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Liquid and solid volumes are calculated over the region of the melting anomaly for He3.
Both phases are represented by theoretical models, and the volume variations are determined
down to absolute zero. There is satisfactory agreement with measurements over the present
experimental range. Although the melting-pressure curve is smooth, the solid volume at
melting has a sharp cusp at its spin-ordering temperature. This feature should enable one to
detect the process of spin ordering in the solid. The solid at melting expands with tempera-
ture decrease throughout its spin-ordering range. The volume change on adiabatic solidfication
of the liquid has also been obtained and should be useful in establishing a melting-pressure tem-
perature scale based on the thermodynamic properties of melting Hes at very low temperature.

I. INTRODUCTION

In recent work' on melting He', we gave a tem-
perature scale of largely thermodynamic character
down to 1 mK. The scale was based on the anom-
alous melting properties of this element, which ex-
tend from about 325 to 0. 5 mK. However, in the
application of this scale and in the design of cryo-
genic apparatus which is cooled by the adiabatic
freezing of He3, it appears that further calculations
of the volume variations at melting would be of
interest. This is the main topic of the present
paper.

The relationships between melting pressure and

entropy, and melting pressure and temperature
were obtained' from models for the liquid and solid
which involve phenomenological parameter s. These
parametric functions can be refined as more ac-
curate experimental data become available. Any
lack of precision in the present calculations arises
from the absence of isothermal compressibility
data on liquid and solid He over the pressure and

temperature ranges of interest. Assumed values
of the compressibilities and their P and T depen-
dence must thus be used along the melting line
below the minimum. Other approximations may
add to the uncertainty of the computed volume var-
iations. Limitations of the melting pressure which
enter in the discussion of volume changes have al-
ready been given. '

The plan of the present paper is to consider the
successive volume changes of the dense phases
first over the melting temperatures and pressures
where the solid is a nuclear paramagnet, and then
over the very-low-temperature region where the
solid is in the spin-ordering range. The difference
between the liquid volume V~ „(T) and the solid
volume V, ~(T) in equilibrium at melting defines
the volume change AV„(T). We then obta, in the
adiabatic volume change & V„(S) which accompanies
the freezing process at constant entropy S, and find
it to be considerably larger than &V~(T). Experi-

mental values of &V~(S) should contribute to the
establishment of a largely thermodynamic tempera-
ture standard at very low temperatures' and should
aid in the design of He' refrigerators which cool by
the so-called Pomeranchuk effect.

II. VOLUME VARIATIONS OF LIQUID He3 AT MELTING;
BOTH PHASES ARE PARAMAGNETIC

The molar-volume variation of the liquid at melt-
ing is given by

dy LN dy L N dP

dT —
yL ~ VL ~dp

~T p

where

(2)

is the isothermal compressibility coefficient of the
liquid at melting. For the sake of simplicity we
will drop the subscript M, since all properties re-
fer to melting conditions. In our earlier work' we
were not able to represent analytically the thermal
properties of the liquid at melting from T,„=326
mK down to 5 mK, and had to calculate them nu-

merically. An analytical description was approxi-
mated below 5 mK.

%e use the thermodynamic relation

8T g P

where S~(T, P) is the molar entropy of the liquid at
melting, with the variable P referring to the melt-
ing pressure P~. By virtue of the theory of ther-
mal excitations in liquid He3, we may write the
entropy S~(T, P) as the sum of the spin (o) and

nonspin (no) entropies:
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s, (r, p) =s, ,(r, p)+s, „(r,p).

Qver the low-temperature range one has

SI & S~

(4)

Sz .."SJ,.e (sb)

While a formal representation of Sz,(T, P) exists
throughout the state surface of the liquid phase,
the pressure dependence of SI ~ is only known
qualitatively. Qne thus finds3

(
&Vz, BSz,, Cz.,(T) dT() z

&P T, , (P) dP (6)

and in the present calcu1.ations we must use a lomer
limit of this partial derivative. The calculated
volume increase of the liquid at melting between
T~, the temperature of the melting-pressure mini-
mum, and some lower temperature T mill always
be larger than the actual volume increase. If we
rewrite (l) as

where C~, is the spin heat capacity of the liquid at
melting, and To, z(P) is the function giving the pres-
sure dependence of the characteristic temperature
of the spin system. ~ Since dTO z/dP & 0, we find
that the partial derivative (&Vz,/er)z, & 0, resulting
in an anomalous spin expansion coefficient. By
Eq. (6) the spin entropy increases on isothermal
compression. However, the expansion coefficient
arising from the nonspin degrees of freedom is
expected to be positive. Hence, we have

