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The spectral properties of trapped filaments of light in many liquids have been studied in
detail using, as an excitation source, a ruby laser operating in different regimes. It has
been found that the regular periodic structures in the spectra, which are typical of the self-
phase modulation process, can be obtained with high reproducibility under excitation with
laser pulses of = 5 psec. These properties have been interpreted using the method of sta-
tionary phase, which makes it possible to derive the temporal behavior of the nonlinear re-
flactive index 6n ln the filaments ln a fallly simpI8 wag. (Xher conclusiolls deduced from
this method about the structure of the spectra have been confirmed by experiment. By using
a functional relation between 6n and the optical field intensity A2 based on a model given by
Starunov the relaxation time z& of 6n and the temporal behavior of the pulse intensity have also
been derived. The value of y&, which is consj. stently of the order of a few tenths of a pico-
second, gives a strong indication that a "molecular rocking" is the main mechanism for trap-
ping with picosecond excitation. The optical pulse derived has a time width of = 2. 5 psec and
an asymmetrical shape. The se]f-consistency of the method employed has been checked by
using the derived pulses One) and AQ) to calculate, by computer, the spectra]. power density
of the optical pulse. The spectrum so calculated fits the experimental one fairly well.

I. INTRODUCTION

The self-trapping of intense laser beams in
liquids has been studied by several authors over
the last few years. Particular attention has been
devoted both to the physical mechanisms which
may be responsible for the formation of small-
scale filaments and to the nonlinearities which oc-
cur in the filaments owing to the extremely high
electric field. Self-trapped filaments have been
observed with different excitations. In the most
studied case, when a Q-switched laser pulse with
R few tens of nRnoseconds durRtlon has been used
as the excitation source, the molecular orienta-
tional Kerr effect has been considered to be the
most important mechanism for filament forma-
tion.

Among the physical properties of trapped light,
the spectral composition is perhaps the most
strlklng. Under Q-swltclled single-mode exc1ta-
tion, evidence of large broadening with occasional
periodic structures in the spectra of the filaments
was first reported by Grieneisen Rnd Sacchi, and
Brewer. Regular and peculiar spectral structur es
obtained by Shimizu, under Q-switched, yet multi-
mode, laser operation have been interpreted in
terms of self-phase modulation of a trapped optical
pulse. A more complete treatment of the self-
modulation process has been given by Gustafson et
a/. , who have pointed out the importance of R

pulse shortening of the laser excitation in order to
have agreement with the experimental spectra.
A possible process of short-pulse formation has

been described by Marburger et al. in a treatment
of self-focusing in a transient regime. Self-mod-
ulation of a sinusoidal modulation of laser intensity
induced by a process within the liquid suggested by
Cheung et al. can equally mell fit the experimental
spectra when a fine structure is observed. Final-
ly, ultrashort pulses of a mode-locked laser have
been used for a trapping experiment by Brewer
and Lee. These last authors, who did not report
spectral observations of the trapped light, intro-
duced R moleculRl' electronic dlstortlon Rs the main
mechRnlsIQ for tlRpplng fol mation ln the cRse of
picosecond excltRtlon.

A previous work reported the observation of
very regular and reproducible spectra of trapped
filaments under picosecond excitation, and it has
been suggested that a fast mechanism ("rocking"
of molecules in a potential well) could be the most
important mechanism in ultrashort excitation.

The purposes of this work are (i) to report on
experimental results which confirm the importance
of short laser pulses to obtain broad and regular
spectra of trapped light and (ii) to describe a treat-
ment, based on the model of molecular rocking and
on the method of stationary phase, which allows
the measurement of important physical parameters
of the trapping mechanism.

II. EXPERIMENTAL RESULTS

On studying the spectral properties of the fila-
ments, the excitation source used was a ruby laser
operating in three different regimes: (i) Q-switched
with a single transverse and longitudinal mode,
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(ii) mode-locked, with a single transverse mode
and a pulse width of = 1 nsec, and (iii) mode-locked,
with a single transverse mode giving ultrashort
pulses (20—5 psec). These types of lasers have
been described in previous works. ' The ex-
perimental apparatus is very similar to that used
in this kind of experiment by other authors. &

'
Some of the usual liquids (CS~, toluene, bromo-
benzene) have been tested, in cells of different
lengths (5-25 cm).

