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We analyze the data on differential spin-exchange scattering in collisions between alkali atoms
which was presented in Paper I by Pritchard, Carter, Chu, and Kleppner. The data on the prob-
ability of exchange is analyzed to obtain the relative phase shift produced by the triplet and singlet
potentials. A semiclassical impact approximation is developed and used to calculate this phase
shift from theoretical calculations of the asymptotic behavior of the potentials. The results are
consistent with the data only when the largest calculated value for the van der Waals potential is
combined with the smallest calculated value of the difference potential. We have also analyzed
the rainbow structure in the spin-summed differential cross section to obtain information about
the depth and shape of the minimum in the triplet potentials in various alkali-alkali systems.
Finally, we compare the result of our analysis with results from other experiments on alkali-
alkali systems.

I. INTRODUCTION

Measurements of differential cross sections for
elastic scattering of alkali atoms by other alkalis,
both with and without electron spin exchange, have
been presented in the preceding paper' (called I
hereafter). In this paper, we begin to analyze those
data to extract the interatomic potentials for the
alkali-alkali systems studied in I. This is a diffi-
cult task, since it is generally impossible to invert
scattering cross sections to obtain potentials when

quantum effects are important, even in elastic scat-
tering where only one potential is involved. What

we attempt here, then, is to find ways in which
characteristic features of the potentials may be re-
lated to the scattering cross sections or to the an-

gular dependence of the probability of spin exchange.
We do this both by examining models which apply to
exchange processes in general (spin exchange is
similar to charge exchange, which has been studied
more extensively), and by showing how the well-
developed techniques for analyzing single-potential
scattering may be applied to portions of this data.

We begin in Sec. II by summarizing the relation-
ships between the singlet and triplet scattering am-
plitudes and the differential cross sections for the
scattering of atoms with polarized electrons from
unpolarized target atoms (these cross sections were
measured in I). In Sec. III we discuss the connec-
tion between the potentials and the scattering am-
plitudes, stressing the qualitative differences be-
tween the singlet and triplet scattering which are
caused by the relationship between the potential well

depth and the kinetic energy. Section IV contains
an analysis of the probability of spin exchange based
on the asymptotic behavior of the potentials. In

Sec. V we determine parameters which characterize
the minimum in the triplet potential. by analyzing
the rainbow scattering observed in I. Finally, in

Sec. VI we discuss the contributions we have made

to the understanding of the alkali-alkali potentials,
and the problems which still remain.

The emphasis in this paper is more toward devel-
oping and discussing appropriate models than toward
extracting numerical results from the data in I.
This emphasis stems from our conviction that it is
important to understand the connection between the
potentials and the (predicted) cross sections. The
results obtained in this paper are useful for two

reasons: They provide good starting points for
guessing the right pot. ,ntials, and they provide us
with intuition to guide us in modifying our guesses
if they fail to reproduce the experimental results for
the cross sections.

We use atomic units (h = e =m, = 1) throughout this

paper. Table I gives conversion factors to various
other units.

II. SPIN-EXCHANGE FORMALISM

We are concerned here with spin-exchange colli-
sions between atoms in 's states. These are treated
by assuming that the interaction between the two

atoms may be written in terms of two separate
spherically symmetric potentials

V(x) =P V (t)+PqV (r),

one for each possible value of total electron spin.
(P, and P~ are projection operators for the singlet
and triplet configurations of the total electron spin
of the molecule formed during the collision. ) This
interaction gives a scattering matrix

where f,(0) and f,(8) are the singlet and triplet scat-
tering amplitudes. Each scattering amplitude de-
pends only on the corresponding potential, the en-

ergy, and the c.m. scattering angle 8.
Underlying Eq. (I) is the assumption that the

collision time is sufficiently short so that all inter-
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TABLE I~ Conversion factors (ato mic units and
other units) ~

—
I 4(fg -f3) I ')

1933

angular
momentum
charge
mas s

time

length

energy

Atomic units

me
8 3

mee 4

h
ap

me
m~e e

S2 ap

Other units

1 ~ 054 592 x 10-27 erg sec

4. 803 25 x 10 ~ esu
9 ~ 109 56 x 10- g'
2.418 85 x 10 sec

0.529 177 A (1 A. = 10 cm

4.359 83 x 10 ' erg
= 27. 211 64 eV b3~

= 626 ~ 623 kcal/mole
= 2. 194747 x 10 cm

velocity
e2

= ec 2. 187 69 x 10 cm/sec
h

wavelength
of a particle A,

= 0.287 256 (AE)

= 0.104 061 5 (AE)-' ~'

velocity
of a particle v

= 1.398 149x 10 (E/A)

~ 033 123 80 (E/g )

Kink, Einev,
A = atomic number

X in ap, E in a.u.

v in cm/sec, E in eV,
A is atomic number

v in a.u. , E in a.u.

Taken from Taylor et a/. , Hev. Mod . Phys . 41, 375
(1969)
"12 C = 12 taken as standard.
1 eV = 23 ~ 0278 kcal/mole = 8065.48 cm

~n is fine-structure constant and c is speed of light.

&(&- &) = 2 I 4(f& -f3) I
'- ~ I -'(f& -f3) I ',

while the cross section for scattering with no
change of spin is

o(& - & )= I 4(f~ + 3f3) I
'+ I 4(f, -f3) I

'

+P ( I 3(f, +f, )l I 4(fg+ 3f3) I'

actions between the singlet and triplet states may
be neglected . In addition, this treatment requi res
that adiabatic conditions prevail throughout the
collision. These two considerations restrict this
analysis to collisions with kinetic energies between
10 and 10 ' a. u. , comfortably bracketing the
range of energies in the experiments in I.

The cross sections for various spin- dependent
collision processes may be expressed in terms of
the singlet and triplet scattering amplitudes . 4 For
collisions with target atoms with electron spin
and polarization P, Burnham' has shown that the
cross section for electron spin exchange is (the
angular dependence is not exhibited to simplify the
expressions which follow)

Corresponding cross sections for initial spin
"down" are the same, except that the sign of P is
reversed. (Burnham's results include a factor
depending on the nuclear spin of the primary atom,
but the results in I we re corrected for this effect
in I, so that we may ignore this complication
here. )

In the differential spin- exchange measurements
which have been made to date, the target beam
has been unpolarized, making it impossible to
determine If,(8)+f,(8) I independently of I f, +3f, I

and I f& f3 I . -These measurements therefore
determine an electron spin- exchange cross sec-
tion

0'.„(8)= 3 I f,(8) —f, (8) I
'

and a sum cross section [the sum of the cross sec-
tions in Eqs. (3) and (4) with P = 0]

&.. (8) = -'Ifg(8) I'+ 4 If3(8) I'. (8)

~..(8) I fg(8) -f3(8) I
'

o,„(8) 21f,(8) I
'+ 8 I f,(8) I

'

where

1 + x —2x cos5
6 + 2x

(7)

and

&(8) = If)(8) I / If,(8) I

0(8) = arg[f, (8)]- arg[f, (8)]. (8)

Equation (7) shows that the probability of exchange
depends only on the xe la ti ve magnitudes and phases
of the scattering amplitudes involved .

Although P,„.depends on both x and 0, it is fre-
que ntly possible to determine separately both x and

Our spin- exchange cross section is for scattering
from an unpolarized target; the exchange cross sec-
tion for a target with polarization opposite to the
incident beam would be twice as large (if both beams
were completely polarized) ~ This factor of 2 has
caused confusion in earlier wo rk on total spin- ex-
change cross sections . '

is the cross section which would be measured
in an experiment which was not sensitive to the elec-
tron spin of the atoms . It contains no interference
terms between the triplet and singlet scattering
amplitudes, and is the weighted average of the sing-
1et and triplet cross sections, each determined
from the corresponding potential .

