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A discussion of the inelastic scattering of high-energy electrons from atomic systems using

linear-response theory is presented. Following Van Hove, an expression for the differential

scattering cross section within the Born approximation is derived. The relationship of this ex-
pression to the linear-response function is demonstrated and a practical procedure for its com-

putation using the so-called random-phase approximation is given. Finally, explicit results for
the excitation of the lowest singlet 8 and singlet P state of helium by 500-eV electrons are given.

I. INTRODUCTION

The inelastic scattering of high-energy electrons
from atoms has been the subject of both experimen-
tal and theoretical interest for many years. ' The
reason for this lies in the simple fact that the dif-
ferential cross section or the generalized oscillator
strength gives us detailed information about the re-
sponse of atomic systems to the sudden transfer of
momentum from an external source. ~ In addition,
electron impact excitation studies are useful for the
discovery and elucidation of states forbidden by
photon impact. Traditionally, the evaluation of the
generalized oscillator strength has depended upon
the knowledge of wave functions for both the ground
and excited states of the system under consideration.
These wave functions are usually known only crudely,
and the many calculations found in the literature
suggest a great sensitivity to the approximations
involved. Our philosophy on the calculation of these
generalized oscillator strengths is unconventional
in that we try to avoid the use of wave functions as
much as possible. By concentrating efforts on the
direct calculation of the matrix element needed for
the oscillator strength, one can avoid the need for
comyuting both ground- and excited-state wave
functions separately and then having to integrate
their product with the appropriate transition opera-
tor. This process is intended to avoid the unneces-
sary details associated with the computation of ac-
curate bound-state wave functions while retaining
the proper physical effects needed for quantitative
accuracy of the final result. In this way the actual
computational process may be considerably short-
ened. Below we consider just such a procedure
based on the theory of the linear response. To low-
est order, the theory leads to the mell-known ran-
dom-phase approximation (time-dependent Hartree-
Fock). ~ We present calculations on the high-energy
scattering of electrons from helium as an illustra-
tion of the practicality and accuracy of the proce-

duree.

II. THEORY

The Hamiltonian for the problem of an electron

incident on an atom may be written as
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l,et us define the density of electrons in our atomic
target as

p(r) =Q a(r —r, )

Introducing the field operators g,(r), g,(r), where
the subscript o indicates a spin coordinate, we may
write

p(r) = 5 P,'(r)q, (r)

and thus

—Z ~~ a(x - x~)
Vge= +~ dx
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In what follows we use the notation

E~= ground-state energy of atom,
0

E& = nth-excited- state energy of atom,

—,'k0 = incident electron energy,

—,'k„=final electron energy,

q = k„—k0= momentum transfer,

q = k„+ko —2kokocos8,

~&n = E~ —E~n 0

The differential cross section for the excitation of
the nth excited state of our system may be written
in the Born approximation' as
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where xz stands for the collection of atomic coordi-
nates. By virtue of the orthogonality of atomic
states, we may drop the first termintheparentheses.
Using (5) we have

(
(7)
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Fourier transformation yields
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Our reasons for considering the time-ordered
rather than casual response wi11 become evident
when an equation to determine R is derived. The
important fact to notice at this point is that the
spectral representation of the response, Eq. (16),
contains the necessary information to compute the
generalized oscillator strength. That this is indeed
the case follows by taking the space Fourier trans-
form of the residue of (16) at the pole ((d„—ie).
Explicitly, we have

Res(o„=i&nl p(r)
I
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and its Fourier transform
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In terms of the so-called generalized oscillator
strength, defined as

f.(&) = (2(".I(f')
l J dx e" '"p.o(x)

l

'

we can write

d v„o 2k„f„(q) (i2)

R(rt, F't') = i-'&Ol T(p(F, t)p(r', t'))
l
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is known. In this expression, the average of the
time-ordered product is over the ground-state
wave function, and we define

So far, we have made no reference to linear-re-
sponse theory. The connection can be achieved by
considering the response of an atomic system to an
arbitrary time-dependent external potential (such
as a fast-moving electron). As many authors'4'
have shown, this response is completely determined
once the quantity

F.T. =i fdrdr'e"" "'&nl p(r )
I

0&&ol p'(r)l "&

(i8)

Equation (18) is the generalized oscillator strength
to within a known constant. In order to derive an

equation for the response function which is both
general and still capable of workable approxima-
tion, we make use of the functional derivative tech-
niques of Martin and Schwinger. The fundamental
equation needed is

. 5G(1, 1 ')
t)u(2)

= R(i2, i "2') = t-'{ol &1[('(1")((1))p(2))l o& (is)