In the first series of experiments, a single-
transverse (TEMOO) longitudinal-mode Q-switched
ruby laser, giving a pulse = 30 nsec in duration
and a peak power density up to 100 Mw/cm, was
used. In this case, a plane or slightly converging
input beam produced a single filament most of the
time, provided that the laser power was kept be-
low twice the focusing threshold. The results on

spectral broadening, however, were found to de-
pend on the distance of the liquid cell from the
laser. Let us consider the two following cases.
(i) Case of small distances (&I m): A plane or
slightly converging beam produced an intense laser
component and relevant Haman content at the first
and second Stokes lines. The broadening of these
lines spanned several tens to several hundreds of
cm ' (depending on the laser power), the spectra
exhibiting discrete but rather irregular structures.
If the input beam was strongly focused inside the
liquid, a more intense and broad spectrum of the
filaments was obtained with an enhancement of
Raman radiation and the appearance of more regu-
lar discrete patterns in the spectra. (ii) If the

liquid cell was moved a few meters away from the
laser, the frequency broadening of the filaments
was strongly reduced, becoming of the order of a
few cm '. This result was found to hold substan-
tially for both focused and unfocused beams. These
obsex"vations are in agreement with the possibility
that short pulses are of importance in producing
a more or less regular broad spectrum. Indeed,
in spite of the single-mode character of our input

beam, short pulses may be produced in the back-
scattered Brillouin radiation, which enters the
liquid cell after being reamplified in the laser
cavity. "

To check this possibility, a mode-locked xuby
laser with a single-transverse mode (TEMOO) and

R pulse dux'Rtlon ~ 1 nsec %'Rs used Rs an excltRtlon
source. %ith such short pulses, it is well known"
that the Brillouin effect is strongly reduced. In
this case, a plane beam entering the bquid cell
produced many filaments with a rather narrow
spectrum, spanning only a few cm ', independent
of the distance of the liquid from the laser. This
confirms the importance of Brillouin scattering to
produce, even in an indirect way, frequency broad-
ening of the filaments, and it indicates that our

yulses were not short enough to produce large
fx equency broadening.

A third experiment employed a, TEM«-mode
mode-locked ruby laser, generating ultrashort
pulses in the range 20-5 psec, according to the
dye used, "and a power density = 5 Gw/cm'. No

lenses were yut in front of the liquid cell, and the
immediate appearance of bx oad highly regular
spectra of the type reproduced in Fig. 1 was ob-
served. In the case of the shortest excitation, this
kind of spectrum is exhibited by each filament in
a very reproducible way. The spectra may span
a few tens to several hundreds of cm ', depending
on the laser power, and extend both to the Stokes
and to the anti-Stokes side. The Stokes component
is, however, more intense. Almost no Haman

light was present in the case of CS3.
The main fact that can be deduced from these

results is that the very regular and characteristic
spectra, which have been attributed to self-modu-
lation) ax'e XQR1nly due to self-focusing of ultlR-
short pulses, which directly enter the liquid or
are produced in different nonlinear processes,
11ke tile Bx'lllouln scattellng or the self-focusing
itself. ' It is likely that short yulses were present
(even if not explicitly verified) in the multimode
Q-switched excitation used by other authors, who

obtained regular spectra.
It ls worth noting that ln the case of picosecond

excitation, a fine structure with a period ranging
V-10 cm ' was occasionally observed in all the
previous liquids. Since the spectra. that exhibit
fine structure are among the broadest and most
intense ones, it is likely that the modulation pro-
cess responsible for this effect is produced in the
filaments (where there are the strongest fields)
rather than being present at the initiation of Rll

the filaments.
Finally, measurements of filament diameters,

although not extensively performed for all the

FIG. 1. Typical regular spectra due to self-phase
modulation as obtained with picosecond excitation.
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liquids, gave a value = 5 p, for CS&, with both nano-
second and picosecond excitation. Since, in the
latter case, the Brillouin and Raman effects are
almost absent, it may be concluded that they do
not play an important role in diameter stabiliza-
tion.

III. INTERPRETATION OF THE SPECTRA

According to what has been done elsewhere, '& '~

the spectrum f(z, ru) of the light pulse after traveling
a distance z in the filament can be written as

f(g Q)) eius f A(t &) ei(ran+ ~i) dt

where A (t, z) is the field amplitude y = ~os/c, 6n
is the nonlinear refractive index induced by the
field, vo is the laser angular frequency, and v is
the angular frequency of the spectrum minus u&o.