For some analytical purposes, the probability of
exchange is a convenient auxiliary variable, espe-
cial ly since many types of apparatus errors do not
affect it. This quantity is defined as
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FIG. 1. Allowed values of &,„as a function of the rel-
ative magnitude x and relative phase 6 of the singlet and
triplet scattering amplitudes. P,„is greatest when 0
= x and smallest when 6 = 0. The dashed line gives the
value of P«when averaged over 6(0 «0 «2z).

analysis, but this approach does not provide us with

any way to deduce the potentials from the scattering
data, nor does it provide insight about which fea-
tures of the potential influence which aspects of the
cross sections.

The semiclassical approximation overcomes this
difficulty and will be used throughout much of the
analysis presented here. We assume that the reader
is familiar with the classic paper by Ford and

Wheeler, ' as well as our note' on the significance
of contributions from both positive and negative im-
pact parameters. Some familiarity with work on
rainbow scattering "' would also be helpful.

While both the triplet and singlet potentials in
alkali-alkali systems are attractive at moderate in-
ternuclear separations and repulsive at short ranges,
there is a qualitative difference in the scattering
which they produce in the thermal-energy collisions
under study here. This difference arises because
the singlet potential well depth is several times
larger than the kinetic energy, whereas the oppo-
site is true for the triplet well depth. The triplet
state well depth is a, small fraction (- —,) of the ki-
netic energy, and the attractive deflections produced
by the potential are & 1 rad (see Fig. 2). This leads
to rainbow scattering which was discussed by Ford
and Wheeler. ' In contrast, the singlet well depth

5 from the data by studying the angular behavior of
I',„. This is because 5 varies more rapidly with

angle than does x, so that the value of x acts as a
constraint on the variations of P,„caused by the
more rapid changes of 6. The behavior of I',„ is
illustrated in Fig. 1, where the permissible values
of P,„(x,5) are shown shaded. When 5 = m, 3m, 5',
..., then &,„ lies at the upper edge of the shaded

region; when ~=0, 2r, 4e, . . . , then I',„ lies at the
lower edge. If &,„=0, we can conclude immediate-
ly that 5=2nm (with integral n) and that x= l.

If 5 changes rapidly (and smoothly) with angle,
and the resultant oscillatory structure of &,„ is
averaged away either intentionally or due to poor
apparatus resolution, then the value of x may be
determined f rom

(P,„(8)) = —'(x + I)/(x +3),

if x(8) changes slowly with angle. (P,„)z is the
averaged value of P,„(over the oscillations caused
by changes in 5).

X (b)

e,
ih,

b 3

b—

III. SCATTERING AMPLITUDES

The cross s ections are uniquely d etc rmined by
the singlet and triplet scattering amplitudes [Ecis.
(5) and (6) j which may be determined from the cor-
responding potentials. Accuracy sufficient to dis-
cuss the experiments in I may be obtained with the
JWKB approximation and the standard partial wave

FIG. 2. Typical phase and deflection function for
triplet state alkali scattering discussed in Sec. III. The
long-range interaction is attractive; consequently, the
principle contribution to scattering at the triplet rain-
bow angle 0~ comes from regions of negative impact pa-
rameters.
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correspond to trajectories with dominantly attrac-
tive interaction, while the interaction along the
trajectory with impact parameter b3 is dominantly
repulsive. At angles larger than 8„, the contribu-
tions from attractive scattering vanish and fp(b, ) is
the only contribution to the scattering amplitude.
Near the rainbow angle 0„, the contributions from
b 3 and b 3 merge and this analysis no longer applies.

B. Singlet Scattering Amplitude
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I

5 7r

FIG. 3. Typical phase and deflection function for
singlet-state alkali scattering discussed in Sec. III.
The discontinuity in the phase at +ho is caused by orbit-
ing, and the deflection function is not defined at these
points.

The phase function for scattering from a typical
alkali-alkali triplet potential at thermal energy is
shown in Fig. 2. (The maximum phase would be
several radians and would occur for impact param-
eters near 10ap. ) The classical deflection function
[Eq. (9)] for this phase function is also shown. It
is clear that for angles like 80, which are smaller
than 8„, there will be three impact parameters
which contribute to the triplet scattering amplitude
[that is, there will be three values of b which satisfy
g(b ) = 8p]. Thus, we write (for angles smaller than
8 )9

f,(8) =f (b, (8)) + f,(b', (8)) + f,(b",(8)). (10)

The magnitude of each contribution depends on
(dx/db I p p. ) '~', so that f&(bz) will have the largest
amplitude, especially at small angles. b3 and b3

(determined from molecular spectra)" is several
times larger than the kinetic energy in these experi-
ments. This leads to collisions in which the attrac-
tive portion of the potential overcomes the centri-
fugal barrier, causing a discontinuity in the phase
function q, (b) (see Fig. 3). This results in orbiting
collisions, and no rainbow is observed.

A. Triplet Scattering Amplitude

The phase function for the singlet state scattering
is qualitatively different from the triplet phase func-
tion in that there is a discontinuity at the impact
parameter bp (and also —b, ; see Fig. 3). The
classical trajectories of particles with impact pa-
rameter less than bo are drawn into the deep part
of the potential and accumulate considerable extra
phase; the centrifugal barrier is sufficiently strong
to prevent this from happening to the trajectories of
particles with impact parameters larger than bo.
(Actually, there is some chance of quantum tunnel-

ing through the barrier. This effect has been shown
to be negligible. Furthermore, the JWKB approxi-
mation has been shown to be adequate in the neigh-
borhood of the singularity. )'p

The classical deflection function (see Fig. 3) has
an orbiting singularity associated with the discon-
tinuity in the phase function. As a result, there
are trajectories with impact parameters near both
bo and —bo which scatter to all final angles. Conse-
quently, there are five impact parameters which
contribute to the singlet amplitude at any angle ~0

(see Fig. 3):

f (8)=A(b (8))+f (b'(8))+ f(b" (8))

+f,(bp)+ f,(-bp).

As in the triplet scattering, the contribution from
b, dominates, especially at small angles. The con-
tributions from the orbiting impact parameters (b p

and -bp) are similar to those caused by diffraction
and they are generally small. The two contributions
from b, and b, are not only smaller than f(b, ) but
have a very large phase relative to f(b, ) because
of the discontinuity in g(b). These considerations
make it very difficult to observe interference effects
in the singlet cross section &,(8), and we have not
found any evidence of it in the data in I.

C. Summary

In this section we have used the semiclassical
approximation to express both singlet and triplet
scattering amplitudes as sums of contributions from
distinct impact parameters. Since it is not possible
to determine the impact parameter before the colli-
sion, there are several distinct contributions to the
amplitudes, and the cross sections show oscillatory
interference patterns similar to those found in the
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fg(8) =fy(by{8)),

fs(8) =fg(~3(8)).

(i2a)

(12b)

This approximation will fail for angles larger than

the triplet rainbow angle 8„[where If~{b3') l » lf3{h3)l],
and also near this rainbow angle [ where f,(b, ) runs
together with f,{b,)]. At angles smaller than the

triplet rainbow, however, the approximation should

be fairly good.

