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The velocity correlation function of an atom in a simple liquid is calculated using a fre-
quency-dependent version of the Stokes-Einstein formula. Stokes's law for the frictional
force on a moving sphere is generalized to arbitrary frequency, compressibility, and visco-
elasticity, with arbitrary slip of the fluid on the surface of the sphere. This frequency-
dependent friction coefficient is then used in a generalized Stokes-Einstein formula, and the
velocity correlation function is found by Fourier inversion. By us'ng physically reasonable
values for viscoelastic parameters, good agreement is obtained with the velocity correlation
function determined by Rahman using computer experiments.

INTRODUCTION

Rahman's determination of the velocity correla-
tion function in liquid argon, done by computer
experiments, provides detailed information on

dynamical processes in simple liquids. Many at-
tempts have been made to reproduce his results
by purely theoretical arguments, with varying de-
grees of success. In this article, we present still
another theoretical discussion of the velocity corre-
lation function. Our calculation is based on hydro-
dynamics, and in parti. cular, on a generalization
of Stokes's law for the frictional force on a sphere
moving in a viscous fluid continuum.

The possibility that a calculation of this kind

might be reasonably valid for liquid argon occurred
to us after learning about a recent investigation by
Alder and Wainwright. Using computer experiments
on a hard-sphere system, they observed hydrody-
namic structure in the velocity field around a dif-
fusing sphere.

Stokes's law was derived originally for the steady
motion of a sphere in a viscous incompressible
Quid. This was extended by Stokes and by Boussi-
nesq to allow for motion with arbitrarily changing
velocity. Our further generalization includes the
effects oi qompressibility and viscoelasticity of
the fluid.

In our treatment, the diffusing atom is a sphere
of known radius and mass. (The radius is deter-
mined by the coefficient of self-diffusion. ) The
surrounding fluid is characterized by its density,
sound velocity, shear and volume viscosities, and
their associated relaxation times. The interaction
between the atom and its environment is described
by a hydrodynamic boundary condition.

In essence, our procedure is to derive a, frequen-
cy-dependent version of the Stokes-Einstein formula,
and from this, the frequency spectrum of the vel-
ocity correlation function. On Fourier inversion,
the time dependence of the velocity correlation
function is obtained.

By choosing reasonable values for the parameters
listed above, we obtain good agreement with Rah-
man's numerical results. In particular, we find the
first minimum in Rahman's curve, with the right
depth and at,the right position. The most serious
discrepancy is at very short times: Our velocity
correlation function has a cusp at zero time, while
the correct one must be rounded. This is due to
use of a boundary condition, rather than an inter-
molecular force, to describe the interaction of the
atom with its surroundings. %e find that the vel-
ocity correlation function becomes positive at very
long times, and approaches 0 asymptotically with
time as 1/f' This agr. ees with conclusions ob-
tained by Alder and Wainwright using dimensional
arguments, and verified by them on the hard-sphere
system. Our prediction cannot be checked against
Rahman's results because of the time scales in-
volved,

MOTIVATIONS

According to the Stokes-Einstein formula, the
diffusion coefficient D of a spherical body of radius
a in a fluid with viscosity g is given by

(la),
The absolute temperature is T, and k~ is Boltz-
mann's constant. This formula is derived with the
boundary condhtaon that the viscous fluid steaks
perfectly to the surface of the sphere. If the fluid
sBPsperfectly over the surface of the sphere, the
corresponding formula is

The remarkable approximate validity of the
Stokes-Einstein formula for bodies of molecular
size is well known. By using experimental data for
liquid argon at 90K, the following atomic radii are
found:

Q(stick) = 1.17A ~ Q(slip) = 1.76A

For liquid sodium at 373K, the corresponding
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a{stick) = 0. 94 A; a(slip) = 1.40A.

These radii are entirely reasonabl, especially
mith the slipping boundary condition.

But the Stokes-Einstein formula is not exact for
molecular diffusion. Inspection of the meager ex-
perimental data available suggests that the apparent
radius is not independent of pressure and temper-
ature.

