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The velocity correlation function of an atom in a simple liquid is calculated using a fre-

quency-dependent version of the Stokes-Einstein formula.

Stokes’s law for the frictional

force on a moving sphere is generalized to arbitrary frequency, compressibility, and visco-

elasticity, with arbitrary slip of the fluid on the surface of the sphere.

This frequency-

dependent friction coefficient is then used in a generalized Stokes-Einstein formula, and the

velocity correlation function is found by Fourier inversion.

By using physically reasonable

values for viscoelastic parameters, good agreement is obtained with the velocity correlation
function determined by Rahman using computer experiments.

INTRODUCTION

Rahman’s determination® of the velocity correla-
tion function in liquid argon, done by computer
experiments, provides detailed information on
dynamical processes in simple liquids. Many at-
tempts? have been made to reproduce his results
by purely theoretical arguments, with varying de-
grees of success. In this article, we present still
another theoretical discussion of the velocity corre-
lation function. Our calculation is based on hydro-
dynamics, and in particular, on a generalization
of Stokes’s law for the frictional force on a sphere
moving in a viscous fluid continuum.

The possibility that a calculation of this kind
might be reasonably valid for liquid argon occurred
to us after learning about a recent investigation by
Alder and Wainwright. ® Using computer experiments
on a hard-sphere system, they observed hydrody-
namic structure in the velocity field around a dif-
fusing sphere.

Stokes’s law was derived originally for the steady
motion of a sphere in a viscous incompressible
fluid. This was extended by Stokes and by Boussi-
nesq to allow for motion with arbitrarily changing
velocity. Our further generalization includes the
effects ot compressibility and viscoelasticity of
the fluid.

In our treatment, the diffusing atom is a sphere
of known radius and mass. {The radius is deter-
mined by the coefficient of self-diffusion.) The
surrounding fluid is characterized by its density,
sound velocity, shear and volume viscosities, and
their associated relaxation times. The interaction
between the atom and its environment is described
by a hydrodynamic boundary condition.

In essence, our procedure is to derive a frequen-
cy-dependent version of the Stokes-Einstein formula,
and from this, the frequency spectrum of the vel-
ocity correlation function. On Fourier inversion,
the time dependence of the velocity correlation
function is obtained.

(1Y)

By choosing reasonable values for the parameters
listed above, we obtain good agreement with Rah-
man’s numerical results. In particular, we find the
first minimum in Rahman’s curve, with the right
depth and at the right position. The most serious
discrepancy is at very short times: Our velocity
correlation function has a cusp at zero time, while
the correct one must be rounded. This is due to
use of a boundary condition, rather than an inter-
molecular force, to describe the interaction of the
atom with its surroundings. We find that the vel-
ocity correlation function becomes positive at very
long times, and approaches 0 asymptotically with
time as 1/¢%/2. This agrees with conclusions ob-
tained by Alder and Wainwright® using dimensional
arguments, and verified by them on the hard-sphere
system. Our prediction cannot be checked against
Rahman’s results because of the time scales in-
volved.

MOTIVATIONS

According to the Stokes-Einstein formula, the
diffusion coefficient D of a spherical body of radius
a in a fluid with viscosity 7 is given by

D=kgT/6ma (1a) .

The absolute temperature is 7, and kg is Boltz-
mann’s constant. This formula is derived with the
boundary condition that the viscous fluid sticks
perfectly to the surface of the sphere. If the fluid
slips perfectly over the surface of the sphere, the

corresponding formula is
D=FkgT/4mma (1p)

The remarkable approximate validity of the
Stokes-Einstein formula for bodies of molecular
size is well known. By using experimental data for
liquid argon at 90K, the following atomic radii are
found:

a(stick)=1.17A; a(slip)=1. 764 .

For liquid sodium at 373K, the corresponding
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numbers are
a(stick)=0.944; a(slip)=1.40A.

These radii are entirely reasonable, especially
with the slipping boundary condition.