B.Theoretical Expression for Phase Difference

Since the singlet and triplet potentials are nearly
equal at large impact parameters [like b, {8), and

b, {8)], we can make use of results which are valid
when the difference potential is smaller than the

average potential, i. e. , LV/V «1. [See Sec. VI
for a discussion of the difference potential DV= V,
—V„and the average potential, V„=—,'(V, + V, ),

multislit diff raction of monochromatic light. This
is one of the most interesting features of these ex-
periments, since the interpretation of the interf er-
ence structure leads directly to knowledge of the
potential. The interference is not confined to each
scattering amplitude individually; since the scatter-
ing system is not prepared in a pure singlet or trip-
let state, a further interference effect is observed
between the singlet and triplet amplitudes (i. e. ,

among their components). This produces an oscil-
latory structure in the spin-exchange cross section
(and also in the probability of exchange).

IV. PROBABILITY OF EXCHANGE

The probability of exchange [Eq. (7)] depends only
on the phase difference 6 and the relative magnitude
x (x = If, l /If, l ) of the singlet and triplet scattering
amplitudes. It is a sensitive function of any differ-
ence between the two potentials, since P,„would be
0 everywhere if the potentials (and, consequently,

f, and f,) were identical. In this section we develop
approximations which permit us to determine 5 from
the difference potential [see Sec. VI, Eq. (23)], and

we develop approximate techniques for finding 5 from
the data on &,„. These procedures permit a direct
comparison of theory and experiment, a comparison
which is facilitated by comparing theoretical and ex-
perimental results for v„,6 versus E8. (These are
called "reduced variables"'; we will use the symbol
7 =Ee for the reduced angle, and v5 for the reduced
phase. )

A. Approximations to Amplitudes

In order to relate the potentials to the probability
of exchange, we first simplify the expressions for
the singlet and triplet scattering amplitudes [Eqs.
(10) and (11)]. To obtain a first approximation, we

replace each amplitude by its dominant contribution

[f,{b,) and f,{b,), respectively], so that

which equals the van der Waals potential V in
this case. ] The most important such result gives
an expression for 5 directly in terms of the differ-
ence potential, ' '

6(8, v) = (I/h~) [f a Vb)d.z]

& [1+8 (a V(bi/2V„(b)]) (i3)

&,„=~ sin'( —,'6) (15)

applies, emphasizing the oscillatory behavior of
the probability of exchange.

The average impact parameter b(8) can be deter-
mined from the average potential, which equals the
van der Waals potential in our model of the poten-
tials [see Eq. (25)]. We use the first-order impact
approximation to find the average deflection func-
tion g (b)

X.{&,&) = {f/E) J dz[V.'(r)/r], (16)

where V'{r) is dV(y)/dy (, „.
Equations (13) and (16) both depend on straight-

line approximations to the trajectory; hence, changes
in relative velocity (or energy) affect only the time
scale. (This would not be true if a higher-order
impact approximation were used. ) Since the ef-
fects of relative velocity and energy are eliminated
by plotting @6{8,v) versus 7', as can be seen from
Eqs. (13) and (16), these are naturally chosen as
reduced variables. If experimental data iaken at
different velocities agree with each other when

plotted with these variables, then that is evidence
for the applicability of the impact approximation
and our "dominant-contribution" approximation to
the amplitudes —even if the experimental results
disagree with predictions made from particular
expressions for the potentials.

In Figs. 4—8 we show theoretical ca,lculations

where means "order of." This expression is
based on an impact approximation to the phase; the
integral in Eq. (13) [and Eq. (16) also] is a straight-
line integral with impact parameter b(8) equal to
the average of b, (8) and b, ( 8): b(8) = ,'[b,-(8)+b3(8)].

The value of ~ is of prime importance in deter-
mining &,„[see Eq. (7)] since x(b) generally varies
slowly or has a known value. Such is the case when
hV/V « I: Then x is nearly equal to unity. It has
been shown" that when &V and V obey inverse po-
wer laws (or may be approximated by them in the
region of interest):

~(h) =1- ~((~V(b)/V. (b))+ ([~V(h)/V. (h) 1'), (14)

where & depends only on the exponents in the inverse
power laws. Hence, at small angles, where b{8) is
large, x approaches unity [since AV(b) decreases
exponentially for large b]. Under these circum-
stances the familiar result'
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5.0

O
FIG. 4. v6 versus 7' for Na-

K. The solid lines were calcu-
lated vGth the DB difference po-
tential, while the KH differ-
ence potential was used for
the dashed lines. See Sec.
IV for complete explanation.

0.0
0.0 0.4 08 I 0

lo' x Ee, (o. U. )

l.8

for vp versus 7 as solid or dashed lines. These
calculations mere made arith the impact approxima-
tions described above, and are therefore indepen-
dent of the relative velocity of the collision. Up to
five curves are shown in each of the systems Na-K,
Na-ab, Na-Cs, K-Rb, and K-Cs, corresponding
to different estimates of the asymptotic behavior
of the potential.

The asymptotic potential depends on two separate
theoretical calculations: one for the difference po-
tential and another for the van der Waals potential.
There are several theoretical calculations for both

of these, so it is possible to obtain many different
predictions for v5(r) by combining them in various
mays. We have obtained a family of predictions
(solid curves in Figs. 4-8) by combining four dif-
ferent estimates for the van der %aals potential
with tile Dalgarno-Rudge (DR) estimate for the
difference potential [see Eq. (24)]. (d V» is the
smallest of the calculations of the difference poten-
tial. ) In addition, we have made one prediction
(dashed line in Figs. 4-8) based on the Knox-Rudge
(KR)' estimate for the difference potential (&VK„
is the largest of all difference potential calcula-

5.0

2.0

O

O

D—l.o

FIG. 5. v5 versus v' for
Na-Bb.

0.0
0.0 0.2 0.4 0.6 0.8 I .0

IO xEec ~ (a.u. )

I ~ 2 l.4 l.8
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FIG. 6. v6 versus 7' for
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tions); the largest estimate for the van der Waals
potential was used for this.

It is clear from Figs. 4-8 that the differences
among the several possible van der Waals poten-
tials cause much more variation in the predicted
v5(v) than do the discrepancies in the difference
potentials. (The dashed curve was calculated with
the same van der Waals potential as the lowest sol-
id curve; the solid curves were all calculated with
the same difference potential. ) While this is partly
because our model is more sensitive to the van der
Waals potential, it also reflects the greater range

of possibilities for this potential.
Part of the variation in the van der Waals poten-

tial IEq. (22)] comes from uncertainty in the lead-
ing term Ce: Recent theoretical calculations by
Dalgarno and Davison (DD)" are roughly twice as
large as earlier experimental results by Buck and
Pauly. ' We have labeled curves calculated with

Dalgarno and Davison's values "theory" and those
with Buck and Pauly's values "expt." The remainder
of the uncertainty in the van der Waals interaction
comes from higher-order terms in the van der
Waals interaction. In alkali-alkali systems these

5.0

2.0—
FIG. 7. v6 versus ~ for

K-ab.

1.0—
I 0 a. u.

I 0 a, u.