Another reason for concern is that there is no
Stokes's lam in the conventional sense in a tmo-
dimensional system. Here, the friction coefficient
itself depends on the loga, rithm of the Reynold's
number, and diverges in the limit of zero velocity.

However, the aPpxoxirnate validity of this for-
mula is so striking that we ought to take it serious-
ly, It would be desirable to understand wl-.y it works
so mell, and hom to improve its accuracy; but this
is a difficult problem and little progress has been
made.

So far me have discussed the Stokes-Einstein
formula only for steady motion (or zero-frequency
behavior). Since the Fourier transform of the

velocity correlation function may be regarded as
a frequency-dependent diffusion coefficient, the
generalization of the Stokes-Einstein formula to
a,rbitrary frequency is of interest. %e present the
generalization in this article, and me shorn that it
is in good agreement with Rahman's computer ex-
periments on liquid argon. Our results provide
further evidence on the validity of the hydrodynamic
approach to the theory of self-diffusion, although
the more fundamental questions, why it works so
mell and how to improve it, remain unanswe|. ed.

STANDARD STOKES-EINSTEiN THEORY

A brief survey of the standard Stokes-Einstein
theory mill provide a useful introduction to our
later discussion of the generalized frequency-de-
pendent Stokes-Einstein formula. First, we out-
line the main steps in the derivation of Stokes's
lam, and then me show horn the Stokes-Einstein
formula follows.

The derivation of Stokes's law begins with the
Navier-Stokes equations of hydrodynamics. These
are equations of motion for the mass density
p(R, t) and the velocity field v(R, t) of the fluid,

Bp 7'pv
8$

p —+pv ~ Vv= —VP+gV v+( 3g+Y/„)VV v . (3)
eg

where po is the uniform equilibrium fluid density.
Next, steady motion is assumed. This means that
all time derivatives are set equal to 0. A special
consequence is that the divergence of the velocity
also vanishes, 7' ~ v = 0, so that the fluid ean be
treated mathematically as incompressible. (Note
that the fluid does not have to be physically incom-
pressible the' derivation ls equally valid fol a
gas. )

The sphere moves with uniform velocity U. One
boundary condition is that the Quid remains at
rest infinitely far from the sphere. Another bound-
ary condition is concerned with the behavior of the
fluid at the surface of the sphere. Here tmo choices
may be made. {One can in fact consider a continuous
variation from one to the other, but me mention
here only the two extreme cases. ) In the limit that
me refer to as "stick, " the fluid adheres perfectly
to the surface of the sphere, so that v= U every-
where on the surface. In the other limit, referred
to as "slip, " the normal and tangential behavior of
the Quid are specified separately. The normal com-
ponent of the fluid velocity matches the normal com-
ponent of the velocity of the sphere everywhere on
the surface, p„= U„. This is a kinematic condition,
and means that no fluid can enter or leave the sphere.
The other part of the boundary condition for slip
is that the fluid exerts no force tangentially on the
sphere- If P is the stress tensor at the surface,
and a& and aeare unit vectors normal and tangential
to the surface, this condition takes the form

g ag 0

The rest of the derivation involves solution of
the linearized Navier-Stokes equations subject to
these boundary conditions, calculation of the stress
tensor on the surface, and integration over the
surface to get the total frictional force. %e pass
over the details here.

The results of the derivation are the well-known
formulas for the frictional force F on the sphere,

F(stick) = —GvgaU, F(slip) = —4mqaU . (4)

To get the diffusion coefficient, Einstein argued
tha. t

where P is the friction coefficient, either 6mga or
4&qa in the Stokes's problem. In order to lead up
to our later discussion, me give here a contempo-
rary version of Einstein's argument.

The diffusion coefficient ean be determined in
general from the velocity correlation function

The coefficients of shear and volume viscosity are
q and g„, and P is the hydrodynamic pressure.

