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range is described in Sec. IV B of the present paper.
Although the electron collision frequency for excitation
of the bending and symmetric stretch vibrations is much
less than the momentum-transfer collision frequency in
the 3—5-eV range, the total inelastic cross section (Ref.
13) in this energy range is comparable in magnitude to
the momentum-transfer cross section, thereby violating
the condition established by Holstein (Ref. 6) for the
validity of the two-term expansion of the distribution
function. The effect of this result on the present analy-
sis is not expected to be significant but should be investi-
gated further.
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Using the Vlasov equation we calculate o,, of the conductivity tensor for counterstreaming
plasmas in a magnetic field. Using the dispersion relations for ordinary waves, we consider
the electromagnetic instability. The spectrum of the instability and its growth rate have been

calculated.

I. INTRODUCTION

The study of instabilities in plasma beams having
equal but opposite velocities has received a great
deal of attention in the literature.!=® These insta-
bilities play an important role in some of the basic
physical processes occurring in plasmas, as well
as in their possible applications to microwave am-
plification and plasma heating devices. The pos-
sibility of plasma beam instabilities against elec-
tromagnetic excitations has been pointed out by
Gold? and been the subject of work by Momota.*
Here the “electromagnetic instability” indicates
excited fields obeying the full Maxwell equations,
as opposed to the “electrostatic instability” where
the excited electric fields can be described as gra-
dients of time-dependent potentials.

Thus the electromagnetic instability is charac-
terized by the existence of the ac magnetic field
and therefore is typically smaller by a factor of
Varigt/C than an electrostatic instability. The ob-
servation of any electromagnetic instability re-
quires a system which at the same time is stable
against growing electrostatic fluctuations.

Recently Lee* calculated the electromagnetic in-
stability in counterstreaming plasmas in a magnetic
field. His calculations consist of the cold-plasma

model and the first-order nonlocal corrections,
i.e., the terms proportional to kvy, /w,. This cor-
rection (to the first order in kv,, where 7, =10y, /0,
is the radius of gyration) cannot describe the in-
stability in its entirety. It is easy to establish that
when v, decreases the wave number of maximum
instability increases, thus the limit of k7, <1 is
unrealistic.

In this paper we calculate the electromagnetic
instability for counterstreaming plasmas in a mag-
netic field. Our starting point for the electron dy-
namics is the Vlasov equation and we obtain a solu-
tion for the conductivity tensor which is applicable
for all values of k7,. For a plasma beam having
average velocity v, in the z direction, the conduc-
tivity components o,, and o,, are proportional to v,.
Therefore for two counterstreaming electron-plas-
ma beams we obtain 0,,=0,,=0. Adding a static
homogeneous magnetic field in the z direction does
not mix electronic motion in the x(y) with the z di-
rections and we again obtain 0,,=0,,=0. We there-
fore obtain that two counterstreaming electron-
plasma beams can separately sustain ordinary and
extraordinary electromagnetic waves.? While the
extraordinary wave is not affected by the relative
streaming, the ordinary wave is modified. More-
over, under certain conditions, the plasma becomes
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unstable against excitation of ordinary electromag-
netic fields, i.e., growing electric field in the z
direction, with magnetic field and wave number 2
in the x, v plane,

In Sec. II we solve the diagonal part of the con-
ductivity in the z direction and establish the propa-
gation condition of ordinary waves in our system.
In Sec. I, we consider the condition for electro-
magnetic instability for arbitrary k7, and discuss
in detail the analytic solution for the extreme cases
of kv.>1. Section IV is reserved for discussion
and conclusions.