But the Stokes-Einstein formula is not exact for
molecular diffusion. Inspection of the meager ex-
perimental data available suggests that the apparent
radius is not independent of pressure and temper-
ature.

Another reason for concern is that there is no
Stokes’s law in the conventional sense in a two-
dimensional system. Here, the friction coefficient
itself depends on the logarithm of the Reynold’s
number, and diverges in the limit of zero velocity.4

However, the approximate validity of this for-
mula is so striking that we ought to take it serious-
ly. It would be desirable to understand why it works
so well, and how to improve its accuracy; but this
is a difficult problem and little progress has been
made.

So far we have discussed the Stokes-Einstein
formula only for steady motion (or zero-frequency
behavior). Since the Fourier transform of the
velocity correlation function may be regarded as
a frequency-dependent diffusion coefficient, the
generalization of the Stokes-Einstein formula to
arbitrary frequency is of interest. We present the
generalization in this article, and we show that it
is in good agreement with Rahman’s computer ex-
periments on liquid argon. Our results provide
further evidence on the validity of the hydrodynamic
approach to the theory of self-diffusion, although
the more fundamental questions, why it works so
well and how to improve it, remain unanswered.

STANDARD STOKES-EINSTEIN THEORY

A brief survey of the standard Stokes-Einstein
theory will provide a useful introduction to our
later discussion of the generalized frequency-de-
pendent Stokes-Einstein formula. First, we out-
line the main steps in the derivation of Stokes’s
law, and then we show how the Stokes-Einstein
formula follows.

The derivation of Stokes’s law begins with the
Navier-Stokes equations of hydrodynamics. These
are equations of motion for the mass density
p(R, t) and the velocity field V(R, ¢) of the fluid,

9 ->
_aftl=_v-pv ) (@)
5 Z_‘tf._f.pi;. VG:—-VP'anaV'F(%TI'an)VV. V * (3)

The coefficients of shear and volume viscosity are

7 and 7,, and P is the hydrodynamic pressure.
The first step is to linearize. In particular, the

term V- VV is omitted, and V- pV becomes poV - V,
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where p, is the uniform equilibrium fluid density.
Next, steady motion is assumed. This means that
all time derivatives are set equal to 0. A special
consequence is that the divergence of the velocity
also vanishes, V. V=0, so that the fluid can be
treated mathematically as incompressible. (Note
that the fluid does not have to be physically incom-
pressible; the derivation is equally valid for a
gas.)

The sphere moves with uniform velocity U. One
boundary condition is that the fluid remains at
rest infinitely far from the sphere. Another bound-
ary condition is concerned with the behavior of the
fluid at the surface of the sphere. Here two choices
may be made. (One can in fact consider a continuous
variation from one to the other, but we mention
here only the two extreme cases.) In the limit that
we refer to as “stick,” the fluid adheres perfectly
to the surface of the sphere, so that v= U every-
where on the surface. In the other limit, referred
to as “slip, ” the normal and tangential behavior of
the fluid are specified separately. The normal com-
ponent of the fluid velocity matches the normal com-
ponent of the velocity of the sphere everywhere on
the surface, v,=U,. This is a kinematic condition,
and means that no fluid can enter or leave the sphere.
The other part of the boundary condition for slip
is that the fluid exerts no force tangentially on the
sphere. If T is the stress tensor at the surface,
and a; and 59 are unit vectors normal and tangential
to the surface, this condition takes the form

490 g =0.

The rest of the derivation involves solution of
the linearized Navier-Stokes equations subject to
these boundary conditions, calculation of the stress
tensor on the surface, and integration over the
surface to get the total frictional force. We pass
over the details here.

The results of the derivation are the well-known
formulas for the frictional force F on the sphere,

F(stick) = - 6mmaU, F(slip)=-— 47ma¥ . (4)

To get the diffusion coefficient, Einstein argued
that
D=FkpT/t, (5)

where ¢ is the friction coefficient, either 6ma or
47ma in the Stokes’s problem. In order to lead up
to our later discussion, we give here a contempo-
rary version of Einstein’s argument.