The first step is to linearize. In particular, the
term v ~ V'v is omitted, and V' ~ pv becomes poV' ~ v,

where U„(t) is the velocity of the diffusing particle
in the x direction at time t and ( ~ ~ ~ ) represents
an equilibrium ensemble average.
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where m is the mass of the sphere and f is either
of the friction coefficients mentioned above. The
solution is

V(t; U(0)) = U(0) e ~'t (8)

We multiply this by the initial velocity U„(0) and
do the final average over the initial velocities to
find the correlation function

(ft.(0)ft.(t) ) = ((ft.(0))')e "'
On integrating over time, the diffusion coefficient
becomes

This average will be calculated in two stages.
First, we average over an equilibrium distribution
of initial states of the surrounding fluid, under the
constraint that the initial velocity of the sphere is
U(0); and then we average over an equilibrium
distribution of initial velocities U(0). The equation
of motion of the sphere is a Langevin equation in
which the total force consists of a frictional force
(given here by Stokes's law) and a randomly fluc-
tuating force. The average of the random force
over an equilibrium distribution of initial states
of the fluid is 0. Let V(t; U(0)) denote the velocity
of the sphere at t, averaged over the same dis-
tribution of initial states of the fluid. This depends
parametrically on the given initial velocity U(0).
Then the equation of motion of the averaged velocity
Vis

dV
m —= -gV,

D = J dt (U„)e "' = (P') ~/g (10)

FIRST GENERALIZATION OF THE STOKES-EINSTEIN
THEORY

The standard Stokes-Einstein theory that has
just been reviewed applies to steady motion only,
and should be regarded as a zero-frequency theory.
Generalizations to a theory for arbitrary frequen-
cies can be made in several ways. The first gen-
eralization, to be discussed now, uses results
already obtained by Stokes in 1851.

The basis of the first generalization is the ob-
servation that it is not consistent to use a fricH. on
coefficient derived with an assumption of steady
motion in an equation of motion describing changes
in velocity. Let us suppose that the velocity of the
particle is an arbitrary function U(t) of time. This
can be Fourier analyzed into frequency components

The equilibrium average of the square of the initial
velocity is just ksT/m, so that the result is the
familiar Stokes-Einstein formula.

Note that in this argument the velocity correlation
function decays exponentially in time. This is not
observed in Rahman's computer experiments. The
actual shape of his velocity correlation function
is compared with the corresponding exponential de-
cay in Fig. l. The discrepancy suggests that a more
detailed theory than the one just outlined must be
developed.
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ln the same way th«»«tonal force F(~) has Fo"'
161 comPGQents F~ »

BecRU86 of the linearity of the hydx'odyQRmlc

equations of Dlotlon, Rny Foux'lex' componeDt Gf the
fol ce 38 px'opox'tioQRl to the corresponding Foux'lex'

component of the velocity,

Stokes derived an expres»on for 5(&) under t"e
same conditions that were used for the zexo-fre-
quency theory: incompressibility and the stick
boundary condition. It shouM be observed that now

the assumption of incompressibility is a physically
significant limitation, since it does not follow from
an assumption of steady motion. Stokes'8 result
18

f(w) = 6vga —27ra f/dp/3 6&// &-(»p //)'
The first term is the ordinary Stokes'8 friction„
the 86coDd t6x'IQ 18 coQQected with the vlltuRl IQR88

of a sphere in an incompressible fluid, and the
third tex'IQ ls related to the penetration depth of
v3.scou8 unsteady flow RroUDd R sphe16.

The coll'68pGDd3Qg expx'esslon fol the tlIQ6-de-
pendent force F(t) was found by Boussinesq, and
hRs been Used» e. g. » 1D treatIng the Rppx'GRch to
steady Inotlon of R sphel 6 falling frGIQ I'est ln R

viscous fluid.
The frequency-dep Qdent fx'lctlon coefflclent

deriv6d %1th the 813p boUDdary condition 3.8

neglect SOUDd px'GpRgatlon; lmpox'taQt effects IQRy
ax'ise from the coIQpressibility of the liquid.