0.0
0.0 0.4 0.6 0.8 1.0

10 x Ee (o.u. )

1.2 1,4 1.6 1.8
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terms (C8R CypR ) are quite large and contribute
significantly to the interaction in the region near
~=15ao, where our measurements of P,„are most
sensitive to the potential. As explained in Sec. VI
of this paper, we use Davison's values for C,/C~,
and we find the ratio C,o/C, from Fontana's work. "
%hen included in the van der Waals interactionpo-
tential, these terms change our prediction of v5(~)
considerably, so we have made calculations both
with and without them. Curves for v5(v) in Figs.
4-8 with both higher-order terms are designated
"6-8-10," while those with only the leading term
are designated simply "6." Using both experimen-
tal' and theoretical" values of C6, we have calcu-
lated curves both with and without the correction
terms (see Figs. 4-8). (We have not made calcula-
tions with the eighth-power correction term alone,
because we do not feel that there is any justification
for including only some of the higher-order terms. )

C. Experimental Results for the Phase Difference

Now that we have described how 5 may be calcu-
lated from the potentials, let us turn to the problem
of extracting 5 from the data on P,„. The measure-
ments in I were made at relatively low velocities so
that 5, which contains the factor 1/v, varies rapidly
relative to x and is responsible for the oscillatory
structure in P,„. [We are implicitly assuming our
dominant-contribution approximation to the ampli-
tudes in this discussion; see Eq. (12).] Hence, we

can locate the angles at which 5 is a multiple of m

from the extrema in P,„, and we can find the angles
for which 5 is an odd multiple of 2m from the points
where P,„passes through its average value [see
Eq. (9)]. This method has the advantage that aver-

aging processes in the apparatus are unlikely to
change the position of these points (although the am-
plitude of the oscillations may be reduced). This
procedure determines four angles, with the corre-
sponding value of 5, for each full cycle of oscillation
observed in P,„past the first maximum, and it has
been used to determine the points with horizontal
error bars in Figs. 4-8.

At small angles 5-0, since AV(r) decreases ex-
ponentially for large x [see Eqs. 24) and (13)]. Since
x-1 under these circumstances [see Eq. (14)J, we
expect that Eq. (15) will apply; consequently, P,„
should vanish for small angles if the dominant-con-
tribution approximation is valid. The experimental
data in I shows that P,„does decrease to ~ 0.01 in
all systems studied. This indicates that our model
is working, and it shows that x(8 =0)=1.0+0. 2; oth-
erwise it is not possible for P,„ to be less than 0.01;
see Fig. 1. Consequently, Eq. (15) does apply, as
asserted above.

Consider the problem of determining 5 from P,„.
At small angles we have shown that x= 1.0, so that
Eq. (15) may be used to find 5 directly. At larger
angles we expect x to decrease [see Eq. (14)]; we
can find its value at the maximum of P,„by noting
that this maximumoccurs when 5 = m in Eq. (7) (a.s-
suming that 5 changes much faster than x). This
value of x (generally -0.8 for the data in 1) may now
be used in Eq. (7) to determine 5 from P,„ in the
region near its maximum.

To find 5 at points between the small angles where
x =-1.0 and the larger angle where P,„ is maximum
(and x—= 0. 8) we can use either Eq. (15) or Eq. (7)
(with the appropriate value of x). These two formulas
give results which differ by only a little more than
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the statistical error (except near the ends of the
region where we know which formula is correct).
To improve these estimates we assume that the
quotient v5/EH is proportional to &V/V, which
enables us to estimate x(8) from Eq. (14). [This
rather crude approximation is based on Eqs. (13)
and (16).] This permits us to solve Eq. (7) for 5

in the entire range from 6 =0 to the first maximum
in P,„. Errors in our crude approximation for &V/
V affect the value of x only weakly, since the entire
correction is at most 0. 2, and the error introduced
by this whole procedure is considerably smaller
than the statistical errors in the experiment.

The values of 6 estimated from our data by this
procedure are shown in Figs. 4-8. It is clear that
in each system the results obtained for vb(~) are
quite independent of the energy. We feel that this
is strong evidence that our methods of analysis are
valid (as well as another example of the utility of
reduced variables).

D. Comparison of Theory and Experiment for v5(v)

It is clear from Figs. 4-8 that our analysis of the
data in I is most compatible with the DR calculation
of the difference potential together with the largest
possible van der Waals interaction —the theoretical
value of C6 plus eighth- and tenth-power correction
terms. All other combinations give predictions
for vb(r) which are considerably higher than the
data (except possibly in Na-Rb).

We believe that the above comparison is signifi-
cant only in the region 4x10 & 7 & 10 ', even though
the agreement extends over a greater range in some
systems. The upper limit is set by the breakdown
of the assumption hV/2V « I, which was required
in the impact approximation for the phase difference
[Eq. (13)]. The value of &V(b )/2V (b ) (where b is
the impact parameter for reduced deflection r = 10 3)

is 0.2+0. 05 for all the systems in I (assuming the
potentials described in the preceding paragraph).
The experimental determination of 5 in the region
7 & 10 ' should be quite good, and it would be inter-
esting to see if the experiment agreed with a more
complete theoretical calculation. Unfortunately,
such a calculation (e.g. , a calculation of the scat-
tering amplitudes by partial-wave analysis) would

involve values of the potentials at small internuclear
separations and would therefore be sensitive to
potential parameters other than those which deter-
mine the asymptotic behavior of the potentials.

At small angles (and, consequently, for small
values of ~) where P,„is small, our dominant-con-
tribution approximation to the scattering amplitudes

[Eq. (12)] fails for the exchange amplitude, because
the dominant contributions to the singlet and triplet
amplitudesf, (b,,) and f,(b,), become nearly equal,
so that their difference approaches 0. The neglected
contributions to the scattering amplitudes then be-

come important, since they prevent o,„[Eq. (5)]
from vanishing as our simple theory predicts. This
accounts for the tendency for the experimental values
of P,„ to lie slightly above 0 at small angles, and it
therefore invalidates our determination of 5 from
the data at these small angles.

The residual contributions to the amplitudes also
cause a small oscillation of 5(r) T.hese oscillations
are visible in the Na-Cs data [Fig. (6)], and may
contribute to the roughness of the Na-Rb data. We
feel that f~(b~ ) and f~(be) are the largest residual
amplitudes P;(b, ) should cause slower oscillations
than f, (b, )]. While accurate calculations using the
entire potentials should reproduce the small-angle
structure in P,„, our determination of 5 from the
data fails as 6 approaches 0, because small varia-
tions in x caused by the residual contributions be-
come important there.

In spite of the limitations of the model for 7 & 0.4
&&10 ' and for ~& 10, it should work reasonablywell
in between. We have checked it against a computer
calculation which used the JWKB approximation for
the phases and which summed partial waves up to l
= 1500. Using (LJ)(8-6) potential for both V, and V~,

we computed P,„(~). This was then analyzed (as if
it were experimental data) to find vb(7), which was
compared with our impact parameter calculations
[Eqs. (13) and (16) using 2(V, + V, ) for the van der
Waals potential]. We obtained 10/0 agreement for
3&10 '& ~&10 ' a. u.

One noteworthy feature of both the data and all the
calculations is that v5(v) is nearly independent of the
alkalis which are involved. The data for K- Rb and K- Cs
do lie slightly below the data for the systems contain-
ing Na, but in no case is the variation between sys-
tems as large as 109&. This similarity of the theoret-
ical predictions is illustrated in Fig. 9, where we

compare various alkali-alkali systems. Using the
theoretical C6 plus both higher-order terms with ei-
ther the DR (solid lines) or KR (dashed lines& dif-
ference potential produces such similar results for
the systems studied in I that only the limiting curves
can be shown. The theoretical predictions for v5(r)
in the systems K-Rb and K-Cs are slightly higher
than those for systems containing Na, in contrast to
the experimental data. While predictions of v5(r)
using ~V„& are generally about 80% above the corres-
ponding predictions made with ~V», this is not the
case for systems which contain Li. For this reason,
studies of I i-containing systems would be helpful in
deciding which calculation better describes the vari-
ation of ~V in various alkali-alkali systems.

