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The classical equations of motion of a one-dimensional, finite, anharmonic lattice, with

nearest-neighbor interaction of the Lennard-Jones type, are investigated numerically. The
results indicate that when the vibrational energy per particle is equal to or greater than
2-3% of the depth of the potential well, one has, in time average, equipartition of the energy
among the normal modes, thus giving a hint toward ergodicity of the system at sufficiently
high energy. For lower energies one finds recurrent motions if initially only one normal
mode is excited in analogy with a famous result due to Fermi, Pasta, and Ulam. In this
case the numerical results are consistent both with the existence of a long relaxation time
and with a lack of ergodicity for low energies.

INTRODUCTION

In recent years the problem originally considered
by Fermi, Pasta, and Ulam (FPU), ' i.e. , the solu-

tion of the classical equations of motion of a one-
dimensional finite chain of particles with forces be-
tween neighbors containing nonlinear terms has
been extensively studied. The surprising result
obtained by FPU is the lack of equipartition of en-

ergy in time average among the normal modes of
the system. whether this is due to the relatively
short time over which the time averages are com-
puted or to an intrinsic nonergodicity of the sys-
tem is up to now still an open question, notwith-
standing the progress and the new insights made
in the problem by many authors.

The most interesting advances are concerned
with systems which are not exactly those considered
by FPU. In particular, Toda' has studied a model,
with exponential interaction, for which exact solu-
tions can be given in closed form, representing
states for which equipartition of energy among the
normal modes is never attained in time average.
However, no conclusion can be drawn from this
regarding the ergodicity properties of the system.
In fact, the measure of the set of the soliton states
on the energy surface is zero.

On the other hand, Kruskal and Zabusky, ' ap-
proximating the one-dimensional chain by means
of a continuum —in which case one is led, corre-
sponding to the Fermi model, to the well-known
Korteweg-Pe Vries equation —have shown that
their model has solitonlike solutions, but the prop-
erties of these solutions represent those of the
discrete model only for finite and not too long in-
tervals of time. Finally, in a very interesting
paper, Northcote and Potts have proved that if
the nonlinearity is represented by a hard-core
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FIG. 1. Particle number K=48; total energy E=50.
initial condition: first normal mode excited; solid line:
time average on 116 longest cycles; dotted line: time
average on the last 19.4 cycles. From Figs. 1-4 it is
evident that, as the total energy increases, there is an
increasing tendency towards energy equipartition, in
time average, among the normal modes. From Figs. 1
and 2 one sees that the partial average, over the last
19.4 longest cycles, of the energy of the normal modes
is nearer the equipartition than the general average.

interaction there i.s in time average equipar
tition of energy among the normal modes, as pre-
dicted by standard statistical mechanics.

In the present paper a one-dimensional chain of
particles with nearest-neighbor interaction is
studied numerically; the interaction potential is
of the Lennard-Jones (LJ) type. The numerical
results indicate that there is equipartition of en-
ergy in time average among the normal modes
only if the energy per particle is of the order of,
or higher than, a few percent of the depth of the
LJ potential. At energies lower than 17o of the
depth of the LJ potential, one obtains again re-
sults similar to those of FPU, which was to be
expected since in this range of energies the poten-
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FIG. 4. N= 48~ E= 400; initial condition: RS before~
solid line: time RverRge on 116 longest cycles; dotted
line: tiID8 Rverage on the 1Rst 19.4 cycles.

FIG. 2 +=48' E = 100' inltiRl condition~ Rs before'
solid line: time average on 116 longest cycles: dotted
line: time average on t'he last 19.4 cycles.

tiRl cRn be x'eRsonRbly approximated by quadratic
Rnd cubic terms ~

Furthermore, if one QSSQI88 thRt the tempera-
ture of the system is proportional to the time
average of the kinetic enex'gy of one particle, one
obtains the mell-known results of the classical en-
semble theory concerning the specific heats.

