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The problem of electron-atom scattering in the energy range where both high- and low-
energy methods are unreliable is considered. A previously proposed equation is made trac-

table by a separable approximation on the electron-electron correlation function.

This results

in a pair of coupled equations in which all inelastic channels are lumped into one effective one.
The equations are then reduced to a tractable form by some drastic approximations and solved
by an eikonal approximation. The results are good in a restricted angular range, and the
restrictions are shown to be due to the “drastic approximations” and the eikonal approximation,

neither of which is really necessary.

When a particle is scattered by a target with in-
ternal degrees of freedom, the energy scale can be
set in terms of an average excitation energy of the
medium. When the incident energy is smaller than,
or of the order of, this excitation energy, so that

only a few channels are open, then there are reliable

calculational methods for obtaining scattering am-
plitudes.
atom scattering the close coupling method® or its
modifications? gives good results with a reasonable
expenditure of computing effort when only a few
channels are open. As the energy goes up and the
number of open channels increases, the amount of
computing time necessary for any given accuracy
of the results becomes prohibitively large.

At high energies the Born approximation or its
modifications® give good results, but as the energy
is lowered approaching, say, ten times the scale
energy, these methods also become less reliable.
There is then a large energy region where there is

For example, for the problem of electron-

a need for more reliable methods.

Chase® seems to have been the first to have sug-
gested an approximation in which the target parti-
cles are frozen in a given configuration, and then
the amplitude for scattering from this configuration
is calculated. If we denote this amplitude for scat-
tering from P; to P; by f(P;, P;; X), where X rep-
resents the (fixed) coordinates of the target parti-
cles, then the theory gives a result for the inelastic
(or elastic) scattering amplitude:

fn'!n(PfaPi)=f(dX)(p:‘(X)f(PfyPi;X)(Pn(X)y (1)

where the ¢ (X) are the target wave functions. The
method has been generalized,® so that not all the
target degrees of freedom have to be treated by this
approximation, This is particularly useful in elec-
tron-molecule scattering where rotational and elec-
tronic degrees of freedom have widely different
time scales (or energy scales).
This is a high- or intermediate-energy method ,
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and the corrections to it become important as the
energy decreases, It is however a better approxi-
mation than would seem justified at first sight.

This may be explained as follows. There are two
collision times involved: the duration of the colli-
sion with the entire target 7, and the duration of the
collision with a single particle 7,. For many cases
T, < 7,. The approximation seems to be one in
which the motion of the target particles during 7,

is neglected, This is not completely true. For ex-
ample, if in the multiple scattering of the projectile
on the target particles it escapes before returning
to a previously struck particle, the fact that the
target particles move during 7, (but not 7,) is not
important, Thus the approximation may be des-
cribed as one neglecting the motion during 7,, ex-
cept for corrections introduced by the projectile
scattering twice or more off the same target parti-
cle during 7,.

Recently, Foldy and Walecka® have discussed this
model with the additional assumption of separable
two-body potentials. This allows an essentially
analytic solution for f(P;, P;; X). For more real-
istic cases it is difficult to obtain this function with-
out additional approximations,

Some simple approximations yield previously
obtained results, For example, if one obtains from
the single-particle equation (for the frozen target)
f(P;, P;; X) by first Born approximation, then Eq.
(1) is just the usual first Born approximation. If
one obtains f(P;, P;; X) by an eikonal approximation,
then Eq. (1) is the same as the Glauber’ approxi-
mation, Thus the Glauber approximation may be
viewed as just an eikonal approximation in Chase’s
model,

At the energies in question here, one can investi-
gate cross sections for excitation to particular
states, elastic, or total cross sections, Since ex-
citation cross sections are probably the most de-
manding of the theory, we avoid them here. On the
other hand, total cross sections are not very criti-
cally dependent on the theory. We therefore look
at elastic scattering to begin with,

Experience in nuclear scattering shows that even
a small imaginary part of the potential may have
large effects in the cross section. The equivalent
potential for elastic scattering has an absorptive
part, but this has been neglected previously in at-
omic scattering, We attempt to include it here,

