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follows when the electrons are fixed in a space-
fixed coordinate system. For a diatomic, one may
use confocal. ellipsodial coordinates, in which in-
terparticle distances are proportional to the inter-
nuclear distance A for fixed values of these coor-
dinates. The volume element is exPlicitly propor-
tional to R', p to R ', the potential-energy opera-
tors to 8 '. Taking I' =R, we note that the poten-
tial-energy terms V are explicitly proportional to
E ' and the kinetic energy T (proportional to
fp' 'd7 ) to 8 '. Then our theorem gives

which is the virial theorem, This proof is well
known for the quantum mechanical case. The at™
om is the special case where one nuclear charge
is zero; E then does not depend on R.

As a final example, the change in energy in go-
ing from the TF to the TFD theory is due to the

additional term -It, fp d7 in the energy function-
al, with ~, - 0. '74 e~. The energy change could be
estimated from the TF function without computing
the TFD function by considering E as a function of
g, , with w, = 0 corresponding to TF and x, -0, V4e

to TFD. Imagine E(It, ) to be expanded in a power
series about v, =0. If the linear term suffices,
the energy change is n, dE/dIt, = -n, f p dv,
where p is the TF density. W'e obtain then

E E = 0 SSSZ't'f y'dxe'/a, , (S)

where q is the solution to the TF equation. s Eval-
uating the integral numerically for the tabulated p
gives 0. 640, and the energy difference is -0.232
x Z"' e/a ,0as compared to -0. 2S Z"' e'/a„as
calculated directly by Gombas' [lf the expansion of
E(II, ) were made around n, =0. 'l4ee instead of 0,
the same reasoning would show the energy differ-
ence could be calculated from tt, f p tsd7 where p
is the TFD density. ]
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The continued-fraction expansions in terms of Brillouin-Vhgner perturbation energies are
evaluated for the He-like series. They show remarkable convergence and stability proper-
ties. Both Pads approximants and perturbation energies are computed with formulas derived
by the inner-projection technique.

lmRODUnlOW
The Brillouin-Wigner (BW) perturbation series

suffers from convergence problems which, in ad-
dition to computational difficulties, made its use
relatively infrequent. Modifications of the
scheme, which cast it into a continued fraction
expansion were made by Feenberg and others.
Et is possible to derive the bounding properties of
the alternate energy approximants of Young et aE.

by showing that they can be obtained by inner pro-
jections of the reaction operator in the way suggest-
ed by I owdin, ' provided one chooses the linear
manifold considered in a specific way. It can be
seen that the upper- and lower-bound approxi-
mants can be identified as Pade approximants to
the BW series. ' In the Rayleigh-Schrodinger (RS)
case, the analogous Pade approximants showed
remarkable convergence even though one could
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neither prove nor verify any bounding proper-
ties. 9 The fact that the same construction, but
within the BVf scheme, yields bounds, prompted
the present study.

BRILLOUIN-VfIGNER-PADE EXPANSIONS

where a is a column vector with elements &„2
and E a matrix with elements Ear = &a, r, ~

—~a, r, 2.
A lower bound to the ground-state energy is given
by

g —g+(g)

Given the splitting of the Hamiltonian

R = K + V, X4'„=Eg„
with K go= E ohio

(1)

(2)

It can be seeno that one can express (9) and (10) in
terms of Pade approximants to the series

cop

one can write the bracketing function' $,(g) in
the form (from now on we consider the ground
state only)

g|«) = Eo+ &&ol«g)
I
&oo), (8)

where the reaction operator t(g) has the form

or better, to the function

e(g v) = &q'ol (v u ~o) leo)

which verifies

e(g 1)= $,(g)-zoo-c,

(i4)

(16)

i=(v '-r )-'-
with To=P(g-K) ', P=1 —lyoo) &pool

(4)

(6)

Form (4) is appropriate if V ' exists, which is
the case when, e.g. , V &0 in an operator sense.
We restrict ourselves to that case. The BW se-
ries follows from expanding (4) and substituting
into (3). The usual definition

e, = ~,(g) = &q,'l v(r, v)' 'lq,o)

leads to the linear series

$,(g) - g~ ( g) = zoo++ e„

(6)