DESCRIPTION OF MODEL

%e shall study the classical motion of a, one-di-
mensional chain of particles with nearest-neigh-
bor interaction and fixed ends; the interaction po-
tential is the LJ potential:

V = 4e [(a/R)" —(»r/B)'],

where &=120'K, o =3.4&10 8 cm, and the mass
M of the interacting particles is equal to 6.4~10
g. The model represents a chain of argon atoms.

It is convenient to introduce a new system of
units ln which the unit mass, the unit tixne, and
the unit length have the following values: 6.4
~10 'g, 10 "sec, 3.4X10 'cm. Inthesenew
units the Boltzmann constant is equal to 0.23 and,
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if one nox'malizes to zero the minixnum of the po-
tential energy, the interaction potential between
two particles can be written in the. following way:

v = —bio {s—i/x')(r/x')+ 27.5, (2)

x being the d stance between two particles. The
equilibrium distance is x,~

= 2'~ . Now if y; is the
displacement of the ith particle from its equilibrium
position, the eqURtlons of motion of the N pRx'ticles
of the one-dimensional chain can be written

' (2"'+y»-x» &)' (2"'+~»-v»»)'

2 1
+ 660 1 g/6 6 j/6+3» 1 X») (2 +3» 1 3»)

FIG 5 %=8. 8=24
initiRl condition: first nor-
mal M.ode excited; solid
line: time average on 1917
longest cycles; dotted line:
time RverRge on 'tl18 lRst
383 cycles ~ Figux'88 5—
12 show that there is no
RppreciRMe incr 8Rse in
the tendency towards equi-
partitlonq in time average~
when the particle number
inc reRse8.
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I"IG. 3. N=48; E =240; initial condition: as before;
solid line: time average on 116 longest cycles; dotted
line: time average on the last 19.4 cycles.

»
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FIG. 6. N=11; E=11; initial condition: first normal
mode excited; solid line: time average on 1441 longest
cycles; dotted line: time average on the last 288 cycles.
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FIG. 8. N=14; &=14; initial condition: first normal
mode excited; solid line: time average on 1154 longest
cycles; dotted line: time average on the last 235 cycles.

(i=1,2, . . . , N) .
In the harmonic approximation the equations of mo-
tion are

y &= —(1980/2 )(2y&-y, & -y&+ i)

(i=1,2, . . . , N) .

It is convenient to introduce the normal modes

by means of the relations

The total energy of the kth normal mode, in the
harmonic approximation, is given by

E&=2a, +1980&&2 ~'a,'sin (gk/2N, ),
from which one easily gets the frequency of the
mode. In our units the longest period of the un-
perturbed normal modes is approximately g~Ng,
while in real time units this period is equal to
5~10 &3Nj sec.

DISCUSSION OF NUMERICAL SOLUTION

(Nt=N+1, 0=1,2, ~ ~ ~, N) .

Equation (8) has been integrated numerically.
In the computational program the time average of
the energy of every normal mode was evaluated

, , E
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FIG. 7. N=11; E=33; initial condition: first normal
mode excited; solid line: time average on 1441 longest
cycles; dotted line: time average on the last 288 cycles.

FIG. 9. N=14; 8=42; initial condition: first normal
mode excited; solid line: time average on 1154 longest
cycles; dotted line: time average on the last 231 cycles.



2.0-

1,5-

2.0-

1.0"

10

FIG. 10. N=17; E=17; initial condition: first normal
mode excited; solid line: time average on 962 longest
cycles; dotted line: time average on tke last 192 cycles.

together with the time average of the kinetic en-

ergy of each particle and of the potential energy
of each normal mode. The time averages were
evaluated both on the complete interval of time
over which the system volved and on partial in-
tervals of time in which the complete interval
could be divided. The initial conditions of the sys-
tem were such that one or more normal modes
wer'6 excited. ' The encl gy was equRlly dlvlded

among the excited normal modes, and the positions
Rnd velocltles of the pRrtlcles wex'6 chosen ln R

random way, consistently with the initial energy
distribution.