It has been shown in electron-atom scattering® and
in nuclear-nucleus® scattering that the Pauli Princi-
ple is negligible at higher energies. We neglect it
here. This is probably the most serious error in
the theory and the most difficult to correct. The
elastic scattering part of the wave function can be
obtained from®®

P<E—H—HE o H>P¢=o, (2)
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where P projects onto the target ground state and

Q is its complement. There are open channels in
the @ part of space so that the propagator (E +in
—QHQ)™! has an absorptive imaginary part. If we
neglect the coupling of the projectile to the target
to the extent that it can cause transitions in the tar-
get, then this propagator may be approximated by

Q@ .5 A% Yy, )0, ()X ()EEGT)
E+in-QHQ .5 ] @1 pP=k*+Wo-W,+in

®)
Here the &,(x) and W, are the target wave functions
and energies, \I/,ﬁf,’ are projectile wave functions in
the potential presented by the target in the nth state,
and p? is the incident energy. The essential approx-
imation now is to neglect the excitation energy of
the target relative to the incident energy. Thus the
pole in the % integration which occurs at

k=x[p? + (W, - W,)]? 4)

is taken at +p. This is precisely the approximation
which, when made in the Lippman-Schwinger equa-
tion for the wave function, yields Chase’s model.
Note that the approximation is made here in the
equivalent potential instead. In addition, we neglect
the n dependence of the ¥, in effect neglecting the
difference of the scattering potentials in the various
target states. The fact that the kinetic energy of
the projectile is large in the intermediate state
should make the propagator insensitive to the poten-
tial in which it propagates; we shall choose it below
for convenience.

The sum over » can then be done by completeness,
yielding a result for the equivalent potential in Eq.
(2) which then yields an equation for the elastic wave
function

P¥=,(x)¥,(7) (5)
of the form

(P2 =T V)] ¥, (r) ~ [ d%' Glr, ") Alr, 7")¥,(r") =0,

6)

where V is the static potential of the ground state:
Vo) = [ (ax)| @)|? v, X) (7)

and V(r,X) is the interaction of the projectile with
all the target particles. The function A is given by

Alr,7") = [ (dx)dx") &% x)Vir, X)[6(x, x*)

-3 (x)B¥ (") V', X)do(x") . (8)

In this form its relation to the electron-electron
correlation function in the atom is evident. It will
be discussed further below. G is the propagator
for the projectile in the average potential of the tar-
get.

The last term of Eq. (6) came from the @ part of
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the space in Eq. (2). It is well known that this term
in Eq. (2) also yields the »~* polarization potential
in the adiabatic limit. It is also well known that

the » at which the adiabatic limit becomes applica-
ble gets larger the larger the energy.!? Since we are
interested in moderately high energies, here the
7% 1ocal form of the potential is only applicable at
distances where it is negligible, so its omission is
unimportant here.

This form has been suggested earlier,'?but it pre-
sents serious difficulties, the most obvious of which
is that for Coulomb interactions the total neglect of
Wy~ W, in the denominator of Eq. (3) yields a spuri-
ous long-range interaction which gives a logarith-
mic divergence of the cross section in the forward
direction. This may be avoided by replacing W,

— W, by some average excitation energy A, a pheno-
menological parameter. The result in the cross
section is to replace the In(g) dependence in the am-
plitude (g is the momentum transfer) by 5 In(g%+A?),
so that the modification is important only in the
small angular region given by ¢®< A%, A more ser-
ious difficulty presents itself in the solution of Eq.
(6). We anticipate its use for intermediate energies
where eikonal or WKB techniques are usually use-
ful. However, the nonlocal potential in (6) is rapid-
ly varying (because of G) so that these methods are
not applicable. Even a partial-wave decomposition
is cumbersome because of the vector dependence on
v and #’ of both G and A. All this has so far pre-
vented a numerical solution of (6).

We now return to a discussion of the function A.
After the neglect of the excitation energy in the de-
nominator of (3), the sum can be performed by com-
pleteness.lz’13 However, we need not allow all exci-
tations into the intermediate state. For example,
in the problem of electron scattering by a heavy
atom, completeness would include excitation of the
inner electrons. One would have to go to very high
energies before such excitation energies were neg-
ligible. Instead, one could limit the sum over in-
termediate states to ones in which the core of the
target is frozen and only the outer electrons are
allowed to excite. This presupposes a product form
for the target wave functions, which is usually as
good as one can do anyway. This is entirely analo-
gous to the remarks made above in relation to the
generalization® of Chase’s model* where not all
degrees of freedom are “frozen.”

