid for the whole thermaliza-
tion range. At these lower test-particle speeds the
scattering probabilities become

3Z e
&.(v) =

4~2,'u2, „a

yn
2

~ ~m, ur, +Z &m, ur, 1- „'" . (»)
i

In practice the plasma gains energy from the hotter
charged reaction products, and consequently the
plasma temperature increases. However, in the
steady state, energy losses may balance energy
gains and the plasma temperature may be fairly con-
stant. As long as T& -7, the second term dominates
the first and the probability of scattering via, hydro-

gen ions is 30—45 times larger than that via elec-
trons. The same conclusion can be reached by in-
vestigating the probability distribution function given

by Eq. (7). The probability per unit speed that a
test particle emerges after an encounter with a
speed v, is

and this corresponds to a head-on collision.
Comparison of Eqs. (18) and (19) reveals that the

probability per unit velocity of a small change in
the velocity of the test particle is much much larger
than the corresponding probability for large changes.
As a matter of fact if v» V, test particle may
lose all its energy in one encounter with an ion of
equal mass. However, the probability that a 1-
MeV reaction triton loses its energy in a single
encounter with 10-keV plasma triton is of the order
of 10 per Z, while the probability that the test triton
loses a very small fraction of its energy in a single
encounter is about 10' per J. In addition, Eq. (18)
indicates that the velocity of the test particle is
more likely to be reduced by an encounter with an
ion than with an electron while Eq. (19) shows that
electrons are more likely to reduce v to v rather
than the ions.

Thus we ean conclude that the probability of scat-
tering per unit time of test particles by ions exceeds
the scattering rate by electrons. In addition the
probability that the test particles transfer their en-
ergy in small increments to the ions is significantly
more probable than transferring energy in large
increments to the electrons.

Although Eq. (11) has been applied to a Maxwell-
ian plasma. , other velocity distributions can be con-
sidered as well. For example, one could consider
the loss-cone distribution found in mirror machines.
The evaluation of the total scattering cross section
and the scattering rates using such distributions is
straightforward, although it is complicated by the
fact that velocity distribution of the plasma in the
mirror machine is not isotropic. The degree of
anisotropy depends on the mirror ratio and so does
the scalar velocity distribution.

It should be emphasized that we have restricted
our examples to the case where T, -T;; however,
the result in Eq. (14) is not so restricted.

VI. COMPARISON KITH DEBYE CUTOFF TECHNIQUE

To calculate the total cross section for elastic
scattering between two particles it is rather con-
ventional to integrate the Rutherford differential
cross section over all angles above some cutoff
angle and thereby neglect small-angle encounters.
The cutoff procedure is only meaningful if the Debye
sphere contains many plasma particles of the species
under consideration. " This condition is well sat-
isfied in a thermonuclear plasma; however, the
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choice of the limiting cutoff angle is a crucial prob-
lem. The rule is to choose the classical cutoff

angle Xo~" as the lower limit of the integration if

q,qz/4veohv„» 1. If such is not the case the quan-

tum-mechanical cutoff angle yo"' must be chosen,
and both angles are given in Eqs. (1) and (2). For
enexgetic test particles or interactions with elec-
trons and a low-Z plasma, the quantum-mechanical

angle is the proper angle. However, in following
the degl adatloD of energy of a test particle lD a
plasma there wil]. be an energy at which y,

'"=y,"'
below which the cutoff angle has to be yo"'. In
studying the total cxoss section for binary interac-
tions such a choice is not critical, but if the field
particles constitute a plasma of a specific velocity
distribution, the results will be sensitive to such
ChOiCeS.

If it is applicable to use yo"', the integrated total
cross section for elastic scattering of a test particle
by Maxwellian single-species field particles is

V,(v)"= o,"'(I/Vm x')[xe ~+ —,'Wv(2x'+1) erf(x)j,
(2O)

and 0,"' is given by the classical scattering cross
section in the limit of g» V, i. e. ,

(21)

Equation (20) is derived from Eq. (11)with the
proper choice of g(v;v, V, cosg).

The scattering probability per unit time for the
interaction of a test particle with a plasma com-
posed of electrons of x, & 1 and ions of x; » 1 is

(22)

If T, - T;, scattering by electrons is seen to dom-
inate that by ions. The apparent contradiction be-
t%'een this result and that fouDd lQ sec. V ls due to
the fact that within the velocity range in which Eq.
(22) is valid, the cutoff angle is less than that de-
termined by the uncertainty principle. Consequently,
we have included energy ranges for which classical
results are strictly invalid. The use of the proper
cross section given in Eq. (4) for angles larger
than Xo"' leads to results which agree with those of
Eq. (16) within a numerical factor of order 1.