2,0-

17 k

FIG. 11, %=17; E =52; initial condition: first normal

mode excited; solid line: time average on 962 longest
cycles dotted line: time average on 192 cycles,

FIG. 12. X=20; E=60; initial condition: first nor-
mal mode excited; solid line: time average on 825 lon-
gest cycles; dotted line: time average on the last 165
cycles.

The aecuraey of the computation was tested in
different ways. The simplest one is based on the
conservation of the energy of the system, which
was satisfied even in the longest runs withi. n two

or three parts in 10 . Direct contx'ol of the ac-
curacy of the positions and velocities of the par-
ticles was obtained in two ways: (i) The equations
of motion were solved in the case of harmonic
forces, and the numerical solutions compared with

the exact ones. (ii) The use of time reversibility
of the system allowed us to compare the direct
motion and its time reversal. In both eases the
accuracy, insofar as coordinates and velocities
were concerned, has been within several percent
on the longest ti,mes over which the system was
studied. The accuracy was by fax' greatex for the
more significant quantities, such as the time av-
erages, both par'tial and total, of the total energy
of the single modes.

S1nce lt ls important, ln order to study the equ1-
librium properties of the system, to follow its
motion over long times, great effor't was spent to
make th6 cRlculRtlon Rs fast Rs possible 1n older'
to minimize the eoxnputer time. This could be ob-
tained by x'eading the interaction force from R table
calculated in advance, in which the force was
evaluated at 25000 points on the range 0.5-2. 5;
for distances different from those given by the
mesh points, the forces were linearly interpolated.

The computation was performed in such a way
that the elementary step of integration was taken
to be equal to 1. This avoided all multiplieations;
therefore only sums were involved in the elementary
step. To give an idea of the computer time we

mention that a typical calculation concerning a sys-
tem of 20 particles, whose evolution was followed
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for 825 longest periods of the unperturbed system,
took 16 min on a 360/66 IBM.

MSCUSSION OF RESULTS

It follows from clRsslcRl stRt1stlcRl mechanics
thRt the Inlcl ocRnon1cRl RverRges of the kinetic en-
ergy of the particles and of the normal modes are
all equal (equipartition theorem of the kinetic en-
ergy). One of the aims of our calculations was to
verify whether this holds true on a purely dynamical
basis. Of course this would not prove the ergodicity
(or the nonergodicity} of the model, but in any case
it would be a dynamical justification (or a dynamical
disproof) of many standard results of statistical
mechanics.

0,6- FIG 14 N=20 X=10
initial condition: equMis-
trlbution of the energy
among the normal modes.

From our computations it follmvs that the time
averages of the kinetic energies of the particles
have the same value (within a few parts in 10').
Even for not too long time evolutions (of the order
of 50 longest periods of the harmonic unperturbed
system), they have the same value within a few

pRrts 1n 10
Since all our results show that the average po-

tential energy, fox fke I.J potentia/, practically
coincides with the average kinetic energy, it fol-
lows that the total energy of the system is propor-
tional to the average kinetic energy of a particle.
Th18 result 18 n1ore RccurRte Rt low encl gles~
while at high energies, of the order of 10K, it is
true within 4-5/g. If one assumes that the temper-
ature is proportional to the average kinetic energy
of a particle, one obtains the classical result that
the specific heats are constants.

Insofar as the norInal modes are concerned, the
discussion is somewhat more complex Rnd a more
detailed discussion 18 1equlred.

FIG 13 N= 11 E = 5 6. initial condition. equidistri-
bution of the energy among the normal modes; solid line:
time average on 1441 longest cycles; dotted line: time
average on the last 288 cycles. From Figs. 13-16 one
sees that, rvhen the energy is initially equidistributed
among the normal modes, there are random fluctuations
of the average energies of the normal modes. These
fluctuations become less evident @&hen the total energy
E increases.