The diffusion coefficient can be determined in
general from the velocity correlation function

D=[" dt(UU®) , (6)

where U,(¢) is the velocity of the diffusing particle
in the x direction at time # and (---) represents
an equilibrium ensemble average.
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First, we average over an equilibrium distribution
of initial states of the surrounding fluid, under the

constraint that the initial velocity of the sphere is The equilibrium average of the square of the initial
U(0); and then we average over an equilibrium velocity is just k5T/m, so that the result is the
distribution of initial velocities 6(0). The equation familiar Stokes-Einstein formula.

of motion of the sphere is a Langevin equation in Note that in this argument the velocity correlation
which the total force consists of a frictional force function decays exponentially in time. This is not
(given here by Stokes’s law) and a randomly fluc- observed in Rahman’s computer experiments. The
tuating force. The average of the random force actual shape of his velocity correlation function
over an equilibrium d_i.stri_[aution of initial states is compared with the corresponding exponential de-
of the fluid is 0. Let V(t; U(O)) denote the velocity cay in Fig. 1. The discrepancy suggests that a more
of the sphere at #, averaged over the same dis- detailed theory than the one just outlined must be
tribution of initial states of the fluid. This depends developed.

parametrically on the given initial velocity U(0).
Then the equation of motion of the averaged velocity

Vis THEORY
m av -tV ’ Q) The standard Stokes-Einstein theory that has
dt just been reviewed applies to steady motion only,

where m is the mass of the sphere and ¢ iseither
of the friction coefficients mentioned above. The

solution is eralization, to be discussed now, uses results

®) already obtained by Stokes in 1851.

V(5 0(0)=T(0) e/ . -
V(% U(0)=U(0) e The basis of the first generalization is the ob-

We multiply this by the initial velocity U,(0) and servation that it is not consistent to use a friction
do the final average over the initial velocities to °°ef.ﬁ°1?nt der1ved~ Wwith an assumption of steady
find the correlation function motion in an equation of motion describing changes
in velocity. Let us suppose that the velocity of the
2y - ry
(UL0)U(2) ) = {(UL0))2 )5t/ ™ (9) particle is an arbitrary function U(¢) of time. This
On integrating over time, the diffusion coefficient can be Fourier analyzed into frequency components

becomes Uos

FIRST GENERALIZATION OF THE STOKES-EINSTEIN

and should be regarded as a zero-frequency theory.
Generalizations to a theory for arbitrary frequen-
cies can be made in several ways. The first gen-
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In the same way _Ehe frictional force i’*"(t) has Four-
ier components F ,

F(t)= [  doF,e ™t . (12)

Because of the linearity of the hydrodynamic
equations of motion, any Fourier component of the
force is proportional to the corresponding Fourier
component of the velocity,

F,=- t)T, . (13)

Stokes derived an expression for ¢(w) under the
same conditions that were used for the zero-fre-
quency theory: incompressibility and the stick
boundary condition. It should be observed that now
the assumption of incompressibility is a physically
significant limitation, since it does not follow from
an assumption of steady motion. Stokes’s result
is

t(w) = 6mna - 2ma%wp/3 - 61a% Gwom)/2 . (14)

The first term is the ordinary Stokes’s friction,
the second term is connected with the virtual mass
of a sphere in an incompressible fluid, and the
third term is related to the penetration depth of
viscous unsteady flow around a sphere.

The corresponding expression for the time-de-
pendent force F(¢) was found by Boussinesq, and
has been used, e.g., in treating the approach to
steady motion of a sphere falling from rest in a
viscous fluid.

The frequency-dependent friction coefficient
derived with the slip boundary condition is

8ma®i(iwpn)’?
3 +ai(iwp/n)*

A derivation of the velocity correlation function,
analogous to the one just described in connection
with the zero-frequency theory, is easy to carry
out. The results, with either boundary condition,
do not agree at all well with Rahman’s computer
experiments.