These may be refined to come as close as desired
to an exact evaluation of (ll), as far as Vz;(T) is
concerned. Qur main problem is obtaining infor-
mation about yz(T). Grilly4 has been experimen-
tally investigating this function for both liquid and
solid He down to about O. 30 K. Solid-He compres-
sibilities were deduced by Adams and his collabora-
tors' from pressure measurements along a series
of isochores of the solid. Equation-of-state data
on the liquid domn to about 1.0 K were used by Sher-
man and Edeskuty to derive liquid compressibili-
ties. I iquid compressibilities at melting were also
deduced by Mills, Grilly, and Sydoriakv from their
data on the melting properties of Hea down to about
T~. More recently, Straty and Adams' obtained
liquid and solid compressibilities at melting from
their equation-of-state data at temperatures T
&O. 35 K.

At the higher temperaturese it appears that vari-
ations in yi arise mainly from the effects of pres-
sure. This suggests that the compressibilities at
a given pressure will be about the sa,me on the two
branches of the melting-pressure curve, below and
above its vertex. A recent measurement of the
liquid compressibility at 31.5 atm at about 40 mK
was in good agreement with the higher-temperature
compressibility at about the same pressure.

The present volume calculations will be made
with the following assumptions: (a) An averaged
collstR11't VR111e ( gz) w111 be 11sed ove1' 'tile small tem-
perature and pressure ranges considered here.
(b) The experimentally determined volumes will be
bracketed by two sets of compressibility values.
This same procedure mill be followed in subsequent
calculations of the solid volumes.

As a starting (n) approximation we may write
lllstead of (l)

we obtain, on integrating the first term on the
right-hand side from T„ to T& T~,

v&'&(T) - v("'(T„)& v, ,(r) —v,„(r,).
Integrating the term de ', one has with (I)

dv "()') (,~") aT-(x=r));();)rtP()'). ((2)

Integrating between T~ and T& T~, we find

v,"(r)= v, (r„)(l—
& q, )[p(r) —p(r„)]]

v', '(p)- v,"'(p.)=(-)1' y, v, dp.I ff,
(10)

Since the connection between T and P, at melting,
is unique, we may rewrite (10) as

It is convenient to introduce the notation

(14b)

It is seen that this volume change involves an inte-
gration over the unknown volume Vz, (T ). Since the
liquid- and solid-volume changes are small, various
approximation procedures suggest themselves.

T„being a reference temperature. In the (n) ap-
proximation, the liquid volume at melting is then
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which can be refined over small temperature inter-
vals to yield the (P) approximation. Let T„T2, ~ ~ ~,

Tz, .. . , be a series of temperatures such that Tj
&T~&~ ~ ~ &T &T ~ & '''. Then at T&T. w'e have

the spin heat capacity Cz, , and spin entropy Sz,
become linear in T. One has

,/f(,'=y, (0)T (T small),

~,„(0)= (-,' In2) /r, ,(P-P(0)) =4. 23 && 10-'/mK,

Integrating between T& and T&,„we obtain

v,"'r, ,= v,"'(r,)[i —u, (r, ,„r,)]+v, (r,„,r, ),

To z(P(0)) being the characteristic temperature of
the spin system of the liquid at the limit P(T-0).
One thus finds

where )zz and z/z are defined by (14). In this (P) ap-
proximation, the constancy of Vz(r) on the right-
hand side of (16) is assumed over the small interval

(Tz„, Tz) only, instead of over the whole interval
(T, T„), as in (12). The (P) approximation can be
made to approach the actual correct limit of Vz, (r)
as closely as one desires, on narrowing the interval
(r, ,„r, ).

A somewhat different calculation of Vz, (r) at T
& T„ involves rewriting (1) as

a)n()', (r)l = ()',(7')I '(,~")
&)'- (x,& &P(T) .

(16)

With Vz(r) replaced by Vz(r„) on the right-hand
side, we obtain on integration

=(ft/(~v))b T —[s,(r)/f~] j,
T&5 IK

S~/R = year, (T small) (25)

S,/Z=ln2-3+ (-)"(a„/m+2)x"', (26)

O~T d»To,
(23)

Here din(ro z/dP) is estimated from magnetic sus-
ceptibilities' to be about ( —) 1.1 &(.'10 /atm, with

P„(0) taken to be about 34 atm. '
At T & 5 mK, dVz/dT can be approximated analyt-

ically. On the right-hand side of (18) (evz, /Sr)~
can be replaced by (23). Then, in the second com-
pressional term in (18), one has

V,'"')(r) = V,(r, )exp[- u, (r, r, )

+ [v,(r, )]-' z/, (r, r, )],
the (zz') approximation to Vz(r). Since the exponent
is quite small, (19) reduces to Vz,"(T).