As done by Gustafson et al. , one can assume a
given shape for A(t, z) and a given functional re-
lation between 5n and A, and then, by computer,
calculate f(z, &u) to fit the experimental results.
Interesting pieces of information can, however,
be obtained by approximately calculating the in-
tegral in Eil. (1) by the method of stationary
phase. ' This method makes use of the intuitive
observation that, at each angular frequency ~,
the main contribution to the integral (1) comes
from the points at which

d5n = —CO

N

Now, this method provides for an asymptotic ex-
pansion of the integral (1) which holds when y

The results which follow are, therefore,
believed to hold with greater accuracy for the
widest observed spectra.

For what follows, the following assumptions will
be made. (a) The spectral broadening of the func-
tion f(z, u&) is mainly due to the phase term
e""'"'""rather than to the amplitude term A(t, z)
appearing in Eil. (1). (b) The curve describing
6n = 6n(t) has a bell-shaped, but not necessarily
symmetrical, form. On the above two assump-
tions, it will be shown that from the observed spec-
tra one can almost completely reconstruct the
function y6n(t). In order to know the absolute val-
ue of 6n(t), one should know the value of y, i.e. ,
the value of the propagation distance z of the fila-
ment in the liquid. This can be done experimentally
by using pin-hole techniques, as done by Denariez
and Taran. ' It has not, however, been done in
our experiments, so that the absolute value of
6n(t) will be inferred from the measured filament
diameter.

For what follows reference will be made to Fig.
2, where a typical spectrum is shown schematically

[Fig. 2(a)] and a bell-shaped curve is assumed for
6n(t) [Fig. 2(b)]. In Fig. 2(b), the two inflection
points 1 and 2 and the peak value of 5n are also
indicated. It will be shown that, by using the
method of stationary phase, the following quantities
are easily obtained from the spectra: (i) y6n& and

y6n2, (ii) y(d6n/dt), and y(d6n/dt)2, (iii) y(d'6n/dt'),
and y(d'6n/dt )„and(iv) y6n~, where the sub-
scripts 1 and 2 refer to the inflection points. Mea-
surement of the above quantities makes it possible
to determine a power expansion of y6n(t) up to the
third order, which provides a fairly accurate
description of the function in a wide range around
the peak value.

The calculation of the first time derivatives at
the inflection points comes immediately from Eq.
(2). Indeed, we have

dt
1

(3a)

N, N
(4)

Stokes anti -StoKes
4t)p 2~i+L~~~ ~~~~~»«il I
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(b)

~n
~2

t

FIG. 2. {a) Schematic drawing of a typical spectrum.
{b) Bell-shaped curve {not necessarily symmetrical)
which is assumed for the nonlinear refractive index Dn{t)
and which is used in discussion of the text.

where ~~ = 2gv~ and ~,~ = 2gv, ~ are the extensions
of the spectra at the Stokes and anti-Stokes side,
respectively [see Fig. 2(a)]. It is immediately
obvious that, if the two extensions are not equal,
the curve 6n(t) will not be symmetrical.

To calculate y5n~, letus first consider agivenfre-
quency &u at the Stokes side ( lel & lvz I ). According
to Eq. (2), the main contributions to the integral
(1) come from the two points t' and t" [Fig. 2(b)]
at which
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The method of stationary phase then gives, for
f(z, (o),

~(yZ -Il /a&
(/2 g(tt) (L')'))n(v )+ u&t']

(d&6 /dt&))/2

f( a) [61/3 F(~) ei))z 8(()'6ng+ a((+ /6)]

(8)

g (t t I) e K)'() n( i" ) + &0 i' ' )

(d'6n/dt')" '