The reason is that important physical effects
have been left out. A consideration of characteristic
time scales will suggest what has to be done. The
time scale for diffusion is determined by the re-
laxation time m/¢; for liquid argon this is of the
order of 10"¥sec. Thus we are concerned with
frequencies of the order of 10'®*Hz. These are also
the time and frequency scales found in Rahman’s
work.

The sound velocity in liquid argon is of the order
of 10°cm/sec. Then, the time required for a sound
wave to propagate over an interatomic distance is
also about 10"**sec. This means that we should not

t(w) =4mma - 2ma° fiwp - (15)
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neglect sound propagation; important effects may
arise from the compressibility of the liquid.
Finally, we note that for the short times or high
frequencies of interest here, a liquid behaves
viscoelastically.® This behavior can be accounted
for by using a complex frequency-dependent vis-
cosity coefficient. A common approximation due to

Maxwell, probably good enoughfor present purposes,
is

n(w)=ny/(1 - iwT) , (16)

where 7 is a viscoelastic relaxation time. It is
known that this time is of the order of 103 sec for
liquid argon.

Thus it seems obvious that both compressibility
and viscoelasticity will contribute significantly to
the structure of the velocity correlation function.

SECOND GENERALIZATION OF THE STOKES-EINSTEIN
THEORY

This section contains a derivation of the general-
ized friction coefficient {(w), including the effects
just mentioned. The derivation starts from the
linearized Navier-Stokes equations,

9 -

Egz—pov-v , (2

N opanvE G vV v (3
Pogy =~ VP+nVV+ 3N+1M,) V.

As in our earlier discussion, the arbitrary velocity
of the moving sphere is expressed in terms of its
Fourier components. Because of linearity, we may
consider each Fourier component individually.

The excess density of the fluid is 6p =p —po. This,
and the velocity of the fluid, will vary periodically
with frequency w, so that we may write the Navier-
Stokes equations in the form

-iw(ép)wz‘PoV' ‘7(.) ) (17)
- iwpW =~ VP, +nVET, + (30 +n,)VV- ¥, . (18)

It should be kept in mind that the two viscosity co-
efficients # and 7, are now regarded as complex
functions of frequency.

The gradient of pressure is

8P

o e
o Vp=C2védp , (19)

VP=
where C is the sound velocity. [Normally Eq. (19)
includes a gradient of temperature or entropy. At
the frequencies of interest here the fluid is expected
to behave isothermally, so that the extra gradient
may be omitted. At lower frequencies, appropriate
to the motion of a macroscopic sphere, the fluid
is expected to behave isoentropically, and again
the extra gradient may be omitted. In one case the
sound velocity is isothermal, and in the other it
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is adiabatic. |
On solving Eq. (17) for the excess density in
terms of the velocity and substituting this into Eq.

(18), we get
(4p)u=poV - V,/iw , (20)

—iwpgTy=—C¥py/iw)VV - ¥,

+NVEV, +(GN+N)VV - T, . (21)

Equation (21) now contains only the fluid velocity.
For convenience we divide through by p, and
then introduce the two kinematic viscosities

ve=1/po, vi=(51+n,)/po - (22)

Next, we multiply through by iw and introduce two
complex frequency-dependent sound velocities C,
and C,,

C2=C%-iwy,, Cil=-iwy,. (23)

By means of a standard vector identity, we sepa-
rate the Laplacian into its longitudinal and trans-
verse parts. After all this, Eq. (21) becomes

w?V,+CiVV . ¥, - C2UXVUXTV,=0. (24)

Now the problem is to solve this vector Helmholtz
equation with appropriate boundary conditions.
The sphere moves with velocity

U@t)=T e vt . (25)