Stepwise integration over intervals (Tziz, Tz) gives
the (P') approximation:

V,"'(r,.„)= VP'(r, )exp(- u, (r,„,r, )

+ [V~s'(r, )] 'v, (r„„r,)],
which reduces to Vz+)(T,„)[Eq. (17)].

Near T„, (18) may be rewritten as

(v, (r„&j-'(~~') =(&,(T'.)I' (,~") —(x,& ~~

(21)

x=(~)/fzr, (Z)/I =0.7mK,

as discussed earlier' assuming an antiferromag-
netic model for the solid. '3 The limiting value yl
in Eq. (25) has already been considered. ' The
average values of the melting-volume change (& V)

and the compressibility (Xz) complete the list of
parameters entering into dVz/dT.

%e now describe the various approximation
schemes at low temperatures. Let T„be a starting
low temperature of 5 mK. In the (a) approximation
we obtain an expression for Vz,

' (T) similar to (15),
where Tr elpaecsT„. With (24)-(26), we find

a~(T', T',)=(y~)())/(a)'))I(rr)&n3 —,'y~(T', T', —)——
]. + 2 kT„

The two terms on the right-hand side are of opposite
sign below T„. This is true even if (evz „,/sr)z,
were to be included in the first term. As shown
earlier'o'" the liquid volume at melting exhibits a
maximum just below T~ on the basis of reasonable
values of {yz). Below the temperature of this max-
imum, Vz, (T) decreases monotonically with decrea-
sing temperatures.

It is simpler to define Vz, (r) at T& 5 mK, where
= —.'zy, .(0) „„"(r'- r„').

(27)

(26)
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Hence, the initial (n) approximation for V~(r) at
T & T„, with the help of (15), is

= v (r„c„,+r„c„,). (34)

V,"(T)T„)= V,' (T„)[1—k~(T) T„))+vg(r) T„). (29)

kr, (ryder) Tg) kJ (Ty +$ )T)') kL(ry) T)') )

v (T,„,r,) v~(r-, .„r„)—v~(r„r„),

(so)

(31)

Here, k~(T, T„) and v~(r, T„) refer to (27) and (28).
Similarly the (P) approximations are derived from

(17) by way of (27) and (28) to obtain, respectively,

Here, the C's denote the component heat capacities.
The entropy S„,is represented' by a high-tempera-
ture expansion in ascending powers of the ratio
[Z( V)/ kr], where Z(v, ) is a temperature-indepen-
dent parameter describing the numerical value of
the exchange energy of an antiferromagnet. ' The
volume derivatives of the entropies involve deriva-
tives of J(v, ) and 6(V,), the latter being the Debye
temperature. In addition to the Grueneisen param-
eter

where all temperatures T, & T„=5 mK.
Again the (o, ) approximation to V~(r) at low tem-

peratures results from (19) on replacing V~(r, ) by

Vr, '(T„), k~(T, T, ) and v~(T, T„)by k~(r, T„) and

v~(r, T„) [Eqs. (27) and (28)]. Similarly, the (P )
approximation results from (20) using (30) and (31)
for k~(T,„,T,) and v~(T, ,„T~).

9 in[8( V,)]
1V.

'

we define' the corresponding quantity

Blnld(v) I

(35a)

(35b)

The calculation of the volume change of solid He
at melting follows that for the liquid and yields

dV. (,)', )')=( ') d)'~( ') dP

dT —y, VsdP,
&V

(32)

v,"(r,r„)= v, (T„)11 —(y, )[p(r) —p(T„)]]

III. MELTING-VOLUME VARIATIONS OF PARAMAGNETIC

SOLID He3 AT LOW TEMPERATURES relating to the exchange system. It should be noted
that a similar parameter involving pressure deriva-
tives has been given by us earlier" in connection
with the calculations of the isobaric expansion coef-
ficient of the solid along the melting line. Values
of J(v,) and I'„have been obtained by the Florida
workers, who were the first to show spin ordering
in the bcc solid at very low temperatures. ' '"
Values of I'„have been deduced from heat-capacity
data" and from equation-of-state data. ' With (34)
and the thermodynamic relation

(38)

= V,(r„)[1—k,(r, r.)]+ v, (r, r.), the total temperature derivative of the solid volume
at melting becomes

(33)

where the subscript L is replaced by s. The total
change of V, below T, is less than about 3/0.