(7)

and the ground-state energy E0 is approximated
by

g —g& (g) (8)

The convergence properties of (7) and (8) can be
rather disappointing. One can construct better
approximants in terms of the (eo] by considering
the linear variation functional in terms of the
functions ((Tov)"yol. " A continued fraction ex-
pansion was obtained also. A simple derivation
of a compact form for those expressions can be
given: Partitioning of the eigenvalue problem of
H in terms of the basis {(Tov) 'yo], k = 1, 2, . . . ,
n+1 leads to a bracketing function

gg(g)=zoo+~, +e'Z '~ (9)

g —g+( g) (io)

Lower bounds can be obtained by a Bazley projec-
tion of the reaction operator, if t is a non-negative
operator. ' One obtains:

81,= ED+ 6)+ 62+ E' E

where E is a column vector with elements E„,
and E is a square matrix with elements E»

An upper bound to the ground state
can be found by solving

We have, in the notation of Baker for the Pade
approximants ~ "

g",($)=z', + ~, [N,—N-i](g, i) (16)

and g"(g) =E + e, [N, N—](g, 1) (17)

where [N, N —l](g, 1) and [N, N](g, 1) are Pad@
approximants to e(g, p) for p, = 1." It is easily
seen that in the case of V &0 and TD& 0 the series
g," given by (7) is of Stieltjes type provided that
f(Tov) ego}fis linearly independent. Defining

I)a+ le (18

we have

g,"=E,o+Z 8,(-i)"' .
Consider then the formal expansion of (14):

(2o)

The coefficients e~ satisfy the inequalities

D(m, n) )0, m=2, 8, . . . ; n=o, 1, . . .
em em+& ''' em+ n

with D(m, n) = ~ ~ ~

emn %+n+ j ''' em+2n

This implies that (20) is a Stieltjes series and
hence the following properties of Pads approxi-
mants to functions which admit a Stieltjes series
expansion holdv:

[N, N](g, q) - e(g, q) - [N, N —I](g, q) . (23)

These inequalities are consistent with (9), (10),
(16) and (17).

One could consider (16) and (17) and replace the
BW energies by their RS counterparts. No bound-
ing properties should be expected, but an improve-
ment over the corresponding linear series is ob-
tained.
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APPLICATIONS TO He-LIKE IONS

It is clear that the BW perturbation energies
cannot be computed exactly except in trivial
cases. Variational techniques have been devised. '
The He-like series is the simplest problem where
the techniques can be tested. We resort to the
inner-projection technique, and for 8 & E& we have

T,- I
k&(ale-x'lk&-'&kl=z, 0, (24)

where Ik& =(Ik, &, . . ., Ik &] is a linear manifold such
that P lk& = Ih&. This procedure was used exten-
sively in a number of problems. " From the rela-
tion between the spectrum of H and H one knows
that the "interesting" values of 8 satisfy 8 &E&
in the case of H . One can still use To as defined
in (24) but the inequality is not fulfilled and one
has to make sure that 8 is not equal to any eigen-
value of H in the space spanned by Ih& &h Ik& &k (.
One could circumvent this problem altogether by
introducing a multidimensional reference func-
tion, but this would be of no interest in connec-
tion with conventional BW perturbation theory.

The consequences of replacing To by To are
quite interesting. Formally, one can retain the
same formulas as before, and hence E, is to be
replaced by e„. Equations (9), (10), and (16) still
yield upper bounds, regardless of the character
of V and To, provided the (e~) exist. On the other
hand (11), (12), and (17) do yield lower bounds,
not to the exact ground-state energy, but to the
solution of

&=h (@=El &~ll(I' ' 7'.(@) 'I~-l&

which is itself an upper bound to the exact ground-
state energy if inequality (24) is fulfilled.