Finally, we note that for the short times or high
fl'equeDcles of lntex'est hex'6» R Ilquld behRves
eiscoelastiealEy. This behaviox' can be accounted
for by using R coIQplex fl equency-dependent vls-
co8lty coefficient. A coIQmGQ Rppx'oxlIQRtlon dU6 to
M~ell» px'obRbly good enGUghfox'px'686Qtpux'poses,

where 7 is a viscoelastic relaxation time. It is
known that this time is of the order of 10 I~sec for
liquid Rx'gon.

Thus it seems obvious that both compressibility
and viscoelasticity will contribute significantly to
the structure of the velocity correlation function.

This sect3GD contRlDS R derivation of the geDex'Rl-
ized friction coefficient g(a&), including the effects
just mentioned. The derivation starts from the
llneRrized NRvlex'-Stokes equations»

As 1D Gux' eax'llex" dl8cU881GQ» the arbitrary velocity
of the moving sphexe is expressed in terms of its
Foux'lex' coIQpoQents. BecRU86 of llnearlty» %6 IQRy
consider 6Rch Foul lex' coInponent lndlvldually.

The excess d6nslty of the fluid 3.8 ~p = p —po. This»
and the velocity of the fluid, will vary periodically
with frequency e, so that we may write the Naviex-
Stokes equations in the form

p derivation of the velocity correlation fun«ion,
analogous to the one just described in connection
with the zex'o-frequency theory, is easy to carry
out. The results, with either boundary condition,
do not agree at all well with Rahman'8 computex'

expel iments.
The reason is that important physical effects

have been left out. A consideration of characteristic
time scales wiH suggest what has to be done. The
time scR16 fox' diffusion 18 detel mined by the x'6-

laxation time m/r; for liquid argon this is of the
Order of l0 sec ~ Thus we Rx'6 coQcex'Ded %1th
fx'equeDcles of the ox'dex' of j.0 Hz. These Rx'6 also
the tiQM Rnd frequency scR168 found 1D Rah~QRQ 8
work.

The sound velocity in liquid argon is of the order
of 105cm/sec. Then, the time required for a sound
wave to px"opRgate ovex' Rn 1Dtex"RtoIQlc d3.8tRnc6 18
also about j.0 sec. This means that we should not

—f&(~p)s)= —po~' va

—irvpov„= —v/p +qv'v„+(-, g+q„)vv ~ v„. (16)

It shouM be kept in mind that the two viscosity co-
efficients g RDd 'ft„are Qow regarded as complex
functions Gf fx'equeQcy.

The glRdlent Gf px'essux'6 18

where C is the sound velocity. fNormal]y Eq. (19)
Includes a gradient Gf temperature ox' eQtx'opy. At
the frequencies of interest here the fluid is expected
to behave isothermally, so that the extxa gradient
may be omitted. At lower frequencies, appxopriate
to the motion of a macxoscopic Sphere, the Quid
3.8 expected to bejlRve Isoentropically» RQd RgalD
the extra gradient may be omitted. In one case the
Sound velocity is isothermal, Rnd in the other it
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is adiabatic. ]
On solving Eq. (1V) for the excess density in

terms of the velocity and substituting this into Eq.
(18), we get

(&p)„=ppm v „/i(o,

—'l(dppv~ = C (pp/'E(0)v v ' v~

P =~, which corresponds to perfect stick. (In the
latter case, if the force on the sphere is to remain
finite, the tangential component of the relative vel-
ocity must vanish. Thus all components of v and U

are identical. )
The stress tensox' o is

o = —P1 —(-,'q+q„)|7 ~ vl +q(Vv+vV) .

+ Yf+ v~ + (3 'g + Yf„)VV ' v (21)
The total force on the sphere is

F„=gdQ a~ ~ o
Equation (21) now contains only the fluid velocity.