It is immediately evident from Eq. (5) that If(z, ())) l

will be at a minimum when

y6n(t') + ~t' = y6n(t") + ~t"+ (21 —I)&,

where l is an integer (l= 1, 2, ). Equation (6) is
easily understood from a physical point of view;
it simply states that in order to have a minimum
in the spectrum the contributions from the two

points t' and t" must be 180 out of phase, so that
they will cancel each other out by interference.
i,et us now consider Eq. (6) at the particular fre-
quency u& = 0 (i.e. , the laser frequency). From Eq.
(4) and Fig. 2(b), we then have t'= t~, t"- —~,
6n(t') = 6n&, and 6n(t") = 0. We now further assume
that &A" = yt"(d6n—/dt), ;.- 0 when t"- -~, which
implies that 6n(t) must go to 0 at infinity at least
as fast as I/t with o. positive. From this assump-
tion, one gets from Eq. (6) for ~ = 0

y6n, = (2m —I)~, (7)

where m is the total number of minima of the spec-
trum at the Stokes side. Equation (7) readily gives
ybn~ once m has been measured from the spectrum.
Taking into account the expression for y, Eq. (7)
can be put in the form 6n~ = (2m —I))(o/2z = mAO/z,
which relates the peak value of 5n to the central
wavelength Xo and to the number of sidebands per
unit length m/z generated in the liquid. Since the
previous calculation can equally well be applied to
a frequency ~ at the anti-Stokes side, we also come
to the conclusion that the number of minima nz of
the spectrum at the Stokes side is equal to that at
the anti-Stokes side. This result is somewhat in-
tuitive, since it simply states that the number of
sidebands due to the phase-modulation process is
equal at both the Stokes and the anti-Stokes side.
It is also a very useful result, since the observed
anti-Stokes spectrum is sometimes very weak, so
that the number of minima there cannot be easily
measured.

It is important to note that Eq. (5) is not valid
for &~ =())~ (and ~ =sr,~), i.e. , at the frequency ex-
trema of the spectrum. Indeed, when co = ~~, the
main contribution to the integral (1) will come from
the point t = t„where (d 6n/dt'), = 0. In this case,
the method of stationary phase gives the following
result for f(~~, z):

The corresponding result at ~ = co,~ can be readily
obtained from Eq. (8) by substituting the subscript
2 for the subscript 1 and e,~ for v~. The result
shown in Eq. (8) comes from a power-series ex-
pansion up to the third order of the function y6n(t)
around the point t =t&, namely,

d3en
y6n=y6n, ~, (t t,)+--y, — (t t,)'-

6 dt
1

where use has been made of Eq. (Ba).
To calculate (y d 6n/dt')„we have to consider

the integral (1) at frequency &u= u&~ [a similar cal-
culation at frequency co = co,~ produces the expres-
sion (yd'6n/dt ),]. When ~ is sufficiently close to
v~, the power expansion (9) holds for y6n so that,
according to Eq. (2), the ma, in contributions to the
integral (1) will come from the two points t, given
by the equation

d5
(t, —t, ) =+ 26(u, y dt

where &~~ =&u~ —&u. We see from Eq. (10) that the
two points are symmetrically located around the
inflection point t&, which is a consequence of the
expansion only up to the third order of y6n [Eq. (9)].
The phases Q, of these two contributions are

(t), = y6n(t, )+(ut,

If the above two contributions are required to be
180' out of phase, i.e. , if it is required that

(12)

then the frequency w should correspond to the first
minimum of the spectrum. From Eq. (12), with

the help of Eqs. (9)-(11), we can easily obtain

y &
- =0.86(~(~&),(

d'6n 3

dt

where ~&w~ is the frequency difference between
the first maximum and first minimum of the spec-
trum at the Stokes side [see Fig. 2(a)]. Equation
(18) readily gives (y d'6n/dt'), once b,&oz is mea-
sured from the spectrum. To improve the ac-
curacy of the measurement of (yd'6n/dt'), we may
consider the l th minimum of the spectrum instead
of the first one. If l is not too large, Eq. (9) still
applies, and now Eq. (12) must be replaced with

(t). —
Q = (2l —1)v. From this relation, with the

help of Eqs. (9)-(11)one now gets
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d'6n
0 38 (~r~s)

(m —i)'

where &,~s is now the frequency difference be-
tween the first maximum and the lth minimum.
From Eqs. (13) and (14) we readily obtain

4
g (0g

= 6y(d g (2/ —1) (is)

which predicts the positions of the minima of the
spectrum as long as the third-order expansion
given by Eq. (9) applies. From Eqs. (13)-(15)
we immediately get the corresponding expressions
for the anti-Stokes side by substituting the sub-
script 2 for the subscript 1 and co,s for ~s.

To calculate y5n„we may now assume that the
power expansion (9) provides for an accurate de-
scription of y6n(t) from the inflection point to the

peak value. It can easily be verified, for example,
that this is true for any Gaussian or Lorentzian
pulse shape, the accuracy being better than 3%%.