We will use two sets of compressibilities to cal-
culate V,(T). In the first set, the liquid and solid
'ompressibilities are taken to be equal. This is

compatible with early measurements of y ~ and

y, above T„. As a second set, we will use solid
compressibilities calculated from equation- of-state
data, which indicate that at about 1.0 K the solid
at melting has a larger compressibility than the
liquid in equilibrium with it.

The entropy of the solid can be represented' as
the sum of entropies from spin excitations S„, and
phonon excitations S„,, From earlier work'3 ~4

on the exchange-coupled model of solid He, me
have

dV, AP
s F~Cx, s+ FvC@,s Vs dT (37)

The exchange system is anomalous to the extent
that (BS„,/aV)r &0, which requires, by (34), that
I"„&0, in agreement with the observations. ' '"
The normal behavior of the lattice imposes I; &0.
The contrasting behaviors of the spin system and
the lattice were shown to impose a minimum upon
the isobars and isochores of solid Hes. The locus
of this minimum was given earlier'3" and gras de-
termined recently by Panczyk and Adams. At
T ~ 200-230 mK, depending on values assigned to
J'(V, ), 1'„, 9, and I"„, the positive phonon term
(I', C, ,) outweighs the negative exchange term
(I'„C„,) on the right-hand side of (37). Hence, dV/
dT can vanish only at T & T where dP/dT & 0. One
finds thus that the solid volume at melting has a
maximum just beyond T, as conjectured earlier. ' '"
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In calculating the volume variations at T & T„ the
starting (o.) approximation, [Eq. (33)], can be im-
proved in a way similar to the case of the liquid.
Through stepwise integration one obtains the (P)
approximation:

V."'(Tg.i) = V.'"(Tg)[1-&.(Tg.i Tg)1+ v.( g.» Ts»

T...& T, , (38)

where

&s(Tg+i & Ty) = (X ) [P(Tg.i) —P(Tg~] (39a)

(39b)

and (X,) is assumed to be constant. The (o!') and
(P') approximations to V,(T) follow by analogy to
the liquid at melting.

In contrast to P(T) and dP/dT, which cannot be
given in analytical form from T„ to about 5 mK be-
cause the liquid entropy has no analytical repre-
sentation there, the partial derivative (8V/BT)~,
represented by the first two terms on the right-hand
side of (37) can be described analytically for T & T, .
With C„,and C„, calculated earlier, ' ' (37) yields
the explicit formula

the compressional term

dVi' =(-)(X,)V,—(T smail) . (41)

v, (T;,s, T;) = v, (T~,i, T„)-v, (T, , T )

one finds, using (40),

~.(&, &&=&(x.&I&(-&& z 2 (-&"„,"&(z~ )

Both Vz(T) and P(T) have inflection points ' ~ near
7 mK which cause a minimum in Vz(T) at very low
temperatures, since ( —)(d P/dT ) is positive below
the temperature of the inflection point.

The volume of the solid at melting also has an in-
flection point near that for P(T), but on its high-
temperature side. The inflection points of Vi and

V, arise because ( —)(X~) V~(dP/dT) and ( —)(g, ) V,

x(dp/dT) dominate over the terms (sV, ,/sT) ~ and
(SV/ST)J, in the total derivatives dV~/dT and dV, /
dT. However, near the spin-ordering temperature
and below, (9 V,/BT)I, becomes larger than the com-
pressional term.

It is convenient to write down explicitly the small-
volume term v, (T, T„) on the right-hand side of (33),
or v, (T&.~, TJ) on the right-hand side of (38). With

3I"„—"a„

127t 4

(40)

which is valid down to the spin-ordering tempera-
ture To. The two terms inside the brackets are of
opposite sign, since T„'&0 and I'„&0; the coefficients
a„are known up to a„(Z) denotes the average ex-
change energy as in (26). According to (37), dV, /
dT is positive, so V,(T) increases monotonically
from T„-5 mK to its maximum just above T, . As
indicated earlier (s V,/BT)~ becomes negative below
about 200-230 mK, but the compressional term
( —)()&,', ) V, (dP/dT) in (37) is always positive over
the range (T„, T, ) causing V,(T) to increase.

it is instructive to look at dV~/dT and dV/dT
from T= 5 mK to T~. As we have seen, dP/dT ap-
proaches zero at T~, while the positive derivative
de/dT also approaches zero. The maximum in V~

occurs at about 302 mK and arises from compensa-
tion of the negative spin term (s V~, /sT)p by the
positive compressional term -(yz) V~(dP/dT). Be-
low this maximum the compressional term increases
rapidly and becomes some five times larger than
the spin term at 200 mK. The ratio increases to
over 200 at 7 mK, where —(dP/dT) or ( —)(Xl, )
x(dP/dT) reaches its maximum. At very low tem-
peratures, variations of V~(T) are defined only by

Remembering that —F, is a positive number, we
see that the exchange system causes the volume
to expand on cooling, while the second phonon term
inside the braces causes it to contract.