II. ANALYSIS OF DISPERSION RELATIONS

We consider an electron-plasma system with
smeared positive background in a static homogene-
ous magnetic field B=2 B having a drift velocity in
the 2 direction, i.e., (v,)=v,. The steady-state
electron distribution function fo(v2 +v2, (v,+vy)?)
is taken for simplicity to be Maxwellian. The re-
sponse of the plasma to “small” electromagnetic
fields is described by the linearized Vlasov equation

(w -k v—zwc(sz) )f(vkw)
=%<E+gxﬁ>%% . 1)

Here E and H are, respectively, the electric and
magnetic components of the electromagnetic field
obeying the Maxwell equations. The integration

of Eq. (1) is well known® and we now give the re-
sults: The conductivity components o,, and o,, are
proportional to v, and therefore for counterstream-
ing electron-plasma systems o0,,=0,,=0. For the
diagonal component of the dielectric function in the
Z direction, €,, which is of interest to us, we
obtain

2 2 0
) - v v
€e=1 __%e ll:<1 "";g—)IO - 7?‘ e
th

w Uth
2 X
+2 1+%1> 5> 1()2}, (2)
Utn n=1 w?-n wc

where the I,’s are the modified Bessel function.
Here we have used the relation €,, =1+ (47i/w)0,,.
In Eq. (2) w, is the electron-plasma frequency of
our counterstreaming plasma system, w, is the
electron cyclotron frequency, v, is the thermal
velocity (which for simplicity we assume to be
isotropic) and A= (kvy, /w,)?. Here v\ is a measure
of the ratio of the radius of gyration to the wave-
length of the electromagnetic field.
We consider next the dispersion relations for

ordmary electromagnetlc waves, i.e. E=2 E,
A= YH, and k= Xk, where the plasma drlfts in the
'+Z directions. Their dispersion relations are

given by
kzcz/w2=€zz . (3)
We first discuss the limit of small & (long wave-
length) or vanishingly small thermal velocity.
Using the asymptotic limit for the I,’s in Eq. (2)
and substituting €,, in Eq. (3) gives the dispersion
relations:

B2
k%c? 1o Wi (., (sz+vtz,,)> ' @)
w? w? w® - wg

Here w? obeys the quadratic equation
w? = Wi Wi+ wi+k%?) +wi(w] +R%?)
-PPwii+0v%) =0 . (5)

We consider & to be real and the solution for w in-
dicates a possible instability when

2y w}

k v3(1 - *w?/wivl) + 03, (6)
with the condition w?v>c%w?. In the limit of vy, =0
we are in agreement with Ref. 4. However, our
results are different for the finite but small ther-
mal velocity case. We find that the smallest pos-
sible k, kp;,, for the starting of the instability de-
creases with the increase of v,,. However, that
does not mean that the spectrum of unstable % in-
creases. On the contrary, one must also impose
the restriction which was used in arriving at Eq.
(6), i.e., w?/v}, >k% which indicates that the range
of unstable & decreases as vy -~ or vy~ 0. It is
essential to point out here that for finite drift ve-
locity v, the thermal velocity vy, cannot be as-
sumed to be small for realistic cases. As is well
known, the system will be unstable against elec-
trostatic excitation® if v, > 1. 37vy,. Moreover, the
solution of Eq. (5), substituting w =+ix, gives for
the growth rate x the result

xz_kz[w W§+vh) —wic?]-wio} (7)

wi+wi+kEc? ’

which is a monotonic increasing function of &, having
the maximum growth rate at k= xﬁ = w,, (vo+vth )/c?
- w This result, giving large growth rates at
k= °°, is inconsistent with the assumption originally
used in the cold-plasma or small-v, cases, i.e.,
kvy, /w, <1. We must therefore solve for the in-
stability using €,,, which is valid for large 2, in
order to investigate the most important spectral
part of the instability, i.e., the case of large k.

We next calculate €,, in the limit of A>>1., Here,
using the asymptotic forms for the I,’s, we obtain
to dominant order in x™

2

2
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The dispersion relations for the ordinary waves are
determined now by substituting Eq. (8) into Eq. (3):

1+202 /3 Tw Tw  vd
2_,2.2,.2 0/Vtn 0
w?=k%c+w cot - . 9)
’( Vo we W, vfh)

The modified dispersion relations for the ordinary
waves, in the presence of the drift, are given by
Eq. (9) in the limit of x=%#%v%, /w% > 1. The solution
of w(k, vy) can be obtained only numerically and
compared with experimental values. However, in
this paper we limit ourselves to the instability con-
ditions, which we discuss in Sec. III.