Therefore we may now set the condition that the
maximum value of ysn as obtained from Eq. (9) be
equal to y6n~, whose value has already been cal-
culated [Eq. (7)]. In this way, with the help of
Eq. (13), we can easily obtain

0.5
ysn, = 1 — ' (2m —1)m . (16)2~ —1 ~~~s

Equations (3)-(18), whichwillbe used inthis and
in the following sections, have been derived on
the basis of the method of stationary phase and of
simple power expansions of y5n. No hypothesis
has been made, up to now, on the functional re-
lation between6n and the electric field amplitude
A(f). Such a relation will be considered in this
section.

The experimental resul's obtained using a Q-
switched laser pulse lasting a few or a few tens of
nanoseconds appear to be well interpreted by as-
suming that the molecular orientational Kerr effect
is the main mechanism to produce a nonlinear re-
fractive index. ' Only the size of the filament
diameter does not agree with the theoretical ex-
pectations' ~

' or, alternatively, the theoretical
trapped power does not correspond to the ex-
perimental one. In this case, 6n is related
to the electric field amplitude by the well-known
equation:

d6n 2+~=n,A,

A similar expression can be derived, in the usual
way, for y5nz. We may therefore note that, if
(&u~/&, ~~) & (&u,z/&, &u,~), the heights of the two in-
flection points will be different.

IV. MOLECULAR ROCKING

I, +( + p, 68= —I. A sin8cos8 .d'e8 d68
(18)

I is the moment of inertia of the molecule, $ is a
coefficient of internal friction, p, is the elastic
constant, n = n3 —n, is the difference between the
polarizabilities parallel and perpendicular to the
molecular axis. L is a local-field correction fac-
tor which, in the simple case of a Lorentz cavity,
takes the form l. = —,'(no +2), where no is the linear
index of refraction. The right-hand side of Eq.
(18) represents the torque exerted by the electric
field on the molecule. The particular expression
of the torque suggests that a solution of the type

where ~ is one-third of the Debye relaxation time.
However, with laser pulses shorter than v, the
orientational Kerr effect should be almost quenched.
This should be the case with picosecond laser
pulses for most of the liquids used in our experi-
ments. In this case, according to a model intro-
duced by Starunov, ' a different physical mechanism
involving "rocking" of molecules in the field of
neighboring molecules has been previously con-
sidered as a possible source for 5n. This mech-
anism is characterized by a relaxation time &j

considerably shorter than v (by even more than one
order of magnitude, according to the liquid), so
that it can respond to a fast excitation. Starunov's
model refers to a possible aspect of molecular
movement in liquids, i.e. , to elastic vibrations of
linear molecules in the field of neighboring mole-
cules. The model was introduced to give an inter-
pretation of the far wing of the Bayleigh line.
Roughly speaking, if the excitation pulses have a
duration shorter than the lifetime of the molecules
in the potential well, the motions of the molecules
may be regarded as elastic vibrations. In this
case, the nonlinear polarization is a consequence
of small rotations 58 of each mo1.ecule about its
equilibrium position, the rotations being driven by
a torque proportional to the square field amplitude
A . To these rotations, induced by the laser in-
tensity, it is referred to here as a stimulated
rocking of molecules. During longer excitations,
many transitions of the molecules may occur from
one potential well to another, and there results a
rotational diffusion, which gives rise to the molec-
ular orientational Kerr effect. In this case, the
nonlinear polarization is a consequence of the molec-
ular orientation about the electric field, described
by a Maxwell-Boltzmann distribution. '

If 68 is the angle of deviation of the molecular
axis from its equilibrium position 8, the motion of
the molecule, under the influence of the linearly
polarized electric field 8 =-,'A e'"' "o"+ c.c. of an
ultrashort laser pulse, will then be described by
the equation '~ ~
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58 = c(t) sin8 cos8 (19)

can be assumed for 58. By substitution of (19) in

(18) one gets

dc GcI p +$ —+pc=-, nL A (20)

The nonlinear refractive index is now derived
from the average nonlinear polarization along the
field direction: 4

(b)

5P"'=N f 5f"'P(Q)dQ/f P(Q)dQ.