Below 5mK, Eqs. (24)-(26) can be used in (37)
to obtain the analytical form of d V, /d T. The k,
function in Eq. (38) takes on an analytical expres-
sion through (27) where (yl) is replaced by (y, ),
and T and T, are replaced by T,,1 and T, .

We have thus formulated the liquid- and solid-
volume variations from T„down to the spin-order-
ing temperature within the limitations mentioned
earlier. As in our treatment' of P(T), we have
neglected any critical behavior of the solid near the
spin-ordering temperature.

In Fig. 1 we give the calculated liquid and solid
volumes Vi~'and V,' ' from 5mK to T„. The upper
and lower liquid-volume curves result from using

(yi) = 5. 2x10 3/atm and (yz) = 5. 5x10 3/atm, re-
spectively. The solid volumes correspond to com-
pressibilities of 5. 5x10 /atm, upper curve, and

5. 94x10 3/atm, lower curve. Experimental vol-
umes are shown as the open circles, and their
extrapolated values as the closed circles. The cal-
culated volume curves bracket the data, with vol-
umes calculated from the smaller liquid compress-
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TABLE I. Isothermal melting-volume changes

fVz, (T)-V, (T)] at low temperatures.

6 V(T}' SV(g"
cm /mole

300
280
260
240
220
200
180
160
140
120
100
90
80
70
60
50
45
40
35
30
25
20
15
10

5

1.203
1.207
l. 211
1, 216
1.221
1.227
1.233
1.240
l. 248
l. 256
l. 266
l. 271
l. 276
l. 286
l. 287
l. 289
1.295
l. 298
l.300
1.303
l.306
l. 309
1.311
1.314
l.315

1.201
l. 204
l. 208
1.215
1.223
l. 229
1.237
1.247
1.254
1.264
1.272
l. 274
1.276
l. 278
1.279
l. 276
1.276
l. 276
l. 275
1 275c
l. 274c
1 273c
1~ 272

pec-
Calculated with Vl. and Vs obtained with the averaged

compressibilities of 5.2&10 and 5. 94&&10 3/atm, res
tively.
"Deduced in Ref. 9 from separate determinations of
VI, (T) and Vs(
'Extrapolated data included in Ref. 9.

y, r — ' ' [ln(2Losay) —xy] ) I
.

R ln2

(45)

The term linear in T on the right-hand side is the
entropy of the liquid as given in Eq. (24). The
second term is the entropy of the antiferromagnetic
solid. S,(TO) is the entropy of the paramagnetic
solid at To which is assumed to be identical with
that of its antiferromagnetic modification at the
transition temperature. ~ The quantities x and y
are defined by

x = tanhy = o(T)/oo, y = x/T ' T = T/To, (46)

o(T) and oo being the magnetic moments Per sub-
lattice at T and absolute zero, respectively.

The partial derivative (8 V~/ST)~ is still given
by Eq. (23). The compressional part of dV~/dT
is now

cm~/mole between 5mK and To= 2mK. The zero of
dV, /dT occurs at about 2. 10mK, where V,(T) has
a minimum. Any volume changes in the limited
temperature range below this minimum would be
extremely small and of mostly theoretical interest.

IV. MELTING-VOLUME VARIATIONS OF He3 A.' VERY
LOW TEMPERATURES; SOLID IS IN SPIN-ORDERING RANGE

The temperature derivative of the melting-pres-
sure at T& To is'

ibility and the larger solid compressibility being
close to the data points.

The calculated volume curves reproduce the
melting-volume data to within about 0. 1% or to
within about 3x10 cm'/mole. Hence, the isother-
mal volume change at melting

VL

VI
—24.8

b V(T) = Vi(T) —V, (T), (44)

which is of the order 1cms/mole, is given to within
3%. The largest deviations between the experi-
mental and calculated values of &V(T) are expected
to occur at the lower temperatures, where the cal-
culated volumes differ most from the data.

