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The theory of generalized variational bounds is applied to two-channel collisions of positrons
on hydrogen leading to positronium formation. The formalism is developed in detail for this
problem, and the zero partial, -wave solution is obtained in the coupled-static approximation.
The nonlocal coupling kernels and the behavior of the wave functions are exhibited in detail.
Eigenphase shifts and coupling parameters, and the stripping and pickup cross sections, as
well as the eIastic amplitudes for positmn-hydrogen and positronium-proton collisions, are
studied as functions of scattering energies. The unitarity limits are exhibited, one of which
is nearly saturated in the Ps-p channel. A useful iteration procedure for solving the coupled
equations with large coupling kernels is developed.

I. INTRODUCTION

The three-particle problem in quantum-me-
chanical collision theory has been studied for
many years. ' In particular, a formally consis-
tent mathematical procedure has been given by
Faddeev' and others, but its application to spe-
cific physical systems is a much more formidable
task. ' When only a few two-body channels are
open, however, a theoretically more tractable
procedure is available in the form of the general-
ized variational bounds (GVB). It correctly treats
the nonorthogonality problem of the rearrangement
channels, and the effect of distortions due to cou-
pling to other closed channels is estimated vari-
ationally with the strong bound property. The
theory is essentially of the same degree of appli-
cability for the low-energy scattering problem as
the Ritz variational principle is for the bound-
state problems. Its earlier version has been
applied to the elastic positron-hydrogen scatter-
ing and elastic electron-hydrogen scattering, '
where the simple channel projection operators
are explicitly available. " The result gave a val-
uable insight into the effect of distortions on the
scattering parameters and also on the resonance

structures. '
This is the first of a series of reports on the

detailed theoretical analysis of the positron-hydro-
gen scattering system, using the formalism of
GVB, By restricting the scattering energies to
the region below the first excitation threshold in
the positron-hydrogen channel (channel 1)but above
the positronium-proton elastic threshold (channel
2), we have probably the simplest two-channel
scattering problem in which rearrangement of the
electron takes place as

e'+(e +p') —(e'+e )+p'
channel l channel 2

The effect of the coupling to the electromagnetic
field may be neglected, and the ability to distin-
guish between the two light particles and the very
heavy proton core simplifies the analysis to a man-
ageable level with the computers available at pres-
ent. Because of complicated nonorthogonality be-
tween the two open-channel wave functions, no
simple channel projection operators of the Fesh-
bach type' are available, and GVB, whichexplic-
itly avoid such a requirement, can thus be effec-
tively applied to this problem.

The reaction (1. 1) has been studied many times
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in the past in various approximations. ' In par-
ticular, Bransden and Jundi' have solved the prob-
lem in the coupled-static approximation (CSA);
they also include certain polarization potentials
phenomenologically in order to estimate the effect
of distortions due to other channels. Their work
constitutes the first important step of a more com-
plete treatment of the problem within the frame-
work of GVB; we will discuss in detail in the pres-
ent paper its relevance to our calculation.

Desirability of a solution to such reactions as
(l. 1) can hardly be overemphasized. Aside from
the possible interest in the e'H system itself, (1. 1)
also provides an important model problem with
which various other simpler approximation pro-
cedures may be tested, such as the plane-wave
Born approximation, the distorted-wave Born ap-
proximation, ' the eff ective polarization approxi-
mation, the polarized orbital method and its varia-
tions, ' ' and so on. In particular, the nonorthog-
onality problem' '" and the nonlocality' of the ef-
fective interactions and its effect on the wave func-
tions may be readily studied using the model re-
action (1.1). For this purpose we have tried to
supply here as much information from our analysis
as may be relevant to such studies.

In Sec. II, we summarize and further analyze
the theory of GVB relevant to the reaction (1. 1) and
define the notations. The formalism necessary to
evaluate the reaction matrix K, eigenphases and
coupling parameters, amplitudes and cross sec-
tions for 1- 1, 1-2, 2- 1, and 2- 2 are defined.
Section III contains a brief summary of the deri-
vation of the coupled equations in the CSA. The
structure of the nonlocal coupling kernels is dis-
cussed. The details of the method used to solve
the problem in the CSA and the results are given
in Sec. IV.

Throughout the paper, we restrict ourselves to
the scattering with the zero total partial wave,
L = 0. Contribution of the higher partial waves,
L )0, to the cross sections is known to be impor-
tant, ' and such a study is being planned. In the
second paper, we will present a detailed varia-
tional estimate of the correction to the amplitudes
in the CSA, also for L =0. The solution of the re-
duced matrix equations, which are derived es-
sentially from the Faddeev equations, will be pre-
sented elsewhere.

II. GVB THEORY

The formalism of GVB used in our study will be
summarized in this section, explicitly for the re-
actions (1.1), and we will also define notations.
The Hamiltonian in the Schrodinger scattering
equation

4

FIG. 1. Coordinates and angles used in the calculation.

may be written as

8-H1+ V1-B2+ V2

where

(2. 2)

H, = —p V;p+(- 2 V; —rj ), V, =r, ' —s ', (2. 3)

(2. 4)

as ~2-~
4-F242 as R-~

(2. 5a)

(2. 5b)

and the regularity requirements at x2=x, =0 or
s =R = 0. In (2. 5), we have introduced the projec-
tion operators I'&, i = 1 and 2, defined by

&l =(o(ri) ) ((o(ri'),
Pp= Pp(s))(cPp (s )

and where

[ -'V';, -rj']0 (r&)=E„g (r&)

[- V —s '] y„(s) =E„"'rp„(s)

(2. 8)

(2. 7)

In order to have only two channels open, we limit
the energy E to the region (in a. u. )

—4 =E() E &E1(2) (
Defining the energies as

E —E(, + ~k =ED +,p
(1) & 2 (2) & 2

(2. 8)

(2. 9)

2 2 -1 -1 -1H, =--, Va+(- Vp-s ), V', =r, r, -
In (2. 3) and (2. 4), we have taken m = 5= e = 1.
r, and r2 are the electron and positron coordinates,
respectively (Fig. 1), and s is the electron-posi-
tron relative coordinates, while R denotes the
(e'e ) center of mass from the proton.