Here

5p"~ = 2cyLE sin8 cos8 58

(21)
3

2

+ 400 + 200 -200 -400

5P =2NnLZc(t) f sin'8cos 8d8/f sin8d8
0 0

= ~»NnLEc(t) . (22)

is the induced dipole moment (along the field direc-
tion) which corresponds to an angular displacement
58, P(Q) dQ is the probability of a molecule having
its axis of symmetry in a solid-angle element dQ,
making an angle 8 with respect to the electric field,
and N is the number of molecules per unit volume.
It is now a.ssumed P(Q) = const, i.e. , a random
orientation of the molecules. This assumption ap-
pears to be reasonable since, for a short light
pulse, the molecules have no time to reach their
Maxwell-Boltzmann distribution, corresponding
to the optical field A(f). ' From Eq. (21) with the
help of Eqs. (21') and (19) we then get

5

.4

3

2

+ 400 + 200

tc)

0
v (cm"')

I tj Jg~ f( I

-200 -400

FIG. 3. (a) Picture of the typical spectrum of a fila-
ment. The central part of the picture is saturated by
light entering the open slit of the spectrograph. (b) In-
tensity profile of the spectrum as recorded by means of
a microdensitometer and corrected by taking into account
the contrast factor of the film (Kodak 1N). (c) Intensity
profile of the spectrum as obtained by computer, using
the pulses represented in Fig. 4 for 0n(t) and the field
amplitude A. (t). A numerical comparison between the
spectra (b) and (c) is made in Table I.

5n= (2/15&pnp)NnL c(t) . (23)

From Eq. (20), a, differential equation is derived
which gives a functional relation between 5n and
the field amplitude A:

Since L6P = 2&pnp5nE, the following expression
is derived for 5n:

& and r, . While w is in the range of a few or a few
tens of picoseconds, 7', is in the range of a few
tenths of picoseconds. Measurements of v', had
already been deduced from the extreme wing of
the spontaneous Rayleigh line, but, as pointed out
in Ref. 9, Eq. (24), in connection with some of the
relations derived in Sec. III, allows a measurement
of 7& from the spectra of the filaments.

& d 6n d5n
&a @~ +7i dt-- +«=na~ (24) V. DISCUSSION AND NUMERICAL EXAMPLE

where 7&= (I/p)', p, = $/p, , and np=L'No. '/15Epnpp.
It is worth comparing Eq. (24) with Eq. (17), which
refers to the Kerr effect. The main formal dif-
ference is due to the presence of an inertial term
in Eq. (24); however significant differences also
exist between the coefficients n2 and between v and

Namely, since for the Kerr effect'~ ' (np)„„,
= I 4o' N9/&0nppTk, we get (np), «z&„,/(np)x, „,= GkT/p, .
For CS2, taking for p. the numerical value given
in Ref. 24, we get (np)„,„,„,/(np)x„,= 0.2 at room

temperature.
The most important difference occurs between

Following the theory developed in the previous
sections, a numerical example is considered here.
The purpose of this example is to show that many
quantities of interest for the trapping phenomenon
can be deduced from the spectra. Namely, we can
obtain the time behavior of the nonlinear refractive
index 6n and of the field intensity A in the filament,
as well as the relaxation time 7,.

Let us consider the spectrum indicated in Fig.
3(a). In order to obtain precise numerical eval-
uations, the intensity profile of the spectrum has
been recorded by means of a microdensitometer,
and by using the characteristic curve of the film
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(Kodak 1N). This curve has been checked with
picosecond excitation and found to be in agreement
with the nominal one. By subtracting the extended
background due to the widely open slit of the spec-
trograph, we get the intensity profile of Fig. 3(b),
which contains enough details for our purpose.

An approximate time behavior of y5n(t) can now

be obtained on the basis of the third-order ex-
pansion given by Eq. (9). The quantities y5n„
&uq, and (yd'5n/dt')q appearing in the equation are
readily obtained from the spectrum of Fig. 3(b)
with the help of Eqs. (19) and (16). Once Eq. (9)
is applied to both the Stokes and anti-Stokes sides
of the spectrum, the curve shown in Fig. 4 is ob-
tained for y5n(t). It is worth noting that the re-
sulting pulse is not symmetrical. In fact, we get
5n, /5n~ = 0. 536 and 5n, /5n~ = 0.59, and the distances
of the inflection points from the peak are 1.4 and
0. 95 psec, respectively.