Thus, the scheme discussed leads to rigorous
upper bounds even with approximate values of the
perturbation energies. One could obtain rigorous
lower bounds also, but at the cost of laborious
computations. ' The procedure employed here
should be compared with RS calculations" which
were carried out to a larger degree of accuracy.
Since the BW scheme is less practical in connec-
tion with the study of an isoelectronie series, we
considered a medium size basis to be adequate
for this pilot calculation, and 40 functions involv-
ing Hylleraas coordinates': k; = Py;, y; = e

u"' with integers l
&

l + m&+ n o 0
and nz, even and larger than zero. The scale fac-
tor g was chosen so as to minimize e&, except in
H, where a special situation arises as we will
discuss later. The set is in fact identical to the
one used by Kinoshita'7 plus one function more
which contributed significantly to E2: the one
which has l = - 2, m = 4, and n = 2.

About the calculations themselves it is sufficient

to say that there are four steps: (a) generation of
the matrices A, Vanda for a fixed value of 8

a z'Ik&; v= &k
I
vlk&; a'=&~'I vlk&;(26)

(b) computation of the e ~

e,, =a A '(VA ') a (k=2, . . . ); (27)

The computations were carried in the CDC com-
puter of the University of Uppsala, using double
length arithmetic. In order to test the convergence
properties economically we set a convergence
threshold for the satisfaction of (10) and (12) of
10 ' a.u. In fact, the convergence of the iteration
procedure 8'"' "= $,($'"') is very fast in this
problem due to the desirable properties of d $,($)/
d S. 'o In Table I we show results for He (upper
bounds). They are independent of the scale fac-
tor g to the accuracy presented in the range
1.92&q &1.98. The sequence of [N, N —1] Pade
approximants is seen to converge very rapidly.
The linear series appears to diverge. Examina-
tion of the individual e„($), for values of 8 near
—2.90 indicate that they form an alternating di-
verging series.

In Table II, we present results for the [N, N]
Pade approximants. They are not lower bounds
to Eo, but to the lowest solution of (25). The agree-

(c) computation of (9) or (16) and (11) or (17) with
the approximate e~; (d) iteration of the preceding
steps until (10) and (12) are satisfied. Step (b) is
to be done with great care since the matrix A
proves to be ill conditioned for inversion. It is
not advisable to invert it, and a procedure based
upon a Schmidt-type orthogonalization of the set
(k;), but with the metric K —8, was employed.
Apparently it goes back to Hylleraas and it belongs
to the computational folklore of perturbation the-
ory 18

It is quite clear that the & ~ for increasing k
may be rather inaccurate, and thus the approxi-
mations to the total energy are more meaningful
than the individual values of the e „reported.

It should be noted also that step (c), which in-
volves the computation of the Pade approximants
can also involve a rather ill-conditioned matrix
E or E. In fa,ct, formulas (9) and (10) are valid
as they stand provided the e, (or the i,) do not
form a geometric series. Not only the numerical
computations indicate that for sufficiently large
k they do, but this is a consequence of the def-
inition of the e, themselves, as it will be dis-
cussed later. In any case the computational
technique employed took account of this fact, and
in this respect &tE-'E is treated in the same way
as a'A. -'a .

NUMERICAL RESULTS
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TABLE I. [N, N-1] approximants for the He atom
and values for the BW linear series involving the same
R~(g = 1.94) (exact: E0 ———2.903 724).

TABLE II. I, N, N] approximants for the He atom and
values for the BW linear series involving the same
R~(g = 1.94) (exact: E0 —2.903 724).

8&——
0 e, +[N, N 1]-((]&,1} E~+ &++K 2»K(g»} N 8~-—E0+a(+ fP/, N] (gg, 1)

2N+ 2»0»t +K= 2»»(~Ã}

—2.897 61
—2.903 70
—2.903 72
—2.903 723

~Reference 15.

—2.639 72
—2.360 86
—1.738 59
—0.398 73

—2.906 07
—2.903 73
—2.903 73

~Reference 15.

—3.269 82
—3.698 49
—4.61175

ment between the results of Tables I and II indicate
that within an accuracy of 10 a.u. we have solved
the eigenvalue problem (1) by a modified
Brillouin -Wigner -Pads expansion.