The scattering problem is then completely de-
fined by (2. 1) and the boundary conditions on 4 as

(H —E) 4 =0 (2. 1) (2. 8) gives
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1 2 3

0 P3 ( ~

1
(2. 10)

In general, it is very difficult, if not impossible,
to evaluate explicitly the projection operator P
which projects onto the two open channels of (1.1),
and the formalism of GVB does not require such an
operator. However, for the convenience of formal
discussion, we simply assume that the operator P
and its complement Q = 1 —P are given (implicitly
in a formal sense only). In fact, such an operator
is written down by Mittleman using the procedure
developed by Feshbach. ' The operator P has, by
definition, the property that

but

P4=P, 4, +P242

P =P=P2

P]P =P; =PP(

QP=PQ =0

P(Q =QP, =0

[P, , P,]~0 .

(2. ii)

(2. 12a)

(a. lab)

(2. 12c)

(2. 12d)

(a. is)

(a. 14a)

P~ +2- (i(2/p)' yo (s) [az sin(PR) + bz cos(PR) l/R,

(2. 14b)

where p, , =1, p, 2= 2 in our units; and as either x~
or R or both

Q4-0 faster than x3' and R ' (2. 15)

as we limit our discussion throughout for I =0
partial wave.

The difficulty with the rearrangement collision
such as (1.1) is essentially that the asymptotic
boundary conditions (2. 14) and (2. 15) cannot read-
ily be imposed. Quantities which appear in the
intermediate stages of the calculation often involve
nonunique operations. As will be shown below,
such ambiguity does not arise in GVB.

A. GVB

The GVB follow essentially from the important
orthogonality property of the operator M and the
function N defined below. The original Schrodinger
equation (2. 11) separates as

It is important to note that P of (2. 11) with (2. l. 2)
is not a simple linear combination of Pj and P2,
due to (2. 13). The boundary conditions (2. 5) then
become explicitly

P, 4, (p, ,/k) (t(p(r() [a, sin(&~, )+t(, cos(&r, ) ]/rz,

Q(H-E)Qe=-Q(H E-)P~ . (a. iv)

(2. 16) is a set of coupled equations for P, @, and

P24'z for given Q4'. We define the homogeneous

part of (2. 16) as

P(H —E)P4 =0

P(H —E) PG P = —P

(2. 18)

(2. 19)

The boundary conditions on P4 are the same as
(2. 14), with b; replaced by I(; . Furthermore, we

define G such that for a square-integrable func-
tion f,
P, G P& - (const) (j(0 (r, ) cos(kr~)/~~, r~ ~, (2. 20a)

P~G P& - (c.onst) yo(s) cos(PR)/R, R- ~ (2. 20b)

Then, (2. 16) may be solved formally as

PC =PS +PGPP(H E)QC—

and, thus (2. 1V) becomes

(QMQ) Q~= —QN,

where

M:H —E+(H——E) G (H —E)

=II —E+S
N=(H —E) 4

(2. 21)

(2. 22)

(2. 23)

(2. 24)

P(H E) P4=P(H—E) Q(QMQ) 'Q—N, (2. 26)

which is a set of coupled inhomogeneous equations
with a given right-hand side. Any of Eqs. (2. 22),
(2. 25), or {2.26) are completely equivalent to (2. 16)
and (2. 1V); we use in our discussion (2. 25) and
(2. 26) interchangeably,

The theory of GVB follows from the observation
that the Q space is closed, so that

—(QGoQ) ' =Q(H —E) Q &0 (2. 2V)

for E below the lowest possible "resonance" ener-
gy. This can, of course, be relaxed as more
variational parameters are included in the esti-
mate of [Q(E —H) Q] '. Thus, for a set of square-
integrable trial functions QX„, we can write an
inequality

QG Q- QG, Q= QQX„)(D ') {QX =0, (2. 28)
n, m

Note that M and N are defined here without Q, al-
though they appear in (2. 22) with Q. We also
dropped P in PG P and P4' to stress the fact that
these functions can be obtained without the explicit
use of P. Similarly, we have for (2. 16),

P (H —E + (H —E) [Q(E —H) Q] (H —E) ) P4' = 0

(2. as)
or

P(H —E)P4'= —P(H —E) Q@ (2. 16) where D ' is the inverse of a matrix with elements
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(QX;, [E —H] QX,. ). When the asymptotic boundary
conditions (2. 14), (2. 15), and (2. 20) are used in
(2. 25), we obtain the scattering parameters

X —Xp-=h= (P-4, P(H —E)Go(H-E)P4'),

(2. 29)

(x. , IH -E]x.),
(X„, SX )

This will be discussed in detail in paper II. Thus,
we finally write (2. 33) as

whel e

X= —2m a. b= —2w(a, b, +a2bz)

X = —2va b = —2w(a&b~ +a&52 )

Equation (2. 29) may also be written as

(2. 30)

~& ~, =(e', [H E]g', [H E]e-'),
x-x, ,

with

y, =x +a, ,
P

(2. 37)

(2. 38)

(2. 39)

~=(Pe', P(H E) g'-(H E)Pe ),
h=(P@, P(H E) Q4-) =(QN, Q@)

A= —(Qq, MQ4)

where

e'=-(Ql(fQ) ' .