For convenience we divide through by po and
then introduce the two kinematic viscosities

t t=nlpo, ~& =('sn+n. )/po . (22)

Next, we multiply through by z(d and introduce two
complex frequency-dependent sound velocities C,

- and Cq,

2 2 ' 2C)=C —z('dp)
~ C]= —zQPpt (23)

By means of a standaxd vector identity, we sepa-
rate the I aplacian into its longitudinal and trans-
verse parts. After all this, Eq. (21) becomes

(24)

Now the problem is to solve this vector Helmholtz
equation with appropriate boundary conditions.

The sphere moves with velocity

U(t) = U„e '"' (25

Strictly speaking, the boundary conditions apply on
the surface of the moving sphere; but as a result
of linearization, we may safely use the boundary
conditions on the surface of a stationary sphere,
fixed at the origin. As was mentioned earlier, the
boundary conditions have several parts. First, the
fluid velocity vanishes at infinity. Second, the
normal component of the relative velocity of sphere
and fluid vanishes on the surface,

(v —U) ~ a„=0,
where a& is a unit vector normal to the surface of
the sphere. The third condition is concerned with
the degxee of slip or stick at the surface. A com-
monly used assumption here is that the tangential
component of the relative velocity of sphex'e and
fluid is proportional to the tangential component of
the force exerted on the sphere by the fluid. If
ae is a unit vector tangential to the surface of the
sphere, and a is the stress tensor, this propor-
tlonallty 18 expx'e8sed Rs

as= (0/o)(v U) ae— (2V)

where P is a coefficient of slip. Two extreme cases
are P=O, which corresponds to perfect slip, and

On integration, any constant part of the pressure
does not contribute to the surface integral, so that
we can replace P by C &p. Also, Eq. (20) allows
us to eliminate the pressure entirely, leaving

v = —[(ppC /i(u)+-,'q+q„] V v T+q(wv+vv).
(30)

The viscosity coefficients are still complex func-
tions of fxequency.

Equation (24) is a vector Helmholtz equation with
spherlcR1 bouQdRry coQdltions Rnd cRQ be solved
easily by means of vector spherical harmonics.
%e follow the notation of Morse and Feshbach.
In the solution, it is convenient to define two prop-
agation constants

(go/Co $2 ~o/Co

Then a general solution of the vector Helmholtz
equation is any linear combination of the thx'ee
vectox' harmonics L M RQd N which Rx'e given ln
terms of spherical Hankel functions h„(x) and spher-
ical harmonics,

l..„„=u-, 'V[y..„h„(ag)],

M,.„=vx[RF „h„(u,ft)],

„=Q~ QXMom

Then the general solution takes the form

v=2 (A~ I +A~ M+A~N) U, (33

where A I, Az, and A. & are arbitrary constants.
In taking the square roots of Eq. (31) to get the

propagation constants, we must choose signs so
that e' decays exponentially for large R. In this
wRy the boundary condition Rt lnflnlty 18 8Rtlsf led
automatically.

The direction of the velocity U of the sphere is
taken as the z axis for the spherical harmonics.
By symmetry, we do not expect any components
in the a~ direction in spherical coordinates. Thus,
the M contribution to the solution must vanish, or
A&= 0. In order to fit boundary conditions on the
surface of the sphere, only the harmonics Lo, and
Noj can occur. So the most general solution satis-
fying the boundax'y condltlons ls
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v = (Az Lpy +A)() Npg) U (34)

where AI. and A.„remain to be determined.
For slmpllclty of notation) we denote the longi-

tudinal and transverse Hankel functions by
g(~)= 1 dtff(t)e*" (41)

here the memory kernel is related to the fre-
quency-dependent friction coefficient by a one-sided
Fouriex transform,

h„, =h„(k, ft), h„,=h„(k, ft) . (36) The memory-function approach is fully equivalent
to the one followed here.

Then, on applying the boundary conditions (26) and
(2V), we obtain

~,= (h„) '~„-[h„k,-a h„/(P+ 2)],

A„= 3hp, [h(), hp, + 2hpg hpi

+k, ah), (2hp, —h(), )/(P+2)]

The force on the sphere is determined by Eq.
(29). After integration over angles, we obtain the
generalized friction coefficient

&(~) = [qk', /k', —2q„](-.' 4')k, a h, (k,a)g,

+ (—,
' 4va) 2qk, a hq(k, a)A(() .