We may now ask how well the third-order ex-
pansion (9) agrees with the experimental results.
To this end, a plot is shown in Fig. 5 of the ob-
served position of the minima of the spectrum
versus the parameter (2t -1) ', where I is the
order of the minima. According to Eq. ( 15),
which is based on (9), the plot should give a straight
line. We see that Eq. (15) is very well followed

up to approximately the ninth minimum (points B
and C in Fig. 5) for both the Stokes and anti-Stokes
sides of the spectrum. Since the ninth minimum

corresponds to a broadening which is = 0.4 times
the extension of the spectrum, it follows that the
third-order expansion (9) represents satisfac-
torily the time behavior of 5n between points B'
and B"and points C' and C" of Fig. 4. Since,
however, B' and C' lie very near the peak of the
pulse, one can also assume that Eq. (9) gives a
good description of y5n for the entire interval of
time between points B"and C". From the present
theory, no information can be obtained for the tails
of the pulse, i.e. , beyond points B"and C".

120

80

40

0
-3.2 -2.4 -1.6 -.8 0 .8 1.6

t tpsec)

FEG. 4. Temporal behavior of the nonlinear refrac-
tive index Bg(t) and of the field intensity A. (t), as de-
rived in the text from the experimental spectrum of the
filament represented in Fig. 3.

16 .

14

2 .

2 3(2&-i)

Therefore, exponential tails matching the slope of
y5n at B" and C" have been arbitrarily assumed
in Fig. 4.

Since y5n(t) is now known, the optical pulse A (t)
can be obtained from Eq. (24) once r, and 7, are
known. The quantityv, can also be directly ob-
tained from the spectrum of Fig. 3(b). Although
the resulting expression for v, has already been
given in a previous work, the derivation of this
expression is here reported for the sake of com-
pleteness. Considering Eci. (24) at the two points
t, and t2 [Fig. 2(b)] where d 5n/dt =0, taking the
ratio of the two expressions, and using Eqs. (3)
and (7) with m» 1, we have

~,( l v, l/m)en, + 5n, ~A'

r, (lv., l/m)5n, —+ 5n,
(25)

FIG. 5. Experimental plot of the position of the min-
ima of the spectrum in Fig. 3(b) (dots) versus the pa-
rameter (2E -1) . The quantity ~&~& is the angular-
frequency separation between the highest maximum of the
Stokes side and the lth minimum. The quantity 4&~~& has
the same meaning for the anti-Stokes side of the spec-
trum. The straight lines in the figure are the theoretical
predictions [Eq. (15)] on the basis of a third-order ex-
pansion for y5n(t).
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where A, and A,' are the square field amplitudes
at the times t, and t~, respectively. Using Eqs.
(8) and (13) for the right-hand side, Eq. (25) be-
comes

TABLE I. Numerical comparison between the experi-
mental spectrum [Fig. 3')] and the computed spectrum
[Fig. 3(c)j.
Physical
quantity

» (cm-')

&gg |,CXQ )
~aS/ ~S

lf l~/ l f2 l2

a,v, (cm-')

&g&aS

Experimental
results

-340
444

1.3
2, 9

29. 6
42. 5
20

Computer
results

-336
412

1.22
2. 7G

27, 4
36.3
20

r, (lv, I/m)+ (5n,/5n, ) ly; I' &,v',
—r, (Iv,a I/m)+(5n, /5n, ) If, I' &,v,',

where lf~ I and If2l' are shown in Fig. 3(b). Equa-
tion (26) gives the value of v„sinceaII the other
quantities can be measured from the spectra. For
the spectra of Fig. 3(b), Eq. (26) gives r, = 0. 25

psec, in agreement with the numerical results re-
ported under Ref. 9. Unfortunately, the theory
presented here does not appear to be able to give
a similarly simple expression for 7&. If, however,
we assume for v~ a value of = 0.21 psec, as esti-
mated from the Rayleigh-wing scattering experi-
ments, ' we see from Eq. (24) that the term r2
&&4 5n/dt gives only a correction of a few percent
around the peak of y5n(t). The optical pulse A'(t)
can therefore be obtained from Eq. (24) simplified,
to f st app i atio, ss g that = 0. Th
pulse is shown in Fig. 4. The pulse width at half-
intensity is 2. 5 psec. Since the input pulses have
a duration of = 5 psec, a pulse shortening by a fac-
tor 2 seems to occur. One cannot, however, ex-
clude the possibibty that this time shortening is
only apparent. Indeed, the measurement of the
pulse width of the input pulses has been made by
the usual two-photon fluorescence technique. 36