(2. 31a)

(2. 31b)

(2. 31c)

(2. 40)= —+ x.) ([l(f] ')„(x„.
n, m

In (2. 37), the Q operator has completely disap-
peared, and we simply dropped P, because (2. 18)
and (2. 19) can be rewritten completely in terms of
P; alone using the property (2. 12b). (2. 37) or
(2. 38) are the desired GVB. A trivial result of
(2. 37) is simply

So far, the results (2. 29)—(2. 31) are exact. How-

ever, the complexity of g makes it impossible to
evaluate ~, and we make here a variational esti-
mate of this operator.

Since the shift operator QSQ = Q(H- E)G (H E)Q-
in QMQ vanishes asymptotically, we expect the
continuum spectrum of QMQ to be similar to that
of QHQ. Thus, we can write

8 -8 g= —~QX.)[(Q&Q) ']. (Qx. -0, (2. 32)

and from (2. 3la) and (2. 32) we immediately have

6 ~ 6, = (QN, g, QN) & 0 (2. 33)

N=QN

The proof that

PM =MP=O

(2. 35)

(2. 38}

follows directly from the definitions of G and
P4 as given by (2. 18) and (2. 19). That is, the

properties (2. 34) and (2. 35) depend critically on

(2. 18) and (2. 19), so that, in order to preserve
the orthogonality properties (2. 34) and (2. 35), we
have to solve for P4 and G exactly. In general,
we expect then a critical cancellation between the
terms, e. g. ,

where possible subtraction terms are neglected.
This is the basic relation of the variational bounds.

The form (2. 33) is still not quite satisfactory,
since it cannot be used unless the Q operator is
explicitly known, and we have stated earlier that

such operator is not available for the reactions
(1.1). The crucial step in the derivation of GVB
is the observation that

(2. 34)

with

a, =o,

X~X =X (2. 41)

This relation (2. 41) is the coupled-static approxi-
mation and will be evaluated explicitly in this pa-
per, and the estimate of ~& will be described later.
The complication in (2. 39) due to the appearance
of the G can be avoided by the sum-rule technique;
this will be discussed further in Sec. III.

B. Resonances

In many of the earlier applications, ' the reso-
nance energies of e H and e He' systems were
variationally estimated using the operator QHQ,
where Q is known explicitly as Q =Q, Q, =Q, Q~.
The calculation involved is then essentially iden-
tical to the Ritz method for the true bound-state
problem, except for the orthogonalization of the
trial functions to both I', and P~. The shift effect
due to the coupling to the P space is then estimated
by the perturbation theory.

When the operator Q is not explicitly available,
the above procedure is not applicable, and we have
to use the operator M of (2. 23), where, as we have
seen in (2. 34), the shift operator S plays a major
role in keeping M in the Q space. It is also noted
that the energy E in M can be arbitrary, in so far
as the resonance-energy calculation is concerned,
but should be used consistently throughout M;
otherwise the orthogonality (2. 36) is destroyed.
Unless E is chosen to be equal to a particular res-
onance energy, the resulting shift on that energy
value may be only approximate. However, for
cases in which the shift is small and insensitive
to E, this problem is not critical, and one can al-
ways improve the situation to arbitrary accuracy
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by adjusting the value E. Thus, by diagonalizing
the energy matrix as

ymptotic behavior assumed in (2. 14). ] Similarly,
we have

we have the resonance energies

&n~=@D.+E .Q (2. 42)

Actually, this diagonalization also makes the ex-
pression of g, simple, as

(2. 43)

2

b~= +II'~ a,
j=1

Thus, from (2. 30) and (2. 29) we have

—2wga, lf„.a, & —2wga, Z~. aj+ a, .
$j fj

A special case is

11 11 ) 82 K22
P P

(2. 46)

(2. 47)

(2. 48)

where

X„=P A„" X

If we define an orthogonal matrix U with the cou-

pling parameter e as

(2. 44)

C. Amplitudes and Cross Sections

Unlike in the earlier calculation of the similar
type, g ~t will not have singularities at E = b @«as

long as E is taken below the lowest b „„because,
although X„are not entirely in the Q space, M is.
We then have

6, =Z„(N, X„)(E —ho )
' (X„,N)

U=
~

~cosa
—sine cose j

then

K= UKD U

where

t3ne, 0

(2. 49)

(2. 50)

The parameters b, in (2. 14) and (2. 30) are re-
lated to the reaction matrix K as

2

b, = QK, qag
j=i

(2. 45)

[This form is slightly different from the one given

by Bransden and Jundi, because of different as-

5, are the eigenphase shifts. It follows from (2. 48)
that

(2. 52)

but no direct bound on c is possible except in some
special cases. Explicitly,

cos e tan5&+ sin e tan62

cose sine (tanb, —tan62)

cose sine (tanb, —tan&&)

sin etang, +cos etang~
(2. 53)

We define the amplitudes for i-f reactions as

T~, = [K(1—iK) ']y, /k, , i,f= 1, 2 (2. 54)

with k, —= k and kz —=P. The cross sections for i -f
for L = 0 are then given by o&& with

oy; —4ml Ty, I (2. 55)

We have constructed the amplitudes in (2. 54)
from the Hermitian K matrix, and thus they satisfy
the unitarity constraints automatically:

a, , =4m/k';, i=1, 2 (2. 56)

Contrary to what one might expect, (2. 56) do not
give useful checks on the goodness of T« in the
present calculation, simply because we evaluate
these amplitudes from the Hermitian K matrix.
Only when the asymmetric K matrix from the ac-
tual calculation is kept, we expect (2. 56) to be
useful near the maximum of 0«.