This solves the problem of calculating Stokes's
friction for arbitrary degree of slip, compress-
ibility and vise oelastlclty.

The solution just obtained can be shown to re-
duce to previously known results in all the standard
limiting cases, e.g. , incompressibility (or in-
finite sound velocity), perfect slip or stick, and

constant viscosity.
The relation between the velocity correlation

function and the frequency-dependent friction coef-
ficient can be found in several ways. The simplest
is to use analogy with earlier results. In our dis-
cussion of the standard Stokes-Einstein theory, we
found that the velocity correlation function decays
exponentially. Thus the Fourier representation of
the velocity cox'x'elation function is

2
(U„(0)U„(t))= —Re dec cos(dt . "' . (36)

m (U'„)
Vt' —z~m+ g

0

This suggests that the appropriate generalization
is simply to replace the constant ( by the frequency
dependent g(&u),

(U„(0)U„(t))=—Re d(d cos(dt . "
( )

. (39)2 m(U'„)

LIMITING BEHA VIOR

It is difficult to carry this calculation fuxther
because of the complexity of the formulas. How-
ever, some information can be extracted from
limiting behavior.

The velocity correlation function is a cosine
transform of a frequency spectrum. For very high
frequencies, the spectrum is asymptotically

Re [1/ —t(om + P((d) ]- (1/(dP ) + ~ ~ ~

In consequence, the short-time behavior of the
velocity correlation function is

(U„(0)U, (t) )-a bt+ ~ ~—

(42)

(43)

Because the velocity correlation function is even
in time, its graph has a cusP at t = 0. Any correct
molecular theory will predict instead a parabolic
behavior at (= 0. The reason for this diserepaney
is that the present theory does not correctly de-
scribe the local interaction of the moving sphere
with its environment. In a correct theory, this
interaction is mediated by smooth intermolecular
forces; in the present theory, the interaction is
introduced by imposing a boundary condition at the
surface of the sphere.

At very low frequencies, the frequency spectrum
approaches

Re [1/ —t(em+ C((u)]-a' —b'K&o+ ~ ~ ~

The long-time behavior of the velocity coxrelation
function is asymptotically

(U„(0)U„(t))- t 't'+ . ~ ~

It should be noted that this result is a consequence
of ordinary hydrodynamics, and has nothing to do
with compressibility or viscoelasticity. As has
been observed already by Alder and Wainwright
who used dimensional arguments, it is connected
with the penetration depth of the velocity field due
to unsteady motion of a sphere.

NUMERICAL RESULTS

To conclude this discussion we present a numer-
ical comparison of results obtained from the hydro-
dynamic theory and results obtained by Rahman
from computer experiments. ' Our procedux'e is to
calculate the friction coefficient numerically for
some reasonable set of parameters, and then to
invert the Fourier transform numerically.

All subsequent calculations will be based on this
formula.

It may be of some interest to note that the pre-
ceding result can be expressed also in a rnernory
function form. The equation of motion of the ve-
locity correlation function is

", (~(o)~ (~)) —f "~(~. .)=(~-(o)~())-.
0 («)
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T, p, and D are provided by the computer experi-
ment on the velocity correlation function. The.
sound velocity was fixed by the long-wavelength
limit of the liquid structure factor S(k) obtained
from the same computer experiment.

The viscoelastic parameters were found as fol-
lows. First, we selected values that appeared
reasonable from an analysis by Ailawadi, Rahman,
and Zwanzig of current-current correlation func-
tions for the same system. Then we made small
variations in these values in order to get a good
fit of the first minimum in our velocity correlation
function to the first minimum in Rahman's curve.
We emphasize that our results are qualitatively
insensitive to these variations; the parameters are
all entirely reasonable ones. Order-of-magnitude
changes in the parameters lead to substantially
poorer agreement.