Strictly speaking, the boundary conditions apply on
the surface of the moving sphere; but as a result
of linearization, we may safely use the boundary
conditions on the surface of a stationary sphere,
fixed at the origin. As was mentioned earlier, the
boundary conditions have several parts. First, the
fluid velocity vanishes at infinity. Second, the
normal component of the relative velocity of sphere
and fluid vanishes on the surface,

(V-T)- 2=0 , (26)

where 2 is a unit vector normal to the surface of
the sphere. The third condition is concerned with
the degree of slip or stick at the surface. A com-
monly used assumption here is that the tangential
component of the relative velocity of sphere and
fluid is proportional to the tangential component of
the force exerted on the sphere by the fluid. If

3, is a unit vector tangential to the surface of the
sphere, and G’ is the stress tensor, this propor-
tionality is expressed as

dp* T - §9=(B/a)('?-—ﬁ)' d , (27
where B is a coefficient of slip. Two extreme cases
are B=0, which corresponds to perfect slip, and

B=c, which corresponds to perfect stick. (In the
latter case, if the force on the sphere is to remain
finite, the tangential component of the relative vg_l—
ocity must vanish. Thus all components of ¥ and U
are identical.)

The stress tensor § is

T ==PT-(E+n)V -1 +0(VF+¥9) . (28)
The total force on the sphere is
F,=$dQ i, T . (29)

On integration, any constant part of the pressure
does not contribute to the surface integral, so that
we can replace P by C%6p. Also, Eq. (20) allows
us to eliminate the pressure entirely, leaving

T ==[(poC¥iw) +%n+n, )V T T +n(VT+VV).
(30)
The viscosity coefficients are still complex func-
tions of frequency.

Equation (24) is a vector Helmholtz equation with
spherical boundary conditions, and can be solved
easily by means of vector spherical harmonics.

We follow the notation of Morse and Feshbach. ©
In the solution, it is convenient to define two prop-
agation constants

R2=w?/C%, Ri=w?/C? . (81)

Then a general solution of the vector Helmholtz
equation is any linear combination of the three
vector harmonics f., M, and f\f, which are given in
terms of spherical Hankel functions %,(x) and spher-
ical harmonics,

iamnz k;l v [Yomnhn (klR)] ’
Mepn= VX [RY pnhn (BeR)], (32)

I~\I.A:vmn: k;l v Xl—v’lomn .
Then the general solution takes the form
5=Z(ALZ+AMM+ANE)U, (33)

where Ay, Ay, and Ay are arbitrary constants.

In taking the square roots of Eq. (31) to get the
propagation constants, we must choose signs so
that e *** decays exponentially for large R. In this
way, the boundary condition at infinity is satisfied
automatically.

The direction of the velocity U of the sphere is
taken as the z axis for the spherical harmonics.
By symmetry, we do not expect any components
in the i, direction in spherical coordinates. Thus
the M contribution to the solution must vanish, or
Ay=0. In order to fit boundary conditions on the
§_urface of the sphere, only the harmonics im and
Ny can occur. So the most general solution satis-
fying the boundary conditions is

b
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V= (A, Doy + Ay No) U, (34)

where A and Ay remain to be determined.
For simplicity of notation, we denote the longi-
tudinal and transverse Hankel functions by

Ry=hy(ByR), hpy=h,(kyR) . (35)

Then, on applying the boundary conditions (26) and
(27), we obtain

Ap= (o) Ayl oy —Rpahy, /(B+2)]

(36)
Ay=3hg [hoy hay + 2 hoy Iy,

+Ryahy(2hg, —ho)/(B+ 2)]'1 .

The force on the sphere is determined by Eq.
(29). After integration over angles, we obtain the
generalized friction coefficient

t(w)= [nk?/k} = 2n,)(5 41a)k; a hy(kya)A,

+(54ma)2nk,a hy(k,a)Ay . (37)

This solves the problem of calculating Stokes’s
friction for arbitrary degree of slip, compress-
ibility, and viscoelasticity.