So far, possible subtraction terms in (2. 37) have
been neglected completely. If there are a finite

number of eigenstates of the operator M below E,
then we have to include enough terms in the trial
functions such that the same number of 8„, lie be-
low E. This requirement is essential in main-
taining the inequality (2. 38), and thus places a
stringent condition on the trial function. Obvi-
ously, (2. 41) is immediately violated whenever
this condition is not satisfied and it will be of
major importance as we add the Q-space compo-
nent in 6, (paper II). It is especially important
to note that g„, dejend on E, so that the number of
required subtractions may change as a function of
E. The states generated by the operator M mani-
fest themselves as resonances only when any one
state coincides with E, while the rest of the states
may or may not be resonances. These points will
be discussed in more detail later.

III. COUPLED-STATIC APPROXIMATION

A. Coupled Equations and Kernels

In this section, we analyze the scattering equa-
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Pi (H —E)Pi 4i ———Pi (H —E)Pp @p

P, (H E)P-, e,'= P, (H-E)P-', e,' .

(3. 1)

(3. 2)

For the total angular momentum L = 0, we neglect
the Euler angles for the center of mass and take
the variable sets (r, , r, , 8) for the channel 1 and

take (s, R, W) for the channel 2 in analyzing (3. 1)
and (3. 2). For the Q-space effect, the set (r, , r, ,
s) may be more convenient, but one can also con-
veniently switch among the different sets during
the various integrations.

The coupled equations above have been studied
by Cody and Smith, by Cody pt al. , and by
Bransden and Jundi, ' so that we only sketch the
analysis in so far as it concerns our numerical
calculation. We write

P, &=t(o(r()Fg (rp)/rp,

Pp 4z —
yp (s) Fp (R)/R

(3. 3a)

(3. 3b)

tions (2. 18) in the coupled-static approximation
(CSA). This part of the problem is essential in

carrying out the GVB calculation. Using the prop-
erty (2. 12b) and Eq. (2. 11), (2. 18) can be written
as

Kip (rp, R) =Kpi (R, rp) =K(rp, R) (3. 6)

K (r„R)

1 1 1=8 d(cosy) —2 —k +2 ——+———
-1 7'2 S

d(p dpp ~
(3. 7)

K (rp, R) = 4 v"2

The ranges of k' and P' are given by (2. 10), with

the definition (2. 9). As expected, K is a, nonlocal
energy-dependent coupling kernel expressing par-
ticle rearrangement and nonorthogonality of chan-

nels 1 and 2. Owing to various singularities of
the integrand of K, care has to be exercised in

evaluating the integral in d (cosy). The resulting
R' has many points with discontinuous first deriva-
tives in x2 and R. By substitution of new vari-
ables, K can be rewritten in the form convenient
for numerical integration. After some algebra,
(3. 7) reduces to the form

1

dxe 1e I
—2-k' +—+—+-„gg2j 2 2 2 2

-1

with

gp (r, ) = /2e "&, yp (s) = 2 'e '~p,
where

—4 (2R +rg —SR''sx)
)x, s (3. 8)

Pp (cos8) = Po (cos ts) = 1

The projection operators are explicitly given by

P1 $0 (rl) f o ri"«i f' d («»8 ') (o (ri')

r, = (4R'+r', - 4R r,x)'",
s =2(R +r, —2Rr, x)"
x= cosy

= v'2e "& f o /2e "&r,'dr, 'f"P "P, sds/rp

(3.4a)

P, = yo (s ) f, s "ds ' f '
(dcso(u') yo (s ')

=rp f RdRK, p(r, , R)Fp (R) (3. 5a)

2

,
dR p +P Fp (R)=2R f p

drprpK(Rp, )rpF(rp)

(3. 5b)
where

(3.4b)

which satisfy the properties P;=P; =P';. [This
volume element makes 2w in (2. 30) unnecessary. ]
When (3. 3) are put into (3. 1) and (3. 2), and rele-
vant integrations are carried out (Appendix), we

obtain the coupled equations for F, (rp) and Fp (R)
as

d2
p+0 —2 ——+1 e "P Fi (rp)

A'2 ''P'2

Q. Iteration Procedure

Df =Bf (3. 8)

The main part of the effort in solving (3. 5) went

into the evaluation of K in the region 0 & x2, A
~ 32ao,.

pnce K is evaluated, we can solve (3. 5) for F;
and obtain b; from the asymptotic behavior of
scattering functions. Bransden and Jundi' solved
this set of coupled equations by first converting
them into a set of integral equations and then in-

verting matrices of the form [1-g,~K;&g,oK&&],

where g;Dare the Green's functions for the opera-
tors on the left-hand sides of (3. 5).

We decided to solve (3. 5) directly by an iteration
method, mainly because the inversion procedure
would limit the accuracy of solutions, especially
when long-range forces are involved as we put in
the Q-space functions. Unfortunately, the effects
of K on I"; weee very large, and the iteration series
did not converge very well. A special procedure
had to be devised, as explained next.