Listed in Table I are the calculated values of
b, V(T) and those deduced by Scribner, Panczyk,
and Adams from their separate determinations of
the volumes Vl, (T) and V,(T). The calculated hV
values become larger than those resulting from the
experimental melting volumes as the temperature
decreases, but they tend to level off at the lowest
temperatures where variations of Ul, and U, be-
come very small. As Fig. 1 suggests, the volume
can change very little below 5 mK. This change
for both phases is found to be about (13-16)x10 '

O

E
V

25.4 —24.4

25,0
0 200

T (mK)

24.0
400

FIG. 1. Calculated liquid Vl, and solid volumes V, at
melting, (cms/mole), as a function of the temperature
(mK). The upper and lower curves refer, respectively,
to the smaller and larger isothermal compressibility
parameters at melting. The circles represent the data
of Ref. 9.
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d V'"' dP=(-) &Xg&Vg(TO) dT

with tfp /&AT given by (45). One finds, as above,

V,' '(T) = V,(TO) [1 —u, (T, To)]+a, (T, To), &46)

absolute zero.
As discussed earlier, the asymptotic molecular-

field-theory model gives a ~-type discontinuity in
the heat eapaeity at the transition temperature To.
Since I'„& 0, d V, /d T is seen to develop an inverted
& discontinuity which, with (37) and (52), is

F„—4C

(53)

(50)
r C = C.,(T,) C, (T,—), (54)

as in (28) above. This vl, term is quite small. We

gave earlier~ the expression of [P (T) —P(TO) j as

P (T) —P(To) = (RTo/& ~ V)) (—
a &i To(1 —&')

+ [S,(T,) /R ln2][(1 - ~) in2

+-,' x'+-,' ~ln(1 —x')]) . {51)

where I'„ is defined through (35b) and C, is the

heat capacity of the spin-ordering solid in the ab-
sence of the very small phonon heat capacity. %e
saw above, that V,(T) developed a very shallow min-

imum slightly above To and increased at the ap-
proaches of To. Below the maximum' of P„(T)
at about 0. 5mK, the two terms on the right-hand

side of (52) are both negative. Hence, solid He'

at melting is anomalous from 2. 10mK down to

The liquid volume V~ (T) decreases only by about
2X 10 'cm'/mole between To and the absolute 2ero
Actually V~(T) has an extremely shallow minimum

at a somewhat higher temperature than the very
low temperature maximum of P (T) at about 0. 5

mK as discussed earlier. Stated in other terms,
dVz/dT vanishes at a temperature somewhat higher
than dP /dT. This ls caused by the negative

(BVz, /BT)p becoming larger than the positive com-
pressional term [Eq. (4V)], that is, the melting vol-
ume of the liquid expands at the approaches of the
absolute zero. This result is of theoretical signif-
icance only, since volume variations even down to

To cannot be measured at the present time. How-

ever, volume variations in liquid He considerably
smaller than 2x10 Bcm /mole are measurable at
higher temperatures according to my colleagues,
Kerr and Sherman.

Omitting the very small phonon term in the spin-
ordering range of the solid, one has with (3V)

and the isothermal compressibility is assumed to
be continuous. To this approximation, the discon-
tinuity of the total volume derivative d VgdT at
To reduces to that of the partial temperature de-
rivative (SIST)~ of the isobar P- P( T)oat its
end point on the melting-pressure line at To. This
same type of discontinuity occurs in (&V/ST)~
along the locus To(P), where the solid is bcc. The

discontinuity h(6VJsT)~ is expected to decrease
slowly along the transition line T,(P) up to the

bcc-hcp transition. At the spin-ordering temper-
ature, only the derivative of the melting pressure
dP/dT shows a break, whereas V, itself has such
a cusp according to Eq. (53).

With ( —Ac) = 0. 364R, I I'„~ - 16.4, ~Band the values
of &y,& indicated above, the discontinuity b.(dVgdT)
is about (2. V-2. 9) &&10 cm'/mole mK. The more
recent value of ~I'„j is somewhat larger 7 and

b, (d Vgd T) may have to be increased by 5-6/0. Dis-
continuities in the slope of the isochores of the
solid at the transition line are related to the tem-
perature coefficients

by Eq. (53). Near melting, with ~I'„l- IV, V,-24
cm'/mole, this amounts to about (0. 027 atm/mK),
the temperature derivatives being larger at T0,
than at To, as with the volume derivatives [Eq.
(53)]. Both discontinuities (53) and (55) are quite
large and should result in sharp breaks in the
isobars and isoehores. If working temperatures
of T ~ 1.5 mK ax e attainable, the angular character
of the isochores may help to locate the spin-oxder-
ing transition at least near the melting curve. A

sensitive technique developed by Adams and his
collaborators'6'~~ for measuring isochores might

be applied to the present ease. Clearly, magnetic
measurements across the spin-ordering tempera-
tures would supply additional information. Even
isochores with relatively poor tempexature resolu-
tion should yield values close to r C = ( —0. 364)R,
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through E(l. (55).
On integration of d V, /dT [E(l. (52)] one finds