In the limit of x, & x; & I we obtain

87I ~ e()n kT, kT; kT;x;

From Eq. (23) the scattering probability by elec-
trons is larger than that by ions. The apparent
contradiction between the implication of Eqs. (17)
and (23) Ls attributed to the fact that ln the derjva-
tion of Eq. (23) the classical cutoff angle is much
larger than yo' . The choice of the larger cutoff
angle does not affect the large-angle scattering
cross section; however, the scattering probability
and many other results are sensitive to such a
choice. This is because the extremely gentle en-
counters leading to small-angle scattering make up
a, large part of the total scattering probability. Thus
the main difference between Eq. (17) and Eq. (23)
is that the former takes into account important
scattering events which are neglected by the latter.
If the contribution of these events is added to Eq.
(23) we will get scattering probabilities similar to
Eq. (17) within a small numerical factor. In addi-
tion, the cutoff angle Xo~" in the limit of x«1 is
inversely proportional to the square of the thermal
velocity of the field particles under consideration
times the reduced mass of the test and field par-
ticles. Thus for T, -T; the cutoff angle for elec-
trons is likely to be lower than that for plasma ions
and more small-angle scattering events mill be in-
cluded in the calculation of the scattering probability
via electrons than that via ions.

Generally speaking, extreme caution must be ex-
ercised in using the cutoff technique. In the study
of test-particle interactions with thermonuclear
plasmas we are dealing with a, broad energy spec-
trum and there is always a danger of cutting off
dominant contributions to the results. In some
cases the de Broglie wavelength is much less than
the impact parameter of closest approach and con-
sequently the scattering distribution is extremely
rare for angles less than the limit given by go~".

Consequently, the error in the use of the cutoff
technique is not significant. On the other hand if
we are dealing mith weak interactions, the small-
angle scattering becomes more frequent than large-
angle scattering and an improper choice of the low
limit may lead to erroneous results. In addition,
the particular composition of the plasma affects the
cutoff angle. Both classical and quantum- mechan-
ical cutoff angles depend on the reduced mass and
the relative velocity. Consequently the limit on
the scattering angles for small-mass electrons is
different from that for ions. Furthermore, the
roles of lons aQd electl ons cannot simply be com-
pared to each other since the neglected small-
angle events may be more significant for one than
for the other.
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The method of correlated basis functions (CBF) is examined for the special case of a weakly

interacting Bose gas. Using the Hugenholtz-Pines theory, we compute the ground-state ener-

gy exactly to fourth order in. the interaction strength. The resulting expression is compared
term by term with the unperturbed ground-state energy computed in the CBF using a Jastrow
function as the correlating factor. %e find that the three leading orders are all accounted
for by the Jastrow function, while beginning in the fourth order only selected terms are in-
cluded. The use of a correlated wave function in effect corresponds to summations of sel-
lected diagrams to all orders. In particular, the ring diagrams and the ladder diagrams are
most susceptible to these summations. In a separate paper we shall examine effects of
perturbation in the CBF.

I. INTRODUCTION

N

H= 2 2m. V;+Z o(z;,),

and by t e statlstlcs of the particles.
A complete quantum-mechanical solution of the

problem consists of determining all propel ly sym-
metrized eigenfunctions of this Hamiltonian and the
corresponding spectrum of energy eigenvalues.
For all realistic problems, however, ve do not

entertain the hope of obtaining such a complete
solution; nor do ere desire such a detailed desex'ip-
tloIl. In particular, for understanding properties
of mattex' at lour temperatures, we need only in-

%e consider a system of N particles, contained
in a volume 0 and intex acting pair@rise via a po-
tential v(r). N and Il both approach infinity while
the number density Nn /0 remains constant. Such

a system is described by the Hamiltonian

formation concerning the ground state and the low&-

lying excitations. If the interaction v(x) is weak,
good approximation to these states can be found

by applying lour-order perturbative corrections
to free-particle states.

For quantum liquids and solids, vrhich include
liquid and solid helium, Coulomb gases, and nuc-
lear systems, the effects of e(x) are far from in-
significant. In fact, the interparticle corx elations
dominate the pxoperties of these systems. Under
these circumstances, the ordinary low-order per-
turbation theory fails. %'e have on our hands a
many-body problem.

Vfe distinguish in this paper bvo approaches
toward treating the many-body problem: the in-
dependent-particle representation and the corxelated
representation. By the independent-particle rep-
resentation me mean all field-theoretic methods
which employ an independent-particle basis. %hen
divergences arise in the matrix elements of v(r),
or in the perturbative expansion, one turns toward