If we write an equation to be solved iteratively
simply as
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then the function f'"' obtained after the nth iteration
is given by the usual Born series, for n &1:

f(n) of&0) +g Bf(n 1)-

=a(f' '+dg' '+d0f' 'y ~ ~ ~ +d0f'0'), (3. 10)

with

Df' '=0, Dg()=1, d()=g()B

P, (II-E)PG,'P, =-P, ,

P, (H E-)PG,'P, = P-, ,

where

PG P=PG1 P1+PG2 P2

PG1 P1 =P1 G11P1+P2G21P1,P P P

G2 2 P1 12P2+ 2G22 2

(3. 14a)

(3. 14b)

(3. 15)

(3. 16)

and a is a fixed normalization constant.
Now, when the effect of B is very large, (3. 10)

may not converge, and we have the convergence
criterion'

llg0B II &1 (3. ii)
for all the strength eigenvalues of the operator
g()B.

A much better convergent series is obtained if,
instead of fixing the normalization at the origin
)'= 0 (slope of f) or at infinity (the free-wave part),
we require the function to be unchanged at r = r0,
where B is appreciable, or rather where goB is
large. That is, we adjust a'"' such that

f(n) f&n-1)

The resulting series is then given by

(3. i2)

f (n) u (n)f (0) g Bf(n-I)

with

(3. iS)

C. Green's Function Q

The Green's function G in the CSA is defined
by (2. 19), which can be written explicitly as

u (n)
[ (f(n-1) g Bf(n-1) )/f (0) ]

Since f'"' is not changed from f'" ", but can change
only in its slope in the region around xo, we ex-
pect the over-all behavior of f'"' to be more sta-
ble. This is born out by actual calculation, and
the procedure did converge well for (3. 5) with r0
over a substantial range.

Obviously, the above procedure is a generaliza-
tion of the usual method in which so= 0 or so= ~ is
used. Recently, Austern discussed a modified
procedure of the earlier theory by Sasakawa,
which seems to have an improved convergence in
the case of sho~t-range potentials. It is not clear
whether such procedure may also be applied to
the present case, where long-range interactions
are critically involved.

As usual, two independent sets of solutions PC
are needed to completely extract the K matrix.
The above iteration procedure gives two sets which
may not have the desired initial conditions a; prop-
er combinations are made at the end to adjust
these, but the essential point is, of course, to
get sets of convergent solutions.

It is obvious now that, as with PC, G may be ob-
tained without the explicit use of the unknown oper-
ator P. Of course, this point was essential in the
derivation of GVB in Sec. II.

The structure of G;; is extremely complicated,
and we do not evaluate G explicitly. In fact,
GVB does not require G in its full generality,
but always in the specialized form

(3. 17)Py„=G (H —E) X„

Therefore, instead of evaluating G directly, we
solve for the functions P'JJ„ for each given y„, as

P, (II —E)P 'JJ „=—P; (H —E) y „ (3. 18)

where Pg „satisfy the same boundary conditions
as G does. Equation (3. 18) is an inhomogeneous
version of (3. 5) and can be readily solved with the
same iteration procedure. Of course, in prin-
ciple, the right-hand side of (3. 18) should not come
in in the iteration convergence problem. How-

ever, if we start the iteration using P4 as the
zero-order solution, then the right-hand side dis-
turbs the solution sufficiently strongly so that the
series may not converge again. This problem can
be handled, however, by readjusting the value ro
and by scaling the right-hand side. These pro-
cedures will be discussed more fully in paper II.

IV. RESULT OF CALCULATIONS

e present in this section a summary of the
result of the analysis. The coupling kernel
K(x0, R) is described first, and for later applica-
tions, the wave functions I, of PC are given.
Evaluation of the reaction matrix R, eigenphases
5, , and the coupling parameter c, the amplitudes
T&&, and cross sections a'&& is given for all four
possible reactions i-f, with i, f=1, 2.

A. Coupling Kernel K(x2, R).

The Coulomb singularities 1/r, and 1/s in
(3. 8) persist in the x integration, resulting in the
discontinuity in the first derivative at values r2
=R and x2= 2B. For convenience of solution and
because of limitation of the available storage space
in the computer, we have taken the meshes in the
x2 and R variables as

n, =40, h, =0 1 0 0-&2~8-4-0
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n2= 20,

n3= 20,

h~ = 0. 2, 4. 0 - x2, R - 8. 0,
h = 0. 4, 8. 0 - x, R ~ 16.0

(4. l)

(4. 2b)
n4 = 20, k4 = 0. 8, 16.0- rg, R - 32. 0

with the total number of mesh points n = 101. Equa-
tions (4. l) seem to be the optimum choice, with
the expected accuracy in the final wave functions
and the K elements of better than three parts in
10 . Unfortunately, the discontinuity points in the
region with h, do not always fall on the mesh points
and had to be extrapolated (or interpolated), but
for other regions, the above choice guarantees
that all such anomalous points are on the mesh
points.

The dx integration was complicated by the occur-
rence of these singularities. The problem was
avoided completely by the clever transformations
of coordinates devised by Bransden and Jundi,
as

(4. 2a)

in the region ~;& —,'R, and

in the region xz & 2R.
The resulting K(rz, R) are given in its numeri-

cal values in Fig. 2 and Table I. The integration
is carried out using the seven-point Newton- Cotes
formula.

Evaluation of K took roughly 10 min for each en-
ergy value F.

B. Wave Functions p4

The integrations involved in the right-hand sides
of (3. 5) were performed using either the three-
or four-point Newton-Cotes formula, and the dif-
ferential operators on the left-hand sides were
treated by the Runge-Kutta fourth-order formula,
which allows ready change of interval sizes h&.
Starting with the plane sine waves, the solution
converged usually after 60-100 iterations, which
required approximately 5 min of computer time for
each energy value.