The notation used is

n = space, time, spin coordinate,

G(n, n ) = exact one-particle Green s function,

u(n) = external time-dependent potential,

[p (n)p(n )j = g (n)g(n ) —(ol (t (n)(t)(n )
l

0&

A superscript plus on a coordinate indicates a time
t infinitesimally later than t. The one-particle
Green's function obeys an equation of motion which
can be written as

p(r, t) = p(r, t) —&0
l
p(F, t)

l
o& (i4) G (1, 1 ) = G()'(1, 1 ) —u(1)5(l —1 ) —Z(1, 1 ), (20)

We now consider this quantity in detail. Explicitly,
we have

where Z(1, 1 ) '" is the exact self-energy operator.
Differentiating the identity

R(rt, F t')=i '[8(t —t )(ol p(r, t)p(F, t')
l

0&

+ e(t'- t)(o
l

p(F't')p(F, t)
l
0&]

5(l —1') = J dxG(1, x)G '(x, 1')

and Eq. (20) yields

(2i)
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G(1, 1 ')
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where X». and P». are the two components of the
nth RPA eigenvector. If we consider a closed shell
and specialize to singlets,

space

&nl p(r)l»=~» r&(r)r,*(r)&P, +r, (r)r,*(r)&g.

If we define
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Fourier transformation gives the needed result to
compute the generalized oscillator strength. In
Sec. III, we present an application to electron-
helium- atom collisions.

III. NUMERICAL RESULTS

The scattering of high-energy electrons from
helium is one of the most thoroughly studied prob-
lems in all of chemical physics, ' ' and hence, an
obvious choice for a test calculation. The singlet
RPA equations" for helium may be obtained by sub-
stituting the spectral representation for the response
function, Eq. (15) into Eq. (27), performing a
Fourier transform, and taking matrix elements in
the Hartree-Fock basis. This procedure has been
performed in detail in Ref. 10 and specializes for
the two-electron closed-shell system to

xG(l, x) V(x- y)G(y, 1")R(x2,y'2') (27)

Setting x= x, gives the necessary equation to de-
termine R(1, 2). The connection between (27) and
the ordinary form of the random-phase approxima-
tion (RPA) is described in detail in Ref. 10. To
make the connection between the RPA and the gen-
eralized oscillator strength, it is sufficient to note
that the RPA eigenvectors are actually components
of &n [p(r) I0). ln fact, a cursory examination re-
veals that within the RPA"

(nl p(r)l 0) = Z y„(r)y,*.(r)x„".+ y), (F)r(*, (r)&(*,(,
unoc' occ

xG(l, x)&(xx', yy")G(x, 1 ')R(v2, y "2') .
(25)

An exact solution of (25) is, of course, impossible,
but as we now show, the lowest-order approxima-
tion leads to a well-known soluble problem, the ran-
dom-phase approximation. " To show this, replace
all single-particle Green's functions in (25) by their
Hartree-Fock counterparts and let

&(xx, yy ') = ' „=—i5(x x)5(y-—y')I I+ 5+a F (x)x ) ~ I
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Substituting into (25) yields
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TABLE I. Generalized oscillator strength for the 2'P
excitation in He.

g' (a. u. )

1P-6

P.04
0.1225
0.25
0.49
0.64
0.81
1
1.69
2. 25
2. 56
3.24

Oscillator
strength

(This work)

2.5797 x lp-2

2.4158x lp '
2. 1151x10"
1.7328 x 10-'
1.2124 x lp-'
9.8057 x 10 2

7.7805 x ].0-2

6.0721 x 10-'
2. 6750 x 10-'
1.4843 x 10
1.0976 x 10
5.9562 x lp-'
3.2258 x 10"

Oscillator
strength

(Kim and Inokuti,
Ref. 16)

2. 761 x 10-'

1.8596 x 10 '

1.2852 x 10-'
1.0408xlp '

6.5431 x lp

3.4485 x 10 ~

It proves to be convenient to rewrite these in con-
figuration space. This is easily done once it it rec-
ognized that Eqs. (30) are merely matrix represen-
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Oscillator
strength

(Kim and Inokuti
Bef. 16)

lp-6

0.04
0.1225
0.25
0.49
0.64
0.81
1
1.69
2. 25
2.56
3.24
4

~p
3.3588 x 10-'
9.1183x 10
1,5540 x 10
2, 2032 x 10
2.3722 x 10-
2.4314 x lp"
2.3936x 10-2

1.9105x 10-
1.4835 x lp-'
1.28p6x 10-2

9.2686x 10 ~

6.5311xlp 3

r 0

1„4683x] p

2.0907 x 10
2. 2396 x 10
2. 2866 x 10-'
2.2493 x 10

5.9528 x 10-3

TABLE II. Generalized oscillator strength for the 2~S

transition in He.

q Oscillator
strength

(This work)
Author

Altshuler
(Ref. 12)

Fox
(Ref. 15)

Gars tang
(Ref. 21)

df 2s
2

q P

0.0366

0.0557

0.072

0.ll

0.13

Comments

I ength form used for
matrix element with
hydrogenic wave func-
tions.
Velocity form used
for matrix element
with hydrogenic
wave functions.