The frequency spectrum (with slip),

o(&u) = Re [k~T/ —i~n. + g(~)]

0
5 10

FREQUENCY (10 Hz )

FIG. 2. Frequency spectrum of velocity correlation
function, normalized to unity at zero frequency. Dotted

curve is Hahman's data; solid curve is our calculation.

Temperature T
Density p
Diffusion coefficient D
Sound velocity C
Shear viscosity po
Longitudinal viscosity n, o

Shear relaxation time y

Longitudinal relaxation time T,
Sphere radius a(slip)
Sphere radius a(stick)

=76 K;
= 1.41 g/cc;
=1.6310 cm/s;
= 6x104 cm/s;
= 2. Sx10-' P;
=5. 5x10-' P;
= 2. 0 x 10 "s;
=1.8&10 ' s;
=1.83 A„'
=1.22 A,

The mass of the sphere is set equal to the mass
of a single argon atom. The radius of the sphere,
appearing many places in f(~), is found from the

temperature, diffusion coefficient, and shear vis-
cosity.

The fluid is characterized by its sound velocity,
diffusion coefficient, and viscoelastic behavior.
For the latter, we use the Maxwell approximations

U(Ct)) = 7/0/(1 —i&uT), p, (e) = 7l,o/(1 —i&us, ), (46)

for both shear viscosity q(v) and longitudinal
viscosity q, (&u). Thus, we have to know two zero-
frequency viscosity coefficients and two relaxation
times. (There does not seem to be any advantage
at present in using a more detailed description of
viscoelastic relaxation, e. g. , with a distribution
of relaxation times. )

The numerical calculations reported here were
based on the following set of parameters:

obtained with the above parameters is compared
with Rahman's in Fig. 2. The dotted line is Rah-
man's curve; the solid line is ours.

Note in particular the smaH lid i.a. our curve at
very low frequency. If this were present in Rah-
man's computer experiment, it could not be seen
because of the limited time scale available to him.
This dip has an interesting practical consequence.
Suppose that we are able to determine the spectrum
only for frequencies larger than, e. g. , 10' Hz.
Then we mould not see the dip at all. On extrapola-
tion to zero frequency, we would then estimate a
diffusion coefficient that is about 10% smaller than
the correct value. In other words, the very-long-
time behavior of the velocity correlation function
can contribute substantially to the diffusion coef-
ficient. This observation was made also by Alder
and Wainwright.

The presence of the dip suggests that the correct
self-diffusion coefficient in Rahman' s computer
experiment may be about 10% larger than the value
used here. If we repeat our calculations with this
revised value of D, the only significant change is
that our frequency spectrum is raised everywhere
by about 10%. The shape of the resulting velocity
correlation function is essentially unchanged.

If all other parameters are kept the same and
the sound velocity is increased substantially, e. g. ,
by a factor of 3, this low-frequency dip is accentu-
ated. Then the spectrum resembles qualitatively
the spectrum of a velocity correlation function in
a liquid metal. '

The results shown in Fig. 2 are for the slipping
boundary condition. When this is replaced by the
sticking boundary condition, and all parameters
are kept the same, the spectrum is modified only
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slightly. The peak shifts to a frequency about 20%
lower; at very high frequencies, the spectrum
decreases more slowly. We feel that better results
are obtained with slip, but the diffexences are
small.

On Fourier inversion (performed numerically
using the fast-Fourier-transform program), we

obtain the velocity corx'elation functions shown in
Fig. 3. Again the dotted line is Rahman's curve,
and the solid one is ours. There are two main re-
gions of discrepancy. One is at very short times,

where our curve shows a linear decay in time,
rather than the correct parabolic decay. This is,
as pointed out already, due to our use of a boundary
condition instead of an intermolecular force to
describe the interaction of the sphexe with its en-
vironment. The other discrepancy is in the neigh-
borhood of Rahman's second Ininimum. We suspect
that this can be corrected by using a more detailed
description of the viscoelastic relaxation of the
fluid; but it does not seem to be worthwhile to do
so at present.
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