3,0
r R

2.0
2'

1.0

3.0 2.0 3.0 $.0

FIG. 2. Contour map of the coupling kernel K(~2, R) at E= —0.18 a.u. (k=0. 8). The lines ~2-—R and ~2
——2R denote

the discontinuities in the first derivative of the kernel.
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TABLE I. Values of the coupling kernel K(x&, R) at
several points of R for E=-0.18 a.u. (k =0.8).

y'2 R=0.1 R=O. 2 R=0.4 R=0. 8

0.0 1.676 28
0.2 3.10449
0.4 1.628 66
0.6 0.778 02
0.8 0.308 85
l.0 0.063 81
l. 2 —0.053 45
1.4 —0.100 42
1.6 —0.11065
l. 8 —0.103 23
2. 0 —0.088 69
2. 2 —0.072 52
2. 4 —0.057 37
2. 6 —0.044 33
2. 8 —0.033 65
3.0 —0.025 20
3.2 —0.018 66
3.4 —0.01370
3.6 —0.009 98
3.8 —0.007 22
4.0 —0.005 20
4.4 —0.002 66
4. 8 —0.001 34
5.2 —0.000 67
5.6 —0.000 33

2.483 64
3.844 15
3.476 37
1.703 15
0.710 24
0.18235

—0.076 33
—0.184 93
—0.213 91
—0. 203 81
—0.177 18
—0.145 99
—0.11612
—0.090 08
—0.068 60
—0.051 49
—0.038 21
—0.028 09
—0.020 49
—0.014 85
—0.010 70
—0.005 48
—0.002 76
—0.001 38
—0.000 68

2.726 10
2. 838 60
3.367 70
2.849 96
2. 352 86
0.895 13
0.143 42

—0.21276
—0.351 34
—0.376 28
—0.347 02
—0.296 38
-0.24153
—0.190 69
—0.147 15
—0.ill 61
—0.083 52
—0.061 83
—0.045 36
—0.033 04
—0.023 91
—0.012 33
—0.006 25
—0.003 13
—0.001 56

l.692 17
1.304 86
l. 047 44
0.98909
l.401 94
l. 208 97
1.023 60
0.867 02
0.745 03

—0.036 02
—0.37205
—0.480 13
—0.476 08
—0.422 38
—0.35244
—0.28276
—0.220 77
—0.168 95
—0.127 32
—0.09479
—0.069 87
—0.037 10
—0.019 24
—0.00980
—0.004 92

The position xo at which the wave functions I';
are fixed throughout the iteration can be varied
somewhat in the range 0. 6ao& so& 3. Oao, without
affecting the convergence property, and a slightly
different procedure has been used with so= 0. 9.
The effect of K on I"; is very large, and we show
the wave functions in Table II for k = 0. 8, for the
two independent sets of initial conditions

c = and 0 (4. 3)

The difference between these functions and
sin(km~) or sin(PB) is striking. Moreover, since
the calculation of K and PH was carried out at
discrete values of 4', it is important to examine
whether sharp variations in a small k interval
have been missed, such as those caused by reso-
nance states. One direct way to study this is to
check the variation of P4 as k and P are increased
and watch the change in the positions of nodes.
For complicated nonlocal energy-dependent cou-
plings such as what we have, it is not rigorously
proven that an extra node in the wave function is
a sign of the presence of a resonance. On the
other hand, the theorem on the relation between
the presence of bound states and the number of
nodes obtained for the local interaction is plausible
in most cases, and, in any case, a drastic change
will show up in the wave function.

The explicit values of K(xz, 8) at several sample

TABLE II. Solutions of the coupled equations in the
CSA listed for E=—0. 18 a.u. The two sets are nor-
malized according to (2. 14) and satisfy the initial con-
ditions (4. 3) ~

0. 2

0.4
0.6
0. 8
1.0
1.2
1.4
1.6
1.8
2. 0
2. 2

2. 4
2. 6
2. 8
3.0
3 ~ 2

3.4
3.6
3.8

0
4. 4
4. 8
5. 2

5. 6

6.0
6.4
6. 8

7. 2

7.6
8.0
8. 8
9.6

10.4
11.2
12.0
12.8
13.6
14.4
15.2
16.0
17.6
19.2
20. 8
22. 4
24. 0
25. 6
27. 2

28. 8
30.4
32. 0

P

0.0938
0. 2085
0.3375
0.4736
0.6096
0.7389
0.8556
0.9549
l.0329
1.0867
l. 1142
1.1143
1.0864
l.0311
0.9495
0.8433
0.7150
0.5676
0.4047
0.2302

—0.1360
—0.4947
—0.8099
—1.0494
—1.1885
—1.2124
—l.1179
—0. 9139
—0.6204
—0.2664

0.4785
1.0291
1.1695
0.8454
0.1857

—0.5481
—1.0652
—l. 1609
—0.7972
—0.1180

1.0936
0.7450

—0.6665
—1.1271

0.0204
1.1389
0.6326

—0.7763
—1.0777

0.1585

—0.0502
—0.0892
—0.1093
—0.1076
—0.0857
—0.0480
—0.0006

0.0503
0.0993
0.1423
0.1768
0.2014
0.2162
0.2219
0.2200
0.2120
0.1998
0.1849
0.1688
0.1526
0.1231
0.1001
0.0844
0.0743
0.0677
0.0624
0.0567
0.0496
0.0405
0.0295
0.0032

—0.0247
—0.0487
—0.0642
—0.0684
—0.0605
—0.0419
—0.0159

0.0129
0.0395
0.0682
0.0509

—0.0007
—0.0519
—0.0680
—0.0382

0.0174
0.0612
0.0638
0.0233

P
+1II

—0.1993
—0.4172
—0.6447
—0.8731
—1.0953
—l. 3059
—l.5013
—l.6794
—1.8389
—l. 9797
—2. 1018
—2. 2058
—2. 2922
—2.3619
—2.4156
—2.4540
—2.4780
—2.4884
—2. 4860
—2.4717
—2.4108