The solution just obtained can be shown to re-
duce to previously known results in all the standard
limiting cases, e.g., incompressibility (or in-

finite sound velocity), perfect slip or stick, and
constant viscosity.

The relation between the velocity correlation
function and the frequency-dependent friction coef-
ficient can be found in several ways. The simplest
is to use analogy with earlier results. In our dis-
cussion of the standard Stokes-Einstein theory, we
found that the velocity correlation function decays
exponentially. Thus the Fourier representation of
the velocity correlation function is

m (U2)

(Ux(O)Ux(t»:% Ref“° dw coswt —;

o —fwm+¢ (38)

This suggests that the appropriate generalization
is simply to replace the constant ¢ by the frequency
dependent ¢(w) ,

m(U%)

—iwm +&(w)° (39)

(U, U, ®)=2 Re f dw coswt
0

All subsequent calculations will be based on this

formula.

It may be of some interest to note that the pre-
ceding result can be expressed also in a memory
function form."” The equation of motion of the ve-
locity correlation function is

m% U0U))=~ ft ds K(t-s) (U (0)Us)),
0 (40)
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where the memory kernel is related to the fre-
quency-dependent friction coefficient by a one-sided
Fourier transform,

Z(w)= fo”dt K(elt . (41)

The memory-function approach is fully equivalent
to the one followed here.

LIMITING BEHAVIOR

It is difficult to carry this calculation further
because of the complexity of the formulas. How-
ever, some information can be extracted from
limiting behavior.

The velocity correlation function is a cosine
transform of a frequency spectrum. For very high
frequencies, the spectrum is asymptotically

Re[1/ - iwm +E()]~ (1/w?)+- .- . (42)

In consequence, the short-time behavior of the
velocity correlation function is

(U,QU(D))~a=-bt+ -+ . (43)

Because the velocity correlation function is even
in time, its graph has a cusp at £=0. Any correct
molecular theory will predict instead a parabolic
behavior at £=0. The reason for this discrepancy
is that the present theory does not correctly de-
scribe the local interaction of the moving sphere
with its environment. In a correct theory, this
interaction is mediated by smooth intermolecular
forces; in the present theory, the interaction is
introduced by imposing a boundary condition at the
surface of the sphere.

At very low frequencies, the frequency spectrum
approaches

Re[l/—iwm+§(w)]~a’—b’\/[v+... . (44)

The long-time behavior of the velocity correlation
function is asymptotically

(UL0ULD) )~ 83240, (45)

It should be noted that this result is a consequence
of ordinary hydrodynamics, and has nothing to do
with compressibility or viscoelasticity. As has
been observed already by Alder and Wainwright®
who used dimensional arguments, it is connected
with the penetration depth of the velocity field due
to unsteady motion of a sphere.

NUMERICAL RESULTS

To conclude this discussion we present a numer-
ical comparison of results obtained from the hydro-
dynamic theory and results obtained by Rahman
from computer experiments.® Our procedure is to
calculate the friction coefficient numerically for
some reasonable set of parameters, and then to
invert the Fourier transform numerically.
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FIG. 2. Frequency spectrum of velocity correlation
function, normalized to unity at zero frequency. Dotted
curve is Rahman’s data; solid curve is our calculation.

The mass of the sphere is set equal to the mass
of a single argon atom. The radius of the sphere,
appearing many places in ¢{(w), is found from the
temperature, diffusion coefficient, and shear vis-
cosity.

The fluid is characterized by its sound velocity,
diffusion coefficient, and viscoelastic behavior.
For the latter, we use the Maxwell approximations

nw)=n/(1 ~iw7), n(w)=n,/1-iwT,), (46)

for both shear viscosity n(w) and longitudinal
viscosity n,(w). Thus, we have to know two zero-
frequency viscosity coefficients and two relaxation
times. (There does not seem to be any advantage
at present in using a more detailed description of
viscoelastic relaxation, e.g., with a distribution
of relaxation times.)