0 2 4 6 6 I0 k

%'e have found it convenient to study first of RQ

the behavior of systems of very few particles for
a very long interval of time. This study eras use-
ful for identifying in systems of many particles
those properties which are common to systems of
any number of particles. In this case the compu-
tRtlon wR8 cont1nued until the Rvex'Rge vRlues of the
energies of the normal modes were constant in
time. This was not practically feasible for many

particles but the long time properties of the sys-
tems of few particles were of great help in inter-
preting the results obtained in the case of many
particles.

The case N= 2 was studied (as were the other
cases) for a wide range of initial energies starting
froIn E=0.0j. up to E=24, i.e. , to an energy very
near the depth of the potential, mell, which is, in
our units, equal to 2V. 5. The initial conditions
&&ere chosen in such a may that either a single
normal mode only eras excited, or the energy was

equally shared between the two normal modes. In

both cases the time averages of the energy of the
normal modes reach very soon an asymptotic value
which remains unaltered in the time evolution,
vrithin the numerical error. The partial averages
over sufficiently long time intervals are also in-
dependent of the time origin.

The exchanges of energy between the normal
modes become strong and fast when the energy of
the system approaches the value 1. In this case,
if initiaQy only one normal mode is excited, the
other can acquire for short times even a large
fraction of the energy of the system. Such a frac-
tion grows vrith the energy and can reach practically'
the value 1 for energies equal to 24. However, the
initially excited mode remains always predominant
1n t1me average and tends to keep pract1cally the
whole energy of the system for a total energy not
far from unity, and a large fraction of it, well
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Flo, 15, &=20; 8=64; initial condition: equidistxi-
bution of the energy among the normal modes; solid line:
time average on 1101 longest cycles; dotted line: time
average on the last 220 cycles.

above 50%, when the energy is as large as 24. If
one starts instead from an initial state in which the
energy is equally shax'ed between the two modes,
one gets, from a, wide statistics, the following x'6-

suits: Only ln R f6%' cR868 18 the equRl shRx'iQg

conserved in time average within several percent;
in all the others the distribution of the averages
depends on the initi. al positions Rnd velocities of the
particles and in some cases the lower mode px'6-

vails in time average, in others the higher. How-

evex', Rvex'Rglng ovex' the lnit1Rl conditions gives
equipartition of enex'gy as expected fx om the micro-
canonical theory of statistical mechanics.

The nuIQerical calculations show that the system
is recurrent within the limits of the numerical er-
ror. In one period of recurrence the system does
not x'un through the whole energy sux'face, as is
proved by the fact that the time averages of the en-

ergy of the modes are far from the equipartiton.
At this point one can make two conjectures that
are both consistent with the numerical xesults.
(i) The system is ergodic and its trajectory changes

only slightly from one quasiperiod to the other. In

such a ease the time that the system would require
to go through the whole energy surface would be
very large. (ii) The system is nonergodic, and it
runs only through a part of the energy surface de-
pending on the initia, l conditions. This second con-
jectuxe is supported to a certain extent by the fact

that the cases we have studied can be divided into
groups such that within each group the time aver-
ages of the energies of the normal modes are the
same. This conjecture seems to us to be the most
probable one Rnd 18 consistent with the ex3.stence
of constants of the motion other than the enex'gy.

The case N = 4 is completely similar to N = 2.
The motion is clearly recurrent within the numer-
ical error. The period of recurrence, when only
one normal Inode 18 excitedp 18 shorter thRD %'hen

Rll the normal modes are excited; such a recur-
rence remains evident up to N= 20.

However, when one passes from N = 4 to N= 8
one observes an important change in the properties
of the system. While for 2 or 4 particles, starting
from an initial condition in which only one normal
mode is excited, one never reaches a practical
equipartition of the energy, for N = 8 or larger
(&= 8, 11,14, 17, 20, 40, 50, 100) one reaches, in time
average, a practical equipartition of the energy
among the normal modes when the energy per par-
hcle is near or greater than l.