20 3133
—2. 1867
—2.0386
—1.8758
—l.7046
—l.5303
—l.3570
—1.1885
—l.0272
—0.7341
—0.4881
—0.2952
—0.1575
—0.0724
—0.0318
—0.0227
—0.0292
—0.0365
—0.0344

0.0038
0.0422
0.0263

—0.0235
—0.0379

0.0025
0.0396
0.0203

—0.0280
—0.0363

P
+2II

0.1674
0.3143
0.4324
0.5269
0.6138
0.7145
0.8511
l.0432
1.3052
l.6462
2.0687
2. 5704
3.1448
3.7812
4.4665
5.1856
5. 9222
6.6598
7.3820
8.0729
9.3016

10.2418
10.8126
10.9603
10.6578
9.9047
8.7254
7.1665
5. 2936
3.1881
l.3443
5.6364
8. 9325

—10.6514
—10.4899

8.4764
4. 9665
0.5799
3.9092
7.7081

10.7935
6.5932
2.0575
9.3195

—10.2908
4. 3157
4.5725

10.3744
9.1734
l.7803

points and the wave functions I'4 at k = 0. 8 are
supplied, since they may be of special interest in
the study of properties in the distorted-wave Born
approximation (DWBA). " It is well known, for
example, that the nonlocal interaction drastically
modifies the wave function in the interaction re-
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TABLE III. Elements of the reactance matrix K;&
in the CSA as functions of the energy. The off-diagonal
elements are given as they were determined numerically
from the asymptotic forms of the solutions. The asym-
metry indicates the degree of accuracy of the calculation.

TABLE IV. Eigenphase shifts and coupling parameter
in the CSA. The symmetrized K,&

are used in the
P

diagonalization.

gP
2

0.725
0.750
0.775
0.800
O. 825
0.835
0.850

K

—0.310
-0.322
—0.335
—0.346
—0.360
—0.359
-0.367

K~
12

—0.002
—0.006
—0.014
—0.036
—0. 270
+0.402
+0.106

K~
21

—0.002
—0.005
—0.013
—O. 035
—0. 266
+0.397
+0.104

0.750
1.485
2. 643
5.475

—32.434
+44. 314
+10.290

0.725
0.750
0.775
0.800
O. 825
0.835
0.850

-0.301
—0.312
—0.324
—0.333
—0.344
—0.347
—0.353

—0.643
—0. 978
—1.209
—l.390
—1.540
—1.593
—1.668

0.004
0.005
0.006
0.007
0.008
0.009
0.010

gion. The anomalous behavior of I'z 4z in the
first set, for example, indicates that it is not
clear whether local effective potentials one often
introduces to fit the elastic cross sections can
also accurately reproduce P4 . It will be inter-
esting also to clarify the role of the elastic wave
functions in the T» amplitude in DWBA.

C. Scattering Amplitudes and Cross Sections.

Two independent sets of solutions P4 obtained
with different initial conditions a give b; 's, which
are diagonalized using (2. 46) to obtain K;, . Since
K» and K» can be obtained independently, the pro-
cedure gives an excellent check on the numerical
accuracy involved and also on any possible asym-
metric errors. We.give in Table III the values of

K&; without arbitrary symmetrization. The off-
diagonal elements are small and their accuracy
poor, especially for k near the threshold. As will
be seen in paper II, this situation will changedras-
tically as we include the effect of the Q space, so
that the inaccuracy of K&, at this point is not so
serious.

Diagonalization of the K matrix gives the eigen-
phase shifts 5; and the coupling parameter e

from (2. 50) and (2. 51). These are reported in
Table IV. Using (2. 54) and (2. 55), corresponding
amplitudes and cross sections are evaluated and

given in Tables V and VI. Owing to 5~ going
through —2m at k'= 0. 830, 0» nearly saturates
the unitarity limit of 4m/P at that point. Contrary
to what one may expect, a near saturation of this
limit does not reflect the accuracy of the calcula-
tion, as we arbitrarily symmetrized the input K
matrix. Rather, it simply shows that the unitari-
zation oi the amplitudes with (2. 45) is done cor-
rectly for a Hermitian K . If we used the asym-
metric K in the evaluation of azz, the limit may
have been violated.

The variation of K around the value 0 = 0. 830
is violent, and K&2 goes through infinities. How-

ever, the eigenphase shifts 5; and T~, , as well as
az» are all very smooth in this region. Also, by

V. DISCUSSION

The solutions oi (3. 5) in the CSA provide the
starting point for a more complete treatment of
the reactions (1.1) by the GVB method. The re-
sult reported here agrees well with that obtained
earlier by Bransden and Jundi, ' with some im-
provements in accura. cy. Although (3. 5) is the
simplest approximation possible for this com-
plicated problem, K and PC obtained here are
probably the first rigorous treatment by the GVB
of the three-particle rearrangement collisions,
with the full effect of nonlocality and energy de-
pendence taken into account.

The calculation reported above falls short of a
complete solution, obviously because we have ne-
glected the effect of the Q space. Physically rich
dynamics is contained in that part and the GVB
would allow a consistent treatment of this distor-

TABLE V. Scattering amplitudes in the CSA for all
four processes of the two-channel system. By con-
struction, they are properly unitarized.