We use these ideas for electron-helium scattering
as follows: Let us limit the intermediate states in
(3) to single-particle excitations only. In addition,
we assume that the excitation and deexcitation
takes place fast enough so that the spectator elec-
tron cannot relax. The intermediate states then
take the form

B (1, %) = 272 (g, (x,)go (%) + 2o (x1)g,(x5)] ,
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where g is ideally the Hartree-Fock ground-state
orbital of He and the g, are some complete set of
orthogonal orbitals of which gy is a member. Note
that this is not a good approximation to the excited
states of He, but is instead dictated by intuition as
to what kind of excitations will be important. It is
not difficult to modify this step and, indeed, a simi-
lar approximation is available for more complicated
atoms, so that the method is in no way restricted

to simple targets. The function A may now be re-

written as s
Alr, 'r')=8( E—%—s(r)s(y’)) , (9)
2
s(7) :f%_—g—%(lﬁ) . (10)

Equation (9) is still no further toward solution of
(6). The first term in (9) is still not analytically
obtainable for even the simplest form of g,. How-
ever, A is not a very startling function. It is pos-
itive, everywhere finite, symmetric, and vanishes
as -2 for large ». With the hope that the results
are not critically dependent upon the detailed form
of A we make a separable approximation for A:

A, ) =0(r@G"), (11)
where we may reasonably choose
v(r)=[Al, 7). (12)

Note that this is not a separable potential approxi-
mation; correlation between » and 7’ is still con-
tained in G. It is rather an approximation replacing
all the inelastic channels by one average one as

will be clear below, '

The propagator G has not been completely speci-
fied. We chose it for convenience by using the
ground-state static potential V; as the one occurring
in G. This is not very physical, but we anticipate
that its choice is not very crucial. With these ap-
proximations (6) can be rewritten as

(2= T-Vo)¥() - o(r) [Glr,r Wr)¥e)d*r" =0 .

(13)

We define
A7) = [Glr, W) ()’ (14)
X, (r)=¥(r)t (), (15)

so that (13) may be rewritten as a pair of uncoupled
equations:

[PP=T—-(Vyxv)]X, =0. (16)

Note that the choice of V; in G results in the uncou-
pling of the two equations, but it is an inessential
approximation when we admit the possibility of nu-
merical solution of the coupled differential equa-
tions.
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The potentials in (16) are real and central, so
that standard methods may be used to obtain the
scattering amplitudes f, or the real phase shifts
01,. The elastic amplitude which we set out to ob-
tain is then obtained from

f=3(f+1.), (17)
and the phase shift from
@210 = L (2101 4 o2101.) (18)
Note that both 6,, are real but the §, is not and
Imé, =~ Incos?(6,, - 6,.) 20, (19)

so the process is absorptive as it must be. Return-
ing to Chase’s model for the moment, the elastic
scattering phase shift is obtained from

2181 =f(dx) Iq)o(x) IZeZiGI(X) , (20)

which is a generalization of (18), in which the aver-
age over two terms, *, has been extended to a
weighted average over a continuous number of
terms. Again, the absorptive result Im§, >0 is im-
plied by (20).

An eikonal approximation for (16) is straightfor-
ward, yielding

F(Py, Py)=~ip [ bdbJo(gb){e 1"

x cos[uy(0)/p] - 1}, (21)
q=P;- P, ul(b)=f0°° ak Vylr) ,

up(b)= [ dkolr), ¥=0+£3)2. (22)

The effect of the absorptive potential is solely in
the factor cos[u,(®)/p]. I we chose the simplest
variational approximation

golx)=(a/m¥e™; a=% | (23)
then

Vo)== (4/7)e?"(1 +ar) , (24)

sr)=(1/7)1-e" " (1+ar)] . (25)

v(7), given by (12), can be expressed in terms of
Lommel functions, but its computation seems un-
warranted in view of the approximation of Eq. (11).
Instead we fit a simple function to (12) by noting
that

v(0)=a ,

1i (7')3@1+9 1 as ¥ =
IO ==" YR a%t :