where'

is the internal energy difference of the xnodel be-
tween T0 and T. At these very low temperatures,
the (n) approximation should be sufficient to yield
with fair accuracy the second term inside the
large parentheses on the right-hand side of (56).
Hence, we find

where P (T) —P(TO) is given by (51). With

the present treatment gives

p~I ~0

The expression giving the limit value [V, (T- 0)
—V,(T0)] can be written as

--~ r I. (80)(6V) 8 ln2 2ln2

N. 0716, N. 0592, and 24. 0620 cm /mole. Corre-
sponding values of b, v(T) result by subtraction.

Over the range explored so far the calculated
liquid and solid volumes at melting are in fair
agreement with the experimental volumes. In

px'lDclple, verification could be extended even lowel ~

In Table I the isothermal volume changes at melt-
ing r V(T), resulting from Vt.(T) and V,(T), are
in poorer agreement with experimental volumes.
The calculated ~V values become larger than the
experimental ones toward the low-temperature end
of the experimental range. By introducing the cal-
culated &V(T) values into the melting-pressure
derivatives, with the improved Z(v) function'~ we
can determine the entropy of the solid at very low
temperature. This yields a new approximation to
dP/dr and P(r), The latter can be reintroduced
into new calculations of Vz, (T), V,(T), and AV(T).
These can now be used to arrive at improved func-
tions of dP/d T and P(T) Or a m. ajor iterative pro-
cedure can be followed for improving successively
the melting properties until, hopefully, convergence
results. In the absence of new theoretical or experi-
mental liquid entropies, and liquid and solid com-
pressibilities, such a procedure is not warranted
at the present time. Any improvements in the
numerical values of the melting properties would
probably involve only minor corrections. However,
ln the future wheD lnvestlgatloDs yleM lxnpx'oved

parameters, the iteration procedure may be use-
ful in recalculating the various melting properties
of He . A temperature scale based on the thermo-
dynamic properties of melting He would improve
accordingly.

Our final calculations involve the volume changes
which accompany the adiabatic freezing of He . In
this process the initial state is an all-liquid sample
of coordinates (T;, P(T;), V~(T,), SI (T,)), at melt-
ing, and the final state is an all-solid sample of
coordinates (Tz, P(T&), V,(T&), S,(T&)). The volume
change is

Using the smaller value of (y, ), (hv)-1. 20cm'/
mole, I &„ I

= 16.4, To = 2. 04 mK, and V,(TO) - 24. 111
cm /mole, one finds that the solid volume at ab-
solute zero is larger than at T0 by about 2. 7&10 '
cm /mole. One finds this difference to increase
to about 2. 9x10 3cm /mole using the larger solid
compressibility which gives V,(T,)- 24. 059 cm /
mole. An additional small increase of this volume
difference would result by using the larger value
of t F„t indicated above. These volume differences
are essentially reached at T/To- —,

' or about 1 mK.
Values of V~ computed from the smaller compress-
ibility are 25. 3868, 25. 3V12, and 25. 3690 cm /mole
at T=5mK, T0, and T=O, respectively. The
larger compressibility V, values are, respectively,

The constant-entropy volume changes should be
accessible to accurate measurement and should
broaden the foundation of a temperature scale' of
thermodynamic character.

The entropies of liquid and solid He become
e(lual at three points on the melting curve:(T„,
P(T~)), (Ty ~, P(ry ~)), and ln the limit of absolute
zero. Again 7."& ~ is the intersection of the liquid-
and solid-entropy curves at very low temperature.
The entropy degeneracies impose the following
degeneracies on melting-volume changes during
adiabatic and isobaric-isothermal freezing:
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FIG. 2. Volume changes (cm3 jmole) on adiabatic
freezing of an initial all-hquid sample at melting, as a
function of the initial temperature T; (mK) of the liquid.
For the invariant-entropy values [81,(T;) = 88(T~)] and the
final tempeI'atuI*68 Ty see Ref. 1.

~v(r = r, ,) =~V(s, (r, ,) =s,(r, ,)),
~V{T=O)=n.V(S, =S,-O) .