III. CALCULATIONS OF INSTABILITY

We consider now the conditions under which the
plasma will be unstable. As we have pointed out
earlier, the dominant region of the spectrum is in
the large-k regime. The solution for the growth
rate can be calculated numerically using our Egs.
(2) and (3). We would like, however, in order to
obtain some analytical results, to consider the dom-
inant contribution in the large-k regime, i.e.,
x>1, Our starting point is Eq. (9) using the as-
sumption” that w =+ix while % is a real quantity.
The solution for the growth rate x is governed by
the equation

1 a¥(Bh+Bh) (2f8 L\ _1Bh -
m )\.3/2 yCOthy = N 1 1)’2 N V=
(10)

Here, a=w, /we, Bo=0o/c, Bin=vm/c, and y=mx/w,.
In seeking solutions for x, as functions of A, we are
interested in real solutions only. Thus, for a real
y, y cothy is always positive and Eq. (10) imposes
an upper limit on the wave number of the instability
given roughly by a?8%/x —1>0. The region of un-
stable % is determined by setting y =0 in Eq. (10)

and solving the cubic equation for V', given by

(\/—X)a 230\/_ +(1/\/-2_—)(Bth+ﬁ )a?=0 . (11)
The solution of Eq. (11) is obtained from

(VX):=2VIZ R cos(s ®,+5ms), $=0,1,2

(12a)
where
2\ 1/2
cos®d, —:t<27 -1-—%@3—/&2—) . (12b)
0

Here the “plus” or “minus” solutions indicate pos-
sible positive or negative roots for cos®. Out of
these six possibilities we obtain only three different
solutions for vy =kvy, /w,, which must be positive.
It is easy to verify that (/A);, (/A);, and (/o) are al-
ways negative and can be discarded. The three
roots are therefore given by
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2
(VX )p=2Y a?@ cosia,
(VX)5 =2V 5a°6 coszd. | (13)

WX);=2V5a2 B cos3d.+3m) .

We next point out that 0<®, <37 and we obtain that
(V1) is always larger than aB,. As can be seen
from our Eq. (10), when vA> a8, no unstable solu-
tion for y exists and the root (VA); can be discarded.
We are left, therefore, with two solutions for x;

the upper and lower limits, respectively, determine
the unstable & region. They are given by

Vg =2V30%82 cos3d_ (14a)
Vg =2Y1a%82 cos(3d_+ 57) , (14b)

where &_ is defined in Eq. (12a). The upper limit
Ay is proportional to @®8%. The lower limit X, is
only weakly dependent on the value of aB,, for ag,
>1. In order to show this point let us define &_=57
+v. It is a matter of simple algebra to show that

Vg =2V3a?p2 singy ,

where
2 /o212 \1/2
y=sin 27 (1 +I32m /B3 > )
8r  a'By
Thus the dominant part of v\, is given, for a?g2
>1, by
A, = <1+—§—)+O< pcr ) (14c)

We obtain A, to be of order unity and independent of
@By, and within the same order of magnitude of A,
calculated using the small-A approximation. Thus,
the region of unstable A is given by A, >X >\, where
A; and Ay are definedby y(A,)=y(A z)=0, withx,~1
and Ay~ a?82>1. Now that we expect ¥, to be in
the large-A region, we find y,,, using Eq. (10) and
approximating cothy =1 and obtain
-2g2 21/2y2
(15)
The last term on the right-hand side of Eq. (15) is
small and can be neglected. Simple algebra then
gives M.y, at which y is maximum, and Y,

[o(B5+ B V2m ] 3 = (@BEAY2 = X% — 7

Amax= 5085 , (16a)
e (16b)
Vous= P & B ap>1, (16¢)
xma,=§§-3_’l 5217 173{55%; —“’-PC—-”—" . (16d)
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FIG. 1. Plotof y=mx/w,as a
function of VA=kvy,/w, for a?p?
=10, @®8*=50 and &?g®=100. The
dash-dotted line represents the
solution for y obtained using the
small-A approximation for a?g?
=100, which asymptotically in-
creases to y=44 at VA— .
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For consistency we check the ratio
R = B3 VAmax Vax /@85 VA max

and obtain R= p% =v%,/c?<«< 1, which is consistent
with our assumption. Our result for the maximum
growth rate is proportional, as expected, to w,vo/c,
indicating an instability which is characterized by
the existence of the ac magnetic field. We next
compare our result for y,,, with its counterpart y.,
obtained using the small-) approximation. We find
using Eqgs. (7) and (16) that for a?8%>1

Rzlm&x

1 2 3/2
Ve VT (3(1 +ﬁfh/33)) <1

Our solution y,,, is smaller by about one order of
magnitude than y., the maximum growth rate ob-
tained using small-\ approximation.