This gives an average value of the pulse width
which might change by a factor 2 from one pulse
to another of the mode-locked train. However,
since pulses = 2 psec wide have always been mea-
sured in the filaments, even by using input pulses
which are 10 or 20 psec wide (on the average), "it
is more likely that a real-time shortening occurs
and is due to the self-focusing process. ' An asym-
metry is also apparent in the shape of the pulse of

Fig. 4, the trailing edge being steeper than the
leading edge. This Inay be due to a self-steepening
process ~ over the traveling distance z of the fila-
ment. An alternative explanation is that the input

pulses are in themselves asymmetrical.

The considerations so far presented make it pos-
sible to measure the absolute value of y5n(t} and
ynzA (f). If y= &sos/c (i.e. , the traveling distance
z of the filament) were known, we could immedi-
ately obtain the absolute value of Gn(t). Although
the distance z can, in principle, be obtained with
the pin-hole technique suggested by Denariez and
Taran, ' an alternative way is to obtain an approx-
imate absolute value of 6n from measurements of
the filament diameter. Indeed, by equating the
critical angle for trapping to the diffraction angle
of the trapped beam we get

(25n/n)"' = (1.22/2. 66)~/d, (27)

VI. CONCLUSIONS

The spectral properties of trapped filaments of

where d is the filament diameter. Since the mea-
sured diameter of our filaments is = 5p. (the mea-
surement being made with a resolving power of
= 1.Sp, ), we get from Eq. (2V) approximately 5n~
= 2. 64&&10 . This value gives a traveling distance
z =cy/v, = 0.54 cm for the filament, in agreement
with the values found in Ref. 1V. The peak value
of n, A' is therefore = 1.V&10-', and assuming for
CS„(n,)„,~, /(n, )„.= 0. 2, a maximum field am-
plitude of 10 V/cm is arrived at. Integration of
the pulse intensity over a time width of 2.5 psec
and a cross section of = 5p, diam gives an energy
of about 1 erg for the filament. This is in agree-
ment with the measurement of filament energy
made photographically by means of near-field pic-
tures of the filaments, once the sensitivity of the
film is known.

The analysis carried out up to now has been
based on the method of stationary phase. By this
method a number of quantities directly deducible
from the spectra have been deduced which, in-
serted in the expansion (9), enable us to know the
time behavior of 6n. Then, using a functional re-
lation between 5g and A based on Starunov's model,
we can also obtain the pulse A. (t). In order to
check the self -consistency of this procedure,
y5n(t} and A(f }, obtained in this way, were put in
the integral (1), which was then calculated by com-
puter. The resulting spectral power density lfl a

is represented in Fig. 3(e) and must be compared
with the experimental one shown in Fig. 3(b). The
comparison, which is made in Table I, indicates
that the computed spectrum agrees well the exper-
imental one and therefore indicates that the pulses
y5n(t) and A (t) previously derived accurately
describe the physical pI ocess. In particular, the
computed spectrum contains a number of minima
nz which are the same for both the Stokes and the
anti-Stokes sides, and m =20 is in agreement with
the corr esponding experimental value.
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light have been extensively studied. By means of
the method of stationary phase an important piece
of information on the trapping phenomenon, namely,
the time behavior of the nonlinear refx'active index
has been obtained. Fuxthex'more, by making use
of Starunov's model, the time behavior, the pluse
intensity in the filaments, and the value of the re-
laxation time v'» of the nonlinear refractive index
have also been derived. In particular, the mea-
surement of v'», which is consistently in the range
of a few tenths of a picosecond, is a strong indica-
tion that a "molecular rocking" is the main mech-
anism for trapping with picosecond excitation. The
self-consistency of the method employed has been
checked by using the pulses y6n(t) and A(t) previously
obtained to calculate, by computer, the correspond-
ing spectral power density to be compared with the

experimental one. The resulting high degree of
agreement indicates that the pulses have been de-
rived with close appxoximation.

It may be concluded that useful pieces of infor-
mation on important physical parameters of the
trapping phenomenon can be derived by combining
clean reproducible experimental results obtained
with picosecond excitation with a rather simple,
yet powerful, method of analysis. In this way, a
deeper insight into the whole dynamics of the trap-
ping phenomenon becomes possible.
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