The similarity of the v5(i) curves for the various
alkali-alkali systems serves as a reminder that v5
(i) depends on two quantities: the difference poten-
tial&V(r) and the van der Waals potential V (r) If.
aV(r) is increased, then the plot v5(~) will rise;
however, if V (r) is increased, then the curve will
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FIG. 9. Comparison of theoretical estimates of v4
versus v for various alkali-alkali systems. Theoretical
values of C6, C8, and C)0 stere used f'o r the van der %aals
interaction.

be displaced outward, effectively lowering v6(I ).
Both hV and V„ increase for heavier alkalis (at I

=15a„V for K-Cs is more than twice V for Na-K),
and hence v5(I ) is similar even for quite different
systems. Comparison with our experiment does not
check both theoretical calculations independently;
rather it checks a sort of ratio between the two.

In order to judge the implications of the compari-
son of the two theoretical calculations, we must con-
sider the sensitivity of the U5(7) curve to variations
in both &V(r) and V„(I'). Variations in &V(r) affect
only 6 [see Eqs. (13) and (16)], and the effect is lin-
ear. Variations in V„{I) affect the results in a more
complicated fashion, since they cause variations in
the impact parameter b(7), deduced from Eq. (16).
The variations in 5, in turn, influence the value ob-
tained for v5(~) [see Eq. (13)]. Since &V(I ) varies
more rapidly with changes in I' than does V (I ), vari-
ations in V„cause exaggerated response in the v5(I.)
curves: For impact parameters and values of v typ-
ICRl of the dRtR 1D I» R given frRctloDRl VRI'1Rtlon 1n

V„will produce twice as much fractional variation in
v5{r). As an example, consider the theoretical
curves in Fig. 5 for Na-Rb. In this system, ~VER
is 60%%uc higher than d Vna, consequently, the v6(I}
curve which uses 6V„„(dashed line) lies 60%%u~ above
the calculation made with 4V». Comparison of the
6-8-10 theory and 6-8-10 expt curves shows the
sensitivity of v5(7) to changes in the van der Waals
iIltel'Rctloll: V ls 80% larger us111g tile theoretical
Cs, but v5(I') is 180%%uo larger when the experimental
C6 is used. Lowexing V by the factor 1.8 increases
v5(r} by the factor 2. 8.

The experimental values of v5{I'} lie lower than
all theoretical predictions except the one made by
combining the smallest value of hV {DR)with the
largest possible V„[(DD) plus eighth- and tenth-
power correction terms], which is in fair accord

&ith experiments. This is not an independent con-
firmation of both calculations, rather it has the
following meaning: Any adjustment of b,V towards
larger (smaller) values must be compensated by a
corresponding increase (decrease) in V„ in order
to retain agreement with the data in I. [Since v5(7')

ls mox'e sensltlve to V than to AV the fx'RctlonRl

adjustment of V„vdll have to be only about 50/0 of
the fractional change in 4V in order to preserve
the present agreement. ]

Since 4V» is the smallest of all calculations of
the difference potential, it seems unlikely that the
correct hV is smaller than 5V». Thus the theoreti-
cal 6-8-10van der %Rais interaction repr esented a
lower bound on the correct van der %Rais interac-
tion. Cons quently, we feel that our experiment
supports the values of Ce calculated by Dalgarno
and Davison, "while it disputes those found by
Buck and Pauly' and by Fontana. '

It is tempting to claim that the experimental re-
sults definitely confirm the existence of eighth- and
tenth-power terms in V„(I'). While we believe that
these terms are important, it would be possible to
reproduce the data over these moderate ranges of &

by increasing Cs roughly 50%%, while setting C8 and

C&0 equal to 0. Definite confirmation of the exis-
tence of higher terms in V (I'} must await more
detailed calculations of v5(I ) {e.g. , calculations in
the region I &10 ').

V. SUM CROSS SECTION

A. Explanation of Structure

The sum cross section [Eq. (6)] contains no
1nterference teI'IIls betweell fI and f1, Rlld nlRy be
regarded simply Rs a weighted average of indepen-
dent singlet and triplet cross sections:

with

(l8)

Obviously, featux'es observed in o'~ can come
from either 0'y ox' 0'3 or both RDd Rddltlonal 1Dfor-
mation is necessary to determine the origin of the
structure observed ln o'sgm 1D Figs 3 V of I

In measurements of the energy dependence of the
total (integrated over all angles) sum cross section
with kinetic energy between 0. 5 and 100 a. u. , Neu-
mann and Pauly 2 ascribed the structure which they
observed to the singlet interaction, because the
triplet interaction (well depth- 10 a. u. ) is too
weak to px'oduce sizeable effects in the energy 1-ange
of their experiment. In the energy range of our
experiments (~10 a. u. ), however, the triplet in-
teraction is important and II,(e} displays consider-
able structure.

Surprisingly, the singlet interaction is so strong
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that no structure in o,(8) can be observed in our ex-
periment. This is due primarily to the finite energy
resolution in our apparatus: Since the magnitude of
the discontinuity in the singlet phase function
changes with energy, the interference among f, (b)
and the other contributions to the singlet amplitude
[Eq. (11)j is washed out. (The most promising re-
gion in which to see the effects of such .interference
in o,„would be past 8„, where o3 is small. There
is no evidence of interference structure in 0& in the
data in I, however. ) Hence, we attribute all the
structure observed in 0,„ to the triplet cross sec-
tion 03.

Before extracting information about the triplet
potential from the structure in 0,„,we first make
a small subtractive correction to eliminate the ~&&

from o,„[see Eq. (17)j. To do this we fit the sum
cross section with a curve of the form 8 at smal].
angles. (This smail angle behavior is expected'
since both potentials go as C,~ ' at large distances,
and it is generally observed —see Fig. 7 in I. ) By
assuming that the singlet cross section follows this
law up to r=2x10, we can find o~ from Eq. (17).
In practice, this procedure produces a very slight
shift in the angle of the maxima and minima in the
triplet cross section, because this structure is
fairly sharp.

All of the sum cross sections in Figs. 3-7 of
I exhibit pronounced maxima near 7 = 1.7x 10
a. u. These maxima are relatively broad, the cross
section oscillates at smaller angles, and it falls off
sharply at larger angles. (See Figs. 3-7 in I).
This behavior is characteristic of rainbow scatter-
ing, (as is the fact that the value of r at the maxi-
mum does not change when E is varied), and we

feel confident that these maxima result from rain-
bow scattering in the triplet state.

Further evidence for this is the low value of P,„
at all the rainbow maxima. If a maximum occurs
in the triplet scattering, then x = tf, I/If, I should
be less than 1.0, limiting the maximum possible
value for P,„(see Fig. 1). The range of values of P,„
at the rainbow for all the data in I is 0. 1 ~ P,„(7„)
& 0. 3. Assuming that x is the same for all systems
and that this range is caused by variations in 5

forces one to conclude that x= 0. 4. The largest
value of P,„observed in I at the rainbow maximum
is 0. 30 for K- Cs (at Eo = 6. 1 && 10 a. u. ). Since
there is a local maximum in P,„at this angle, we
can set 5 = 3n', and solve Eq. (7) for x, with the
result x = 0.4, in accord with the previous estimate.
Comoaring Eqs. (8) and (18) we see that o, -x'o,
- 0. 16 O3 in the neighborhood of the triplet rainbow.