When the number of parti. cles becomes gx'eater
(e.g. , N= 20), the behavior of the system becomes
more complex and the recurx'ence of the motion is
still present only when one normal mode is ex-
cited with total energy lower than ¹ In the other
cases (high energy of excitation and only one nor-
mal mode excited, or all the normal modes ex-
cited), the recurrence of the motion is no longer
evident; one has only some indications that it might
stiG be present, but with a period xnuch largex
than in the case of few particles. For N= 20, 50,
100, one has, in time average, equipartihon of the
energy among the normal modes for total energies
of the order of N or higher, when in the initial state
either one mode or all the initial modes are excited.

For»wer energies (of the order of,~N or

40

FIG 16 +=50 E = 80 initial condition. equidistri-
bution of the energy among the normal modes.

I'IG. 17. N= 50; E = 100; initial. condition; excitation
of the 25th and 26th modes; solid line: time average on
77 longest cycles; dotted Bne: tinM average on tll8 last
19.4 cycles. The behavior of the system js Practically
the same @&hen only the first mode is initially excited.
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smaller), when in the initial state one normal
mode is excited, equipartition of the energy is
never achieved. On the contrary, in this case,
when in the initial state the energy is equally dis-
tributed among the normal modes, one has in gen-
eral, during the motion, a nonequipartition in time
average. However, the modes with greater energy
are scattered at random over the whole spectrum
of the normal modes, and one has a coarse-grained
equipartition. Of the many cases studied we pre-
sent in Figs. 1-17 a selection which illustrates
some typical behaviors discussed above.

CONCLUSIONS

The most important conclusion of this paper is
that when the energy of vibration per particle is
equal to or greater than 2 or 3% ot' depth of the po-
tential well and the number of particles is suffi-
ciently large, one has, in time average, equipar-
tition of the energy among the normal modes, in

spite of the fact that there is no evidence for the
system to be ergodic. For lower energies one

has recurrent motions if, in the initial condition,
only one normal mode is excited, as found by FPU.
In this respect one must remark two facts: The

times over which the system is studied, i.e. , some
thousands of longest periods of the unperturbed
system, are in effect rather short. A thousand
longest periods of the system amounts to 5 &&10 ' X
sec, andthat means that for 20-100 atoms, if the

energy is sufficiently great, one reaches equipar-
titon in 10 sec.

The practical difficulty of keeping the numerical
error small over times longer, for some order of
magnitudes, than those over which the system has
been studied makes it difficult to reach numerical
conclusions on the equipartition of the energy for
low excitation of the system. However, in such a
case if the initial state is one of equal distribution
of the energy, such a state is macroscopically con-
served in time average, the more excited modes
being distributed randomly over the whole fre-
quency spe ctrum.

We may conclude by saying that, in the case of
very low total energies, the relaxation mechanism
towards the standard Boltzmann distribution of the
normal modes might act so slowly that the coupling
of the system with a thermal bath could be very
important in determining the approach of the model
towards such a distribution.
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entific Laboratory Report No. 1940, 1955 (unpublished).
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Scattering Probability for Fast Test Particles in a Plasma*
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An effective total cross section is calculated for e1astic scattering of a monoenergetic beam
of test particles in a plasma of arbitrary velocity distribution. Closed-form solutions are ob-
tained for the special case of Maxwellian field particles taking into account small-angle scat-
tering. The result are compared with those obtained using the Debye cutoff technique, and it
is shown that such an arbitrary cutoff can lead to erroneous results in the effective cross sec-
tion and can lead to different conclusions with regard to the relative importance of plasma
ions and electrons in test-particle scattering.

I. INTRODUCTION

Recent feasibility studies' ' of possible steady-
state thermonuclear reactors have shown the need
to investigate in detail the behavior of fast charged

particles in energetic plasmas. Such studies are
important in calculating the thermalization rates
of fast test jons, ' the slowing-down time necessary
for these ions to transfer a major fraction of their
energy to the plasma, ' secondary fusion reactions,