The melting anomaly of He l"equlres

~P(S,(r,) = S,(r,)) '0, -
Rs well as

nV(S, (r, ) =S,{r,)) & ~V(r, = r, = r), r, ' T, .
(64)

From T~ to Tz „, b, v(S) increases from b, v(T~) to

a maximum at about the same initial temperature
T; of the adiabatic freezing process where nP(s)
was shown to display a maximum. Instead of using
T; or T& to denote the initial and final temperatures
associated with the complete adiabatic freezing
process, the entropy S =Si(T;)=S,(ri) can be used
as an independent variable of b, v(s). We have used
this notation to display variations of &P(s) in the
freezing process. Beyond its maximum, 4 V(s)
decreases toward its second limit Av(rf „) at the
end of the melting anomaly, which is estimated to
be about l. 307 cm'/mole. Within our present treat-
ment this ls Rlso the n1eltlng-volume difference Rt
absolute zero.

In Fig. 2 the graph of the Bv(s(T;)) function is
given for values of T; between 320 and 5mK. These
volume changes accompany the adiabatic freezing
of an initial RB-liquid sample at melting to an all-
solid sample at melting. The values of S~(T;)
= S,(T&) have been given elsewhere. '

Hopefully, experimental investigations of melt-
ing He will be refined and extended to lower tem-
peratures and will aid in establishing a temperature
standard of thermodynamic character. The present
calculations should prove useful to those who carry
out the experiments.
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The diffusion coefficient for the helium metastable molecule in a 300'K helium afterglow
has been measured. The experimental technique is that of particle counting instead of the
usual method of optical absorption. The value obtain d was D~PO= 361+34 cm sec Torr.

In 1955 Phelps' published a definitive study of the
afterglow properties of atomic and molecular heli-
um. The results were obtained by measuring the
time-varying optical absorption of the various meta-
stables.

We report here late™afterglow measurements of
the diffusion coefficient for an excited neutral par-
ticle which we have assumed to be the helium mo-
lecular metastable, He&( Z'„). Tl:e sampling appara-
tus consisted of a quadrupole mass spectrometer
(length= 5 cm) viewing along the axis of a cylindri-
cal discharge tube. The tube had a characteristic
diffusion length A = 0. 178 cm. The ion detector was
a Bendix channeltron which was directly in line
with the plasma sampling aperture. The signal
from the detector consisted of individual pulses
which were counted by a multichannel analyzer op-
erating in the multiscaling mode. With the mass
spectrometer set for complete ion instability, i. e. ,
zero ion transmission, the channeltron registered
a time-varying background signal that we interpret
as consisting of three components: (a) uv photons,
(b) atomic metastables, and (c) molecular metasta-
bles. At relatively late times in the afterglow,
the decay of the background had the appearance of
a linear process, i. e. , it was linear on a semi-
logarithmic plot. We interpret this linear process
as the diffusive decay of He2( Z'„). Figure 1 illus-
trates the late-time behavior of the background.
The early-time background is probably a combina-
tion of He(2 S) and uv radiation from the plasma
and did not decay exponentially. The very early
flux is so large that there is unquestionably satura-
tion of both the detector and the counting system.
The electron density at the time when one can
clearly distinguish the diffusive decay of He, ('Z'„)
is about 10'-10' cm '.

The vacuum system had a base vacuum of 10

Torr. The helium was purified by a cataphoretic
discharge before admission to the plasma vessel.
In the afterglow the ratio of impurity atoms to heli-
um atoms was -10 ' . During the several days of
experimentation the impurity level tended to rise
(undoubtedly because of emission from the elec-
trodes). We found that the most sensitive way to
observe the relative impurity level was to monitor
the afterglow decay of Hea. He~ reacts quite strong-
ly with just about all impurities. (As an a.side we
must mention the following: When a leak to air
was purposely introduced, the background was ef-
fectively reduced to zero. This behavior is con-
sistent with our interpretation of the background
signal as being due to metastables).

Figure 1 presents some sample data of the late-
time decay at several pressures. These plots are
illustrative of an "impurity-f ree" system. When
the impurity level was raised to 10 '-10"8 of the
helium filling, it was not possible to clearly distin-
guish the exponential decay of the molecular meta-
stable.

Figure 2 is a plot of the determined value of DyPO
versus Po, where PO=P(273 'K/300 'K). Here D„
is the molecular metastable diffusion coefficient
and P is the pressure. The afterglow was isother-
mal at 300'K as verified by measurements of the
diffusion coefficient of He&. There are two reasons
why this value of D„PO is not that of He(2 S): (a)
The accepted value' for He(2 S) is 445 cm sec '
Torr. (b) The value of D„PO is independent of Po.

The average value of the D„PO values shown in
Fig. 2 is 361+34 (+9. 4%%uo) cm'sec 'Torr, where
the uncertainty represents the probable error.
This value of D~ P~ is significantly larger than
the value 283+45(+16%%uo) cm2 sec ' Torr, reported
by Phelps, ' where the uncertainty represents the
scatter in his data. However, it should also be