We have next calculated numerically y as a func-
tion of v'X using our Eq. (10) for a realistic case
of Bin=Bo=B, for various values of aB. The results,
shown in Fig. 1, indicate that the lower limit for
the instability, v}z, is roughly independent of the
value of ap while the upper limit vX; is roughly
proportional to it. The computed values of A, and
Ly agree with our calculated results, Eq. (14a).
Also, the maximum growth rate y,,, and its position
vV Anax are in a good agreement with our approxi-
mately calculated results given by Eq. (16).

IV. DISCUSSION

We have calculated the electromagnetic instability
for a counterstreaming electron plasma. The spec-
trum of the unstable 2 has a lower as well as upper

IO\/=-)-\

limit.

The lower limits, in the case of small X or
large X, give us roughly %, ~ w, /v, for ap,

= (w, /w,)wy/c) > 1, provided vy~ vy, which is a
necessary condition to avoid the strong electrostatic
instability. The upper bound is given by Ay, where
VXy~ apBy, and therefore ky~ (w, /vy)(0,/c), inde-
pendent of w, for aB,> 1. The stabilization effect
of the magnetic field is seen as follows: After sim-
ple algebra our result for 2y, Eq. (14a), may be
written as

v27/87 (1+v, /v3) &)

s =l
y=sin (
vg /C Wy

The first-order correction in w, is given by

by Q—)Zgﬂ-(l _w, V27781 (1 +vfh/1)§)> .

C Vg w, V33u,/c

Thereforethe increase of the magnetic field will de-
crease ky and make the system more stable. Si-
milar conclusions can be obtained for x,,, i.e.,
Xmax decreases with increasing w,, however it is
done numerically and shown in Fig. 2.

For very strong magnetic fields, i.e., for a?g2
<10 our large-x approximation fails as does the
small-\ approximation. Therefore, the study of
the approach to a “stable system ” when w, in-
creases cannot be treated analytically and one must
depend on numerical calculation using our Egs.

(2) and (3).
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FIG. 2. Plot of x versus &
for small magnetic field o
=10 and larger magnetic
field @=10°, where a=w,/w,
The arrows on the curves
point to the particular & for
which A=1.

We finally would like to point out that in our
model the ions were considered to be smeared.
For af,>1, we obtain the growth rate to be x,,
~ w,vy/c, which can be larger than the ion plasma
frequency Q,. Thus, our smeared ion model is
justified. However, when x,, decreases when we
increase w,, as can be seen from Fig. 2, one might
have to consider the ion dynamics as well. In order
to estimate this process quantitatively we incor-
porated the effect of the ion motion, neglecting their
drift velocity. This results in the addition of the
term

2 ﬁ’ 1/2 cot MM
s\ (2m\)7? yco W, m

to the right-hand side of our Eq. (9), where M is
the ionic mass. Carrying this over to the calcula-
tions of the growth rates, our Eq. (10) now takes
the form

1 a®(B5+ Bin)
@en7?

y cothy

1 (m V2 a2 M
+ _(277)172 <M ) Y372 9 coth <y 7;1_)

aa 2 1 2,2
=<7§'Q ->-ﬂ—zﬁ‘;y . (10")
It is easily seen that the boundaries of the instabil-
ity, obtained by setting y =0, are being shifted by
an amount proportional to (m/M)¥2, As for the
maximum instability for y >1 we obtain a change of
Ymax Of the order of vm /M. Thus the effects of the
ion dynamics are negligible. This result can be
expected in our case, since the electromagnetic
instability is coupled to current rather than charge
fluctuations, to which the massive ions hardly
contribute.
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