Rainbow scattering occurs when the deflection
function has a.n extremum (at the classical rainbow
angle, 8„ in Fig. 2 for example). In the semi-clas-
sical approximation this leads to a maximum in

the cross section located at a slightly smaller angle

than 8„. 8„ is determined principally by the well
depth of the triplet potential, which may be seen
from the following argument. The angle of deflec-
tion is proportional to the impulse divided by the
momentum which is (force) (time)/(mv), or

(force)/(time) & & 1

(momentum)
(19)

where R is the size of the potential and e is its
depth. Hence, 8„does not depend on the steepness
of the potential. Accurate impulse approximations
yield

8„=Ge/E, (20)

where G is a numerical factor which varies from
1.79 to 2. 10 for (I J) (n-6) potentials of the form

as n varies from 7 to 14.
At angles such as 8() in Fig. 2, which are smaller

than the triplet rainbow angle, the triplet cross
section shows oscillatory structure due to interfer-
ence of both f, (b, ) and f,(b, ) with the dominant con-
tribution to the triplet scattering amplitude f,(b3).
Since b3 and b3 are widely separated, the oscilla-
tions which result from the interference of f3(b3)
and f~(b, ) will be quite rapid (they are called "rapid"
or "secondary" oscillations). These are generally
too rapid to be resolved without very good energy
resolution (several percent), and they are not ob-
served in the data presented in I except at small
angles (see the data on K-Cs, Fig. 7 in I).

The oscillations due to interference between

f3(b3 ) and fs(bs) have a relatively long period (typi-
cally, 0. 1 rad) and are easily resolved in the sum
cross sections presented in I; these oscillations
are called supernumerary rainbows. The period
of these oscillations depends on X and the distance
between b, and b3, and the supernumerary rainbow
structure therefore depends strongly on the curva-
ture of the potential near the bottom of the well.
If the curvature is large, then the peak in the de.—

flection function y, (b) for negative b will be narrow,
b,-b, will be small, and the period will be large.
The supernumerary rainbow structure depends
very weakly on the average value of b3 and b3, and,

consequently, little can be learned about the over-
all size of the potential from rainbow and super-
numerary rainbow data.

8. Triplet Well Parameters

e have used the tables of Hundhausen and Pauly3'
to determine triplet potential parameters from the
location of the observed maxima and minima in
sin(8)&x3(8). We have tabulated (Table II) e and r
(the depth and position) of the triplet wells in each
of the systems studied, and in addition have tabulated
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].03 X Eo &O &&d V/dr

8-6 12-6
2.4+0.8 2.9+1.0
2.3+1.2 2.6+1.3
2.3 + l. 2 2. 6 + 1 ~ 3

System

12-6
15.0 +2.8
15.8+4.0
15.9+4.0

8-6
9.7 +0.5
9.8+0.6
9.8 +0.7

12-6
9.1+0.5
9.1+0.6
9.0+0.8

8-6
13.9+ 2.4
14.1+3.4
14.2+3.7

6. 9
6.0
5.9

8.0
6.2
6.0

TABLE II. VRIUes of &, t'~, ancl d V/dt fol alkali-alkali tI'1plet potentlRI detel"IMQecl fx'oIQ Gill' 1all1bo~ data UslIlg
both 8-6 and 12-6 potentials.

].04X P~ 10 Xe y'nt

Na -Cs

7.0
5.8

6.2

5.6

5.1
5.0
4.3

4. 8
4.3
3.5

9.0
7.0

7.4
6. 2

8.0
7.8
5.5

7.5
6.1
4. 6

9.2+0.6
9.2+0.4

9.9+0.4
9.7~0.5

11.9 +0.4
11.9 +0.8
11.7+0, 6

11.9+0.4
ll. 9~0.4
11.3+0.7

8.5+0.6
8.6+0.3

8.9 +0.4
9.2+0.4

11.1 +0.5
11.0+0.8
10.6+ 0.6

11.0+ 0.5
11,0 +0.4
10.7+0.7

11.4+3.5

11.5+1,8

11.7+ l.7
12.3+l. 8

12.2+1.4
11.7+ 2. 0
ll. 5 + l. 7

12.0~1.6
11.6+1.5
12.0 + 2.3

12.2+3.5
12.9+1.9
13.7+2.0
14.0 +2.2

13.5+ l. 5
12.5 +2.5
12.3+1.8
13.0+1.7
12.4 ~1.6
12.7+ 2.4

3.4+2. 0
3.4+1.0
3.7+1.1
3.1+0.9
3.8+0.9
4.1+2.0
4.3+1.3
3.9+1.2
4. 2+ l. 3
3.8+ l.7

4.5+2.5
3.7+1.1
3.4+1.0
3.4+1.1
4.4+1.0
5.0+ 2.4
5.1+1.5
4.6+1.2
5.1+1.3
4.8+2.0

(dip, /dr') ) „„(thewell curvature), since the loca-
tion of the supernumerary rainbow structure depends
more on this quantity than on r . The locations of
the maxima and minima can be fitted equally mell
mith either a 12-6 or an 8-6 potential, and results
have been tabulated for both.

The discrepancy between the mell depths deter-
mined with the tmo potential models arises from the
difference in shape and may be understood from the
expression for the classical rainbow angle, Eq. (20).
Since G(12, 6) = 2. 04 and G(8, 6) = l. 84, we would
expect that well depths obtained using a, 12-6 model
would be about 10% smaller than those obtained with

an 8-6 model. The differences observed are of this
size and direction within error, indicating that the
limit of accuracy in determining the mell depth is in
the analysis, rather than in the data.

One may of deciding whether the 8-6 or the 12-6
potential model is "better" is to compare the van
der %aals constant C6 with the sixth-power term in
the LJ potential model. For I J n-6 potentials Ce
= (n/n-6) er, so we could easily find which model
more nearly agreed with the predictions of theory.
%e do not feel that this procedure is justified, how-
ever, because the rainbow structure is not very sen-
sitive to the long-range "tail" of the potential, and
because there is no reason mhy the actual potential
should be accurately represented by a simple LJ
potential at all internuclear separations. It does not
disturb us, therefore, to find that the values of the
sixth-pomer term in the LJ potentials with param-
eters determined from Table II generally exceed
Dalgarno and Davison's values by a factor of 2-5
(except for Na-K, where the discrepancy is more
than a factor of 10).

Our estimates for the triplet mell depths in the
alkab. -alkali systems studied here are all 1.0+0. 2

x10 a. u. (4.4+0. 9&& 10 ' erg). This is roughly
twice the value (2. 2+ 0. 6 &10 ' erg) reported by
Beck et a/. for K-Cs. Cowley, Fluendy, and Law-
ley have reported a value 2. 2 + 0. 5 x 10 ' erg for
Na-K, again roughly 2 of our value. The estimate
of Beck et al. mas obtained by assuming a LJ 8-6
form for the singlet potential and then adjusting the
well depth of another 8-6 potential (used to represent
the triplet potential) until exact calculations repro-
duced their differential spin-exchange cross section
(they used Buck and Pauly's" value of C~ for both
potentials). Cowley, Fluendy, and Lawley obtained
their estimate by analysis of o,„ for very small an-
gles (&8~0. 3&&10 a. u. ). We feel that both experi-
ments are sensitive to the potentials at large inter-
atomic separations, but that neither one is very
sensitive to the depth of the triplet well. Conse-
quently, me view the discrepancy between their re-
sults and ours as an indication that a LJ 8-6 poten-
tial which is a good fit to the potentials in the asymp-
totic region mill not be good in the rainbow region
(and vice versa). We feel that the rainbow position
is sensitive primarily to the depth of the mell and
that our values for e should be fairly reliable.