In order to study how convergence depends on
the nuclear charge we compare in Table III results
obtained for H, He, Li', and Be", which suffice
as illustration. All the perturbation energies &&

in each column are computed with the scale factor
and energy value given on top. In each case the
value of 8 is very near the solution, and thus the
convergence of the BW series can be examined
meaningfully. Several features are revealed by
this table. The series of E, for H is not alter-
nating and not particularly convergent. The series
for He does not converge either but is alternating.
For Li' and Be", the series are alternating and
apparently convergent. That the Pads' approxi-
mants and the linear series coincide for Be", and
almost coincide for Li' is not too surprising.
That for He and even for H the Pads' approximants
manage to sum the series is quite remarkable.

One may doubt, as we did, the accuracy or even
the relevancy of calculations of this type for H .
The procedure to compute (9) is very sensitive to
round off errors in the individual &~ for H . Any

attempt of changing slightly the values of the E~

(for h in neighborhood of —0.527), i.e. , by going
from double into single precision was catastrophic:
The Pads approximant would vary enormously.
On the other hand confidence in the results ob-
tained with double-precision arithmetic is estab-
lished by varying the scale factor in the basis set.
Since To is not definite we do not have a variation-
al principle for (. &. The E, change a great deal
but the Pads' approximants are very stable, as it
can be seen in Table IV for Zoo+&, + [10,9]. In all
other cases the accuracy of the individual c, is
not so critical and the results obtained using i~
given to 10 decimal digits do not differ appreciably
when they are given to 25 decimal digits (differ-
ences of the order 10 ~ in Heand less in Li' and
Be").

The computations indicate that the ratios e,.q/

&~, for a given value of 8 rapidly approach a con-
stant value, i.e. , the series becomes geometric.
In fact, the ratio gives the largest eigenvalue of
the operator ToV, which is one of the poles of the
function e(8, p, ) defined in (14). The problem of
determining the other poles is a classical one, '
and they can be obtained by the QD algorithm.
We obtained for the largest eigenvalues (in abso-
lute value) of TOV, which determines the conver-

TABLE III. Values of selected (.'z(g), fN, N-1] Pads approximants and linear series for specific choices of g and 8.

'0

g
EO

0

~3(8)
&4($)

-.„(b)
E00+e(+ f1, 0]

0 ~i ~2 ~3
E0+., + D.o, 9]

21

Eo+»)+Q» 2»»
Exact

~Reference 21.

H

0.73
—0.527 75
—1.000 00

0.625 00
0.775 99x 10~

1.033 14x 103
1.367 43 x 105

1.216 12x 10
—0.433 73

1.04 x 103
—0.527 56

1.2 x10
—0.527 751

He

1.96
—2.903 72
—4.000 00
+ 1.250 00
—0.33955

0.443 40
—0.629 32

2.838 963 x 10
—2.897 26
—2.646 16
—2.903 72

—1.7 X 102
—2.903 724

Li'

3.099
—7.279 9
—9.000 00

1.875 00
—0.238 08

0.13183
—0.078 136

—3.620 17 & 10
—7.278 24
—7.231 26
—7.279 91

—7.279 93
—7.279 93

++

4.2
—13.655
—16.000 00

2.500 00
—0.209 98

0.748 59x 10
—0.283 92 x 10 i

—1.11751 x 10
—13.654 79
—13.635 13
—13.655 57

—13.655 57
—13.655 57
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TABLE IV. Variation of R'g(g) and Eo+e&+[N, +-1jwith change of the scale factor q in the case of H (gfixed at
0,527 75 a u, ), In ox'der to fRcilitRte compRrison we give only three slgMficRnt figux'es for the ill(Hvidual 6'g,

&2($)
~3(8)
&4(8)
&5(8)

&20()

Eo+&(+ Q.0, 9]
Eoo+~, + t,1,0]

3.24 x 10
1.85x10'
1.04x10'
5.85x10'

1.03 x 1032

5.79x10"
—0.527 592
—0.432 945

4.61 x 100

3.69x10'
2.93x 104
2.32x10'

7.10x 1034

5.63x10"
—0.527 572
—0.433 369

0.73

7.76 x10
1.03 x 10
1.37 x 10
1.81x10'

1.22x10"
1.61x104'