0.725

0.750

0.775

O. 800

0.825

O. 835

0.850

yPfi
—O. 390

+ i 0.121
—O. 380

+ i 0. 126
—0.389

+i0. 130
—0.386

+ i 0.133
—0.385

+ i 0.138
-0.383
+i0. 139
—0.381

+ i 0.141

TP
2i

—0.001
+ i 0.001
—O. 001

+ i 0.004
—O. 000

+ i 0.006
+0.001

+i 0.007
0.003

+i0.009
0.004

+i0.009
0.005

+ i 0.010

z P
12

—O. 003
—i 0.005
—O. 002

—i 0.008
—0.000

—i 0.010
+0.002

—i0.011
0.004

—$0.012
O. 005

—i 0.013
O. 006

—i 0.013

P
T22

—2. 120
+i 1.590
—1.310

+i 1.946
—O. 738

+i 1.950
—0.334

+i l. 829
—O. 051

+i l. 662,
+0.036

+i l.591
0.144

+ i l.485

examining the behavior of the wave functions, we
have concluded that the point k = 0. 830 does not
show a compound resonance with the phase in-
creasing rapidly by m, but merely an antiresonance
with 62 slowly decreasing past —z n, in accordance
with the Wigner's theorem.
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TABLE VI. Scattering cross sections in the CSA at various E(or k) for the zero total angular momentum. The uni-
tarity limits for the elastic scatterings are also given.

0.725
0.750
0.775
0.800
0.825
0.835
0.850

P

2.096
2. 103
2. 115
2.093
2.097
2.090
2.077

OP
21

0.0000
0.0002
0.0004
0.0007
0.0011
0.0013
0.0016

P

0.0004
0.0008
0.0012
0.0017
0.0021
0.0023
0.0026

88. 24
69. 17
54. 62
43.43
34.75
31.84
27. 97

U
ii

23. 91
22. 34
20. 92
19.64
18.46
18.02
17.39

245. 20
100.53
62.44
44. 88
34.79
31.86
28. 24

tion effect in a variational way, with the bound

property (2. 38). A variational estimate of the
resonance energies which lie below the first ex-
citation threshold of hydrogen may be made at the
same time. From the earlier study made by
Bransden and Jundi using phenomenological polar-
ization potentials, we expect that the effect of the
Q space will be very large, especially on the elas-
tic cross sections 0» and 0». This problem will
be reported on in detail in paper II of this series,
again for the zero total partial wave.

In addition to the Q-space effect, some further
work is required to calculate the contributions
from the higher partial waves. Few lower partial
waves are known to contribute significantly to total
cross sections. ' This extension is in progress,
again using GVB. It would also be of interest to
solve the reactions (1. 1) in the Faddeev formal-
ism, and a convenient theory has been given in
the form of the reduced matrix equations with ef-
fective interactions F;. Here, the solutions in the
direct-channel distortion approximation with local
potentials Y; are being obtained and compared
with the solutions of the GVB approach.
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APPENDIX: COUPLED-STATIC EQUATIONS

The coupling terms in (3. 1) and (3. 2) are rather
involved to evaluate because of the particle re-

arrangement. If we define
1 2h„= ——,Vr, —1/r, , h, =- Vs —1/s (Al)

and drop the common factor 2' e "~, then P,
(H —E) P, +, becomes

r, dr, f, d (cos8) go(r, )

x (- —,
' v'-, + V, +n, E) q, (s)-F,'(R)/R (A2)

Using the coordinate transformation

r, dr, d(cose) =8R dRd (cosy)

with r2 fixed, we obtain by partial integration

J, =8 f R dR f d(cosy)tID(r, ) yo(s)

x(- 4 v-„+ V2+Eo ' —E) F~ (R)/R

= 8 f R'dR f d (cosy) Fz (R) R '

x (--,' V'-, +V, +E,"'-E)y, (r, ) q, (s)

= ~ f RdREa (R)K)3(r2, R)

where

(A3)

(A4)

K,2 (r2, R) = 16 f, d (cosy) (- —,
'

V-„+V2+Eo" —E)

x (0 (r1) 9 p (s )

2
Now, the V R term can be written as

V-„[(0(I2R —ra I) yo(I 2R —2r, I) ]

(A5)

= 44o (r&) V- yo (s ) + 4+0 (s ) V- g 0 (r, )

+8v- 0()(r, ) v qo(s)., . (A6)

J2= f, s ds f d (cosv) pro(s)

so that (A5) reduces to (3. 7) when explicit forms
for g, (r, ) and yo(s) are used. For the coupling
term in (3. 2), we again drop the common factor
~ exp( —,s) and obtain for P2(If —E) P, 41, ,
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1x(- 2 V- +h„+ V, —E)yp(r, )F, (rp)/rp . (A~)

Using the coordinate transformation

s ds d (cos~) = 8rpdrpd (cosy) (A8)

with R fixed, we obtain by the partial integration

d, = 8 f, r', dr, f, d (cosy) yp (s) qp (r, )

&& (-,V- + Vl+Ep —E) F1(rp) /rp
12

x gp (ry) 0'p(s)
2

The V- term in (A10) may be written as

V; r(p ( I 2R —rp l) yp (12R —2rp I ) j

(A10)

2 2= 4(p (ry) V pp (s) + pp (s) V (p (rg)

where

K» (R, r, ) = 18 f, d (cosy) (- & V- + &q + Ep" —E)

= 8 f rpdrp f, d (cosy) F, (rp) r, ' (p (rl)' V8 Vp (s) (All)

)& (- p V +Ep + Vy —E) t|Ip (ry) pp (s) which again gives the exactly same forms (3. 7)
and (A5). Thus, we have

-=—,'
f, r, dr, F, (r,)K»(R, rp) (A9) +21 (E rp) +12 ( 2 E) +(r2 E)
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