A function which reproduces this is

a C
v(r)= (7,2+ﬁ2) + (7'2“’32)2 ’ (26)

BE=22a*(1+y),
c=8a"y(1+y),
with
y=(1+%v2)%=1,32.
The functions u, and #, are then obtained as
u, = — 4[Ky(2ab) + abK,(2adb)] ,

27
up=V2 10 0%+ BV fen(d?+ 87V

The remaining integral in f was carried out nu-
merically for several energies and angles with the
results displayed in Figs. 1 and 2. The experimen-
tal iisata are those of Vriens, Kuyatt, and Mielczar-
ek.

The most obvious feature of the results in the
large peak in the theoretical cross section at small
angles, well abovethe experimental one, We attrib-
ute this to the logarithmic divergence of (21) in the
forward direction. An estimate of the angle below
which this error becomes important can be obtained
from the relation ¢ <A, where A is the “average
excitation energy” mentioned above. Taking this
as about 1. 5 Ry, one obtains angles of about 10°
for 300—-400 eV, which fits well with Fig, 1. At
larger angles the fit with the data is reasonable at
the higher energies shown here (200 eV and above),
but there is a tendency for the agreement between
theory and experiment to worsen as the angles in-

= =—-— — EXPERIMENT

THEORY

deo’
1.0 -
0.8 -
0.6
0.4 |
0.2

0 1 1 1 1 1 L
0° 5° 10° 15°  20° 25° 30°

Scattering angle

FIG. 1. (do/dw) 1/a} versus angle. The energy in eV
is shown next to each curve. See the text for the meaning
of A=1 or 0.
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L L L
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FIG. 2. (do/dw) 1/a} versus angle. The energy in eV
is shown next to each curve.

crease. This may be attributed to a breakdown of
the eikonal approximation to Eq. (16) at larger an-
gles. At the lower energies in Fig., 2, the regions
where the spurious logarithmic singularity is im-

portant and where the scattering angle is too large
overlap, and the theory is totally unreliable.

In Fig. 1 we have also shown the result in which
the inelastic channel is eliminated at only 400 eV,
This result is just that obtained from an eikonal ap-
proximation on the static theory. It is clear that
absorption is an important effect in elastic scatter-
ing.

There are many approaches for improving the ei-
konal approximation'® at large scattering angles.
Unfortunately, they all sacrifice the simplicity of
Eq. (21) and result in multiple integrals instead.

It therefore seems reasonable to abandon the approx-

imate solutions to the uncoupled Egs. (16) and in-
stead solve the coupled equations which result from
Eqs. (13) and (14). These are
p2- T = Vo)¥(r) —v@@)(r)=0,
@2~ T-VA@)-vl)¥@r)=0,
where p?=p% - A and V is the average potential ap-

pearing in the intermediate-state propagator G.
The inclusion of the phenomenological parameter A

(28)

will eliminate the logarithmic divergence in the for-
ward direction, and the potential ¥V may consistently
be set equal to zero. The resultant pair of coupled
equations may then be solved with the aid of a par-
tial-wave decomposition and a fast computer. In-
deed, at this stage one can think of improving the
separable approximation (11) to A. A simple gen-
eralization which seems reasonable is

Alr, v =v@)w@’) +ulr)r. v’ ulr’), (29)

which results in three coupled equations rather than
the two of Eq. (28). These calculations will be de-
scribed in a later publication.

Finally, we remark on Chase’s model. The func-
tion f (P, P;; X) is not obtainable exactly except for
electron-hydrogen scattering, in which case it can
be obtained as the amplitude for scattering from an
extended dipole. This case then provides a unique
situation for checking some aspects of the Glauber
approximation. This will also be discussed subse-
quently.

The content of this paper may be summarized by
listing the approximations made.

(a) The Pauli Principle between the incident and
target particles is neglected.

(b) The state changing coupling between target and
projectile is neglected in the propagator (E - QHQ)™
of Eq. (2). This