—0.527 557
—0.433 726

2.26 x 10~

8.71x10'
3.34x106
1.28 x10'

7.44 x 1047

2.86 x 10'~

—0.527 359
—0.434020

—2.66 x 10
1.19x10'

—5.33 x 10
2.39x 10'

—1.41 x 1049

6.32 x10"
—0.527 525
—0.434 522

0.76

—8.56 x100
1.22x10'

—1,76 x 10
2.53 x 10

—5.83 x10"
8.38 x 104'

—0.527 513
—0.435 282

gence of the linear series, ' the values 1.3058,
0.6200„and 0.3988 for He, Li', and He". These
numbers justify the results of Table HI. For 8,
the ratio is very sensitive to the value of the scale
factor (and hence to the location of the singularity
of To) and varies from 10 to 10 .

DISCUSSION

The yreceding results indicate the remarkable
convergence properties of the Pads ayproximants
in conjunction with the 8% quantities. The for-
mulas given for both the apyroximants themselves
and the perturbation coefficients entering in them
are compact and efficient comyutationally. They
show the usefulness of the projection technique
and remove the need for the formulation of ad A,oe
variational principles, for which they give ex-
plicit solutions directly.

The convergence properties of the 8% series
were discussed by Ahlrichs ' who showed that
Z&5. 9 is a sufficient condition for convergence.
Our results seem to indicate that even for S=3
the linear series converges. In a recent paper
Amos discussed the improvement of perturbation
expansions by a scale transformation. He con-
siders the RS case and sets

ko= pK +E (1 —p, )

V = (1 —p)X +ED(p, —1)+V

and proceeds to optimize p. . It is interesting to
point out that a similar transformation in the BW
leaves Eo+ c,+ [N, N —1]invariant, as shown by
Feenberg. '3 This optimal property of the
[N, N —1] Pads approximant accounts partially for
its remarkable stability and makes it preferable
to the linear series. Furthermore, it should be
noted that whereas the exact expression (3) has
singularities at the eigenvalues of PIIP, the linear
series has poles when 8 is equal to the eigenval-
ues of PIf'P. This incorrect analytic behavior
disappears when one employs the Pade approxi-
mants e.g, :

lim &3+ 63 = ~
s-zo

This explains why one obtains reasonable results
in H, even though the energy Eoois quite near an
excited state of H~.
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The mean excitation potential of helium has been determined to be 42. 7 +0.6 eV by measur-
ing the ranges of monoenergetic particles in a helium bubble chamber. Special care was taken
to minimize systematic errors in the measurement of track lengths. The result obtained is
independent of assumed corrections to the Bethe-Bloch equation at low velocity, but a discus-
sion of such corrections is presented. Two existing theoretical estimates of 41.5 and 41.8 eV
are in fair agreement with the measured value.

I. INTRODUCTION

The study of penetration of charged particles
in matter has been of interest since the earliest
experiments in nuclear physics. Such studies are
still important, since precise information on stop-
ping power can be used in the measurement of fun-
damental quantities such as particle masses.

In the present experiment, we have obtained ac-
curate data on particle ranges in a liquid-helium
bubble chamber, which are used to deduce the
value of I, the mean excitation energy, in the
Bethe-Bloch equation. ' This determination of I
is of interest for practical application of the helium
range-energy relation, and also provides an ac-
curate experimental value for comparison with
values of I that have been computed" for helium
from first principles.

From an experimental point of view, liquid
helium is advantageous in several respects. Its
thermodynamic properties are very accurately
known, its small refractive index (l. 02) allows

(1)

(2)

(2)

(&)

II. THEORY

A basic expression for energy loss per unit
path length is given by the Bethe-Bloch equation, '

8E&~ 2vz e NZ 2mc y P Q,
8X&~ mc P'A I

(5)

precise photography of events, multiple Coulomb
scattering is small, and there are frequent re-
actions which produce monoenergetic secondary
particles when the initiating particle is at rest.

The basic range measurements of this experi-
ment were performed with the following reactions,
selecting those cases with zero kinetic energy in
the initial state:

m +He -H'+n,