VI. POTENTIALS

In this section me review the current state of
knowledge on alkali- alkali potentials, indicating
where our results dispute, corroborate, and ex-
tend previous knowledge. Our discussion begins
at large internuclear separations with the van der
%'aals interaction and works tomards smaller inter-
nuclear separations mhere exchange and core ef-
fects become important.

A. van der Waals Potential

The van der Waals interaction is the strongest
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interaction between two alkali atoms at internuclear
separations between about 10 and 300ao (beyond
- 300ao, the magnetic dipole interaction between
the electron spins dominates, although it is too
small to produce observable effects in thermal-en-
ergy scattering experiments). This interaction is
purely electrostatic in origin, and it is consequent-
ly independent of the configuration (singlet or trip-
le't) Of tile electl'oil spills.

The van der Waals interaction has received con-
siderable theoretical attention, and not only the
leading tel'111 (C6'v ) but also tile 1Ilvel'86 elglltll-
and tenth-power terms have been estimated for the
expansion

V (I ) =C, l '[I+(C,/C, )l" '+(CIO/C, )I' '+ ~ ~ ~ ]. (22)

The van der Waals interaction arises from second-
order perturbation theory, and consequently no odd
powers of r are involved up to r ", which appears
in third order. %e feel that the most reliable
synthesis of the theoretical results is to use Dal-
garno and Davison for C6, Davison for the ratio
C8/CII, Rnd Fontana ' for the ratio CIO/Ce. (These
are collected in Table III. ) Fontana does calcula-
tions only for identical pairings; we have used the
geometric mean of his ratios to obtain values for
the ratios in nonidentical pairs. All of these terms
Rl'6 IlegRflve (col'l'espolldlllg to Rf'tl'Rc'tloll), Rnd the
eighth- and tenth-power terms are sizable, 50%a

of the sixth-power term at 15ao. This is in con-
txast to most othex atomic systems, where the
higher-order terms are generally insignificant at
distances larger than 10ao. 37

The van der Waals constant C6 has also been
measured by Buck and Pauly, who used a semi-
classical treatment to determine C, from absolute
measurements of the total cross section. Their
values are generally about 50/0 of those calculated
by Dalgarno and Davison. Smith has suggested '
that the discrepancy would be resolved if the triplet
well depth were very shallow, but our rainbow re-
sults, as well as the forward glor measurements
of Bothe and Helbing, eliminate this possibility.
Buck and Pauly measured the total cross section,
which requires absolute knowledge of the target-gas
pressure. This is very difficult to measure for
condensable corrosive materials like alkali vapors,
and it is possible that all of their results could be
off by a constant factor. In view of the consistency
of the results obtained when they reversed the con-
stituents of the primary beam and tax'get vapor, it.

seems likely that their relative values of C6 are
accurate within about 15/q. Dalgarno and Davison'8
errors in CII should be roughly 15/0, hence, the
variation from system to system in the ratio C6
(Buck and Pauly)/CII (Dalgarno and Davison) appears
to be just outside the range permitted by the com-
bined experimental and theoretical errors. (We
have assumed that the theoretical exrors come only
from errors in the oscillator strengths. Vfe have
not included the coxe contribution to C6, since it
does not reduce the variation of the ratios. The ra-
tios are listed in Table ID. )

Fontana I has calculated values of C6 and C8 (in
addition to Clp) for identical alkali-alkali pairings.
His results for Ce disagree with Dalgarno and Davi-

TABLE III. Parameters for asymptotic alkali-alkali potentials (in a.u. ),

C8/'CH C~o/'C6 Parameters for &Qz

Li-Ll
-Na
-K
-Rb
-Cs

Valence
elec-
tron

1380
1470
2240
2440
3000

Core

(9)
(20)
(130)
(190)
(280)

Buck
and

Pauly

Fon-
tana

Dav- Fon-
ison tana

54 2581
57 2704
68 3295
71 3184
79 3608

2. 28 x 10"3

1.91
0.92
0.77
0.54

3.19
3.23
3.37
3.40
3.47

1.256
1.241
1.191
1.181
1.161

S(~=10-')

13.4
13.6
14.6
14.8
15.3

Na-Na 1580
K 2390
Rb 2600
Cs 3180

K —K 3680
Rb 4000
Cs 4940

(40)
(170)
(240}
(340)

(420)
(540)
{720)

920
1130
1440
1510

1590
1630
1920

0.58
0.47
0.55
0.47

0.43
0.41
0.39

61 2833
75 3453
79 3336
82 3780

86 4208
89 4066
93 4607

1.59
0.77
0.66
0.45

0.369
0.310
0.218

3.26
3.40
3.44
3.50

3.55
3.58
3.65

l. 227
1.177
l. 167
1.147

1.127
1.117
1.097

13.8
14.8
15.0
15.5

15.9
16.1
16.7

(680)
(910)
(»80)

1670
2150
3460

0.38
0.40
0.52

57
60
64

Bb-Bb 4350
-Cs 5370

Cs-Cs 6660

C6 (Buck- Pauly)/Ce (Dalgarno-oavison, no core term}.
Geometric mean used for nonidentical pairs.

93 3929
96 4452

100 5044

0.260
0.183
0.128

3.62
3.68
3.75

1.106
1.087
l.067

16.3
16.9
17.5
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In addition to the theoretical work on the asymp-
totic expansion coefficients of the van der Waals
interaction, there has also been some work on the
diff erence potential,

&V(r) = V,(r) V,(r-)— (23)

Dalgarno and Rudge' have given an asymptotic ex-
pression of the form

dv»(r) =Nr " 'e

while Smirnov and Chibisov (SC) have given

~v, c(r) = (clp+cTgr+tTp'r )r e

and Knox and Budge' have found

av„s(r) =Ar'e'p'"

(24a)

(24b)

(24c)

The DR calculation is generally the lowest of
these, although the SC results lie slightly below

Avoca at large r (& 20ap) in some systems. Gener-
ally, Dvpc is 0—30%% larger than hv». 6 V„„
is considerably (-80%%up) larger than Evz, z for all
alkali-alkali systems except those which contain
Li, in which case EVE+ is between 5% and 60%%up

above 4V». Some recent calculations by Callaway

son, but agree with the results of Buck and Pauly.
We regard this agreement as fortuitous: Fontana's
hydrogenic wave function approximation does not
reproduce the close spacing of the adjacent P state
which is a salient feature of alkali atoms, and it
is not surprising that it gives lower results than the
more realistic model used by Dalgarno and Davi-
son.

While Fontana's results for C6 do not appear to
be reliable, his results for the ratios Cp/Cp and

C,p/Cp are useful. This is partly due to some can-
cellation of the errors inherent in his model and

partly due to the decreased accuracy required in
the higher-order terms compared with the leading
term. His values for C,/Cp are compared with
Davison's more accurate calculations in Table III,
and are typically 30% low (cf. 50% low for his val-
ues of Cp). This gives us some confidence in his
values for the ratio Cqp/C„although it would not
be surprising if these, too, are somewhat low.

In Sec. IV D we showed that the probability ex-
change data in I supported the Dalgarno-Davison
value of C6 with the inclusion of both eighth- and
tenth-inverse power terms in the van der Waals
interaction. Qur interpretation depends on the DR
calculation of the difference potential, but we feel
that any revisions of that calculation mill require
anincxease in the magnitude of the van der Waals
interaction to retain consistency with the exchange
data in I. Thus, we feel that the larger value of

C6, due to Dalgarno and Davison, is more nearly
correct.