The numerical calculations reported here were
based on the following set of parameters:
=76 K;
=1.41 g/cc;
=1.63 107%cm?¥/s;
=6x10* cm/s;

Temperature T
Density p

Diffusion coefficient D
Sound velocity C

Shear viscosity ng =2.8x103 P;
Longitudinal viscosity 7, =5.5x10° P;
Shear relaxation time 7 =2.0x1078 s;

Longitudinal relaxation time 7, =1.8%10™% s;
Sphere radius a(slip) =1.83A;
Sphere radius a(stick) =1.224,
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T,p, and D are provided by the computer experi-
ment on the velocity correlation function. The.
sound velocity was fixed by the long-wavelength
limit of the liquid structure factor S(k) obtained
from the same computer experiment.

The viscoelastic parameters were found as fol-
lows. First, we selected values that appeared
reasonable from an analysis by Ailawadi, Rahman,
and Zwanzig® of current-current correlation func-
tions for the same system. Then we made small
variations in these values in order to get a good
fit of the first minimum in our velocity correlation
function to the first minimum in Rahman’s curve.
We emphasize that our results are qualitatively
insensitive to these variations; the parameters are
all entirely reasonable ones. Order-of-magnitude
changes in the parameters lead to substantially
poorer agreement.

The frequency spectrum (with slip) ,

o(w)=RelkgT/ —iwm +(w)] (47)

obtained with the above parameters is compared
with Rahman’s in Fig. 2. The dotted line is Rah-
man’s curve; the solid line is ours.

Note in particular the small dip in our curve at
very low frequency. If this were present in Rah-
man’s computer experiment, it could not be seen
because of the limited time scale available to him.
This dip has an interesting practical consequence.
Suppose that we are able to determine the spectrum
only for frequencies larger than, e.g., 10%Hz.
Then we would not see the dip at all. On extrapola-
tion to zero frequency, we would then estimate a
diffusion coefficient that is about 10% smaller than
the correct value. In other words, the very-long-
time behavior of the velocity correlation function
can contribute substantially to the diffusion coef-
ficient. This observation was made also by Alder
and Wainwright. 3

The presence of the dip suggests that the correct
self-diffusion coefficient in Rahman’s computer
experiment may be about 10% larger than the value
used here. If we repeat our calculations with this
revised value of D, the only significant change is
that our frequency spectrum is raised everywhere
by about 10%. The shape of the resulting velocity
correlation function is essentially unchanged.

If all other parameters are kept the same and
the sound velocity is increased substantially, e.g.,
by a factor of 3, this low-frequency dip is accentu-
ated. Then the spectrum resembles qualitatively
the spectrum of a velocity correlation function in
a liquid metal. 1°

The results shown in Fig. 2 are for the slipping
boundary condition. When this is replaced by the
sticking boundary condition, and all parameters
are kept the same, the spectrum is modified only
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FIG. 3. Velocity corre-
lation function, normalized
to unity at zero time.
Dotted curve is Rahman’s
data; solid line is our cal-
culation.
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slightly. The peak shifts to a frequency about 20%
lower; at very high frequencies, the spectrum
decreases more slowly. We feel that better results
are obtained with slip, but the differences are
small.

On Fourier inversion (performed numerically
using the fast-Fourier-transform program), we
obtain the velocity correlation functions shown in
Fig. 3. Again the dotted line is Rahman’s curve,
and the solid one is ours. There are two main re-
gions of discrepancy. One is at very short times,

where our curve shows a linear decay in time,
rather than the correct parabolic decay. This is,
as pointed out already, due to our use of a boundary
condition instead of an intermolecular force to
describe the interaction of the sphere with its en-
vironment. The other discrepancy is in the neigh-
borhood of Rahman’s second minimum. We suspect
that this can be corrected by using a more detailed
description of the viscoelastic relaxation of the
fluid; but it does not seem to be worthwhile to do
so at present.
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