Hartree ground-state
wave function.
Eckart ground-s tate
wave function.
Hartree-Fock.

TABLE IV. Comparison of the slope of the generalized
oscillator strength versus q for 2 S transition in He.

Van den Bos
(Ref. 22)

0.0611 Reference 22.

tatives of the following pair of coupled differential
equations:

[- l &'- (2ir)+ (rls I g I res& &is+ —~d.j»s(r)+ rl s(r)

(&r„lgl,",&.&r„l~lF,",&) = 0,
(31)

[- —,
'

7 —(2lr)+ (vis Ig I res& —&is —&Jl'i"s(r)+ yi s(r)

&(&r„aI»"s&+ &». I~I »"s&) = o,
subject to orthogonality of »"s and y;"s to the 1$
orbital. Expanding X,"~ and F,"~ in the set of unoc-
cupied Hartree-Fock orbitals and taking matrix
elements immediately gives Eqs. (30). A compari-
son of Eqs. (31) and the time-dependent (frequency-
dependent) coupled Hartree-Fock equations for
helium immediately shows the two to be identical.
This is not surprising since many authors have
shown the mathematical equivalence of the two the-
ories. The solution to this coupled set of equations
may be carried out numerically or by variational
approximation. The latter procedure was chosen
for the following reason: We were interested in
just the lowest solutions of S and P symmetry, for
which small, simple variational basis sets are
easily chosen. The set we used was formed by
taking the exponentials appearing in the unperturbed
orbital, multiplying by various powers of x, and
orthonormalizing. The resulting radial functions
were multiplied by the proper spherical harmonic

Kim and
Inokuti
(Bef. 16)

This work

0.0836

0.0837

Weiss C. I. wave func-
tions.

Random-phase approxi-
mation.

0.3

He{2~ P)

0.2-

O.I-

and used in a Rayleigh-Ritz variational procedure.
In the case of an S state, the basis set was orthog-
onalized to the unperturbed orbital. Such sets have
been used with great success by a number of authors
for polarizability calculations. " The resulting
non-Hermitian eigenvalue problem was solved by a
program kindly provided to us by Professor Vincent
McKoy of the California Institute of Technology.
The integrals needed to compute the matrix ele-
ments may be performed analytically as may the
Fourier transform of the density operator. The en-
tire calculation was performed on the IBM 360-50
at the Bayside Research Center of GT@E Labora-

Incident
energy (eV)

500
500

Transition

2S

Total
cross section

0. 1545 x 10-'
0.1714

TABLE III. Total cross section for 2 I' and 2 S tran-
sitions in He (a.u. ). 0 I I I I I I III I I I I ~ I III I

(0 '
IO '

Q (a.u. )

IO

4~
04~

I I I I I I Is I l4~ I I I I I

lO

FIG. 1. Generalized oscillator strength for the 2 I'
transition in He in a. u. Incident electron energy is 500
eV.
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0.03

0.02-

0.01—

He t2 S)

important point here is not the accuracy of our re-
sult on any absolute basis, but what we get out for
the time and effort put in. We anticipate applica-
tions to larger systems than could be treated by the
Kim-Inokuti technique. If present results are in-

dicative, one can expect excellent agreement with
experiment.

IV. CONCLUSIONS

0

0 I I I I I IIII
lo 2 io '

I

q2(a. u. )

Io

FIG. 2. Generalized oscillator strength for the 2~S tran-
sition in He xn a.u. Incident electron energy is 500 eV.

tories and took about 15 min for each state com-
puted. In Tables I and II, we list our values of the
generalized oscillator strength for the lowest singlet
S and P states of helium. (See Figs. 1 and 2. ) For com-
parison, we also list the results of Kim and Inokuti.
For completeness, we also include plots of the oscilla-
tor strengths versus q, and in Table III a tabulation of
the total cross section. As Kim and Inokuti point
out, a particularly sensitive test of any oscillator
strength calculation is the slope of the curve as q
approaches zero for an optically forbidden transi-
tion. In Table IV, we give the results for this
quantity as calculated by a number of authors using
various approximate wave functions. Our results
are in excellent agreement with those of Kim and
Inokuti indicating the power of our approach. The

We have presented a general formalism to treat
the inelastic scattering of high-energy electrons
from atoms using linear-response theory. To low-
est order, the theory leads to the well-known equa-
tions of the random-phase approximation. We have
applied these equations to the excitation of the low-
est singlet S and P state of helium by 500-eV elec-
trons. Our results are in excellent agreement
with the calculations of Kim and Inokuti using much
more sophisticated wave functions. On the basis
of these results, we anticipate further applications
to helium and plan to extend the calculations to
heavier systems. We are also looking into the use
of response function techniques in low-energy in-
elastic scattering.
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