B. Difference Potential

and Laghos ' give results about 20-30% greater
than AVDR.

In theory, it should be possible to decide among
these potentials by measuring the total spin-ex-
change cross section absolutely by means of optical
pumping techniques. ' In practice, this approach
has not been very successful, because it is diffi-
cult to measure absolute cross sections, and be-
cause the cross sections are fairly insensitive to
the magnitude of the difference potential and the
temperature of the alkali vapor under study. For
example, quadrupling the temperature (i. e. , doubl-
ing the relative velocity) changes the cross sec-
tion by roughly 8%%up according to the SC calculations.
Since doubling v„, has roughly the same effect on
the phase as halving the difference potential [see
Eq. (13)], the cross sections calculated with the
largest estimate for the difference potential ~VK„
are roughly 8%%up larger than those calculated with
the smallest estimate, b VDR. Recent experimen-
tal uncertainties have been between 10/p and 20%%up,

hence, these experiments are not decisive in de-
termining which expression for ~V is best.

Another difficulty with the use of total cross-sec-
tion measurements to determine ~V lies in the use
of the semiclassical approximation. Dalgarno and
Rudge estimated that this approximation introduced
less than 30/p error in the total spin-exchange cross
section, an intolerably large amount in view of the
precision required to differentiate between various
current models for ~V. Recently, Chang and Walker
have tried to eliminate this source of error by doing
a complete partial-wave calculation of the total spin-
exchange cross section on a computer. This ap-
proach requires knowledge of the potentials at all
internuclear separations, however, and the poten-
tials which they used are unrealistic and give val-
ues for the total exchange cross section which dis-
agree with recent experiments by many standard
deviations.

The present work does little to resolve the con-
flict among the various expressions for ~V because
the van der Waals potential is not known sufficiently
accurately (see Sec. IVD). However, we are able
to determine that ~V» is consistent with our data
and the largest current estimates for V, so that
a larger hV will be inconsistent with our spin-ex-
change data, unless V is also increased.

This experiment provides some indication that
the radial decay factors of the difference potentials
in Eq. (24) are about right. This evidence is that
the v5(r) plots (see Figs. 4-8) agree with experi-
ments (or differ by a constant factor) over the range
0. 4&&10 &w&10, where v5 changes by a factor of
roughly 5. This is consistent with the rapidly de-
caying b,v's in Epi. (24), but is inconsistent with
hV's which decrease more slowly. As an example,
we were unable to fit the experimental data at both
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ends of this range with ~V=Kr for any single value
of K.

All of the theoretical calculations for hV omit
consideration of the effects of excited molecular
states. We feel that these states may contribute
significantly to the difference potential, as suggested
by the following semiquantitative argument.

First, neglecting exchange, we calculate the
amount of adjacent P states mixed into the wave
function for the alkali-alkali system by the long-
range electrostatic interaction V„. The wave func-
tion ls

0',est, = +,4, + @+ACp, (25)

+ are centered on atom A, @ on atom 8, s and P
denote the lowest s and P states of each atom. Us-
ing first-order perturbation theory we find.=(~,q~ V., ~~,~,)/(E, E",,E, E, )

=(e,e,
~
v„~+,c,)/(2m),

with ~ =E& —E,-O. 1 a. u. for all alkali atoms. It
is easiest to evaluate n by noting that the second-
order energy is the leading term in the van der
Waals interaction:

so that n (which obviously depends on the internu-
clear separation ~ is

n(r) = [C,/(2~r')]U'. (27)

The ambiguity of sign in this expression may be re-
solved by using Eq. (26) and an explicit expression
for V„. At r= 10 ' in Na-Cs, b = 15. 5ao and Ce/r
= 2&&10 a. u. , so that a=0. 03.

This may seem negligible, but it can have a con-
siderable effect on 4V, which is roughly proportion-
al to the square ' of the overlap integral,

=
~

(@,
~

e,) ['+2n (@,(4,) ~'+ n(n'),

+2n(4. [4,)(~,[Cg+n (4,[e,&&C,]4,&

(in the last step we assume that the alkalis are iden-

tical to achieve greater simplification). Since 4'~

is roughly three times as large as 4, at distances
of 7-9a, (i. e. , midway between the atoms), it is
reasonable to suppose that ~(+, iC~) 1' is roughly ten

times as large as I(+,14) 1 . Hence, we have

~V-S'=(1 4On)~&~, ~4,&~'. (29)

Obviously, a value of n as small as 0. 01 could still
affect b, V quite significantly t

This discussion has neglected the fact that there
are three P states for each atom and that b V mixes
in each possible intermediate state with its own val-
ue of n, and 't also neglects spin-orbit coupling.
Nevertheless, we believe that it shows the need for
calculations of 4V which include some excited

intermediate states.

C. Asymptotic Form for Potentials

Both the van der Waals potential [Eq. (22)] and

the difference potential [Eq. (24)] are asymptotic
expressions, valid as r increases to large values.
These may be combined to find an asymptotic form
for the singlet and triplet potentials according to
the relationship

V, (A) = V.(r)+-,'n V(r),

v, (r) = v. (r) --,'nv(r) .

(3Oa)

(3ob)

The singlet potential in alkali-alkali systems have

deep minima whose well depths may be obtained

from spectroscopic data for the corresponding bound

molecula, r states. " Typical depths range from
—,'-1 ev(-0. 03 a. u. ) with r = 6ao. In addition, for-
ward glory measurements of alka'i-alkali systems
Bt high energies provide a measure pf the product

for the singlet potential well. The singlet well

shape, as determined mainly by analysis of spectro-

The assumption underlying Eq. (30), namely,
that V~(r) lies midway between V, and V„may be
questioned because it ignores the electrostatic
effects of electron-cloud overlap. (The van der
Waals interaction is calculated from the power ser-
ies for nonoverlapping charge distributions. ) These
effects are small between spherical electron clouds
with exponentially decaying charge densities (like
alkali-valence electrons), because the electrostatic
potential inside such a charge density is nearly equal
to the potential generated by a point charge of mag-
nitude —e placed at the nucleus. This may be seen
by considering the potential at a point a distance R
from the center of such a charge distribution:
Charge with x ~ R acts as if it were at the origin,
while the charge density with t' &R is decaying ex-
ponentially and contributes to the potential roughly
R/(R+d) a,s much as if it were at the origin. Here
d is the decay length for the charge distribution,
typically d ao for alkali-valence electrons. In the

region of maximum overlap R = 7, so R/(R+d) = 0. 9.
A more detailed discussion of the effects of charge
overlap has been given by Kreek and Meath. '

The burden of this argument is that the effects of
electron-cloud overlap are small for internuclear
separations larger than loa, or so, so that Eq. (30)
should be a good representation of the asymptotic
behavior of the potentials. Further evidence to this
effect is given by Kolos and Wolniwiecz, ' who

showed that, for the system H-H, the van der Waals

energy [including terms through C,or ' in Eq. (22)]
equals the average energy —,

'
[V,(r)+ V, (r)] within 5/o

for r~ 8. 0ao. [The minimum in V3(r) occurs atr
= 7. 85ao in the H-H system. ]

D. Potential Minima
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tential. While it may be possible to find a potential
which will be consistent with all the data, it appears
more difficult to do this here than in the alkali-no-
ble-gas systems (where it has been done ) due to
the large magnitude of the discrepancies. Measure-
ments of the differential cross section with increased
resolution (so that the rapid oscillations could be
observed) would be quite valuable, as would theoret-

ical calculations of the potential shape near the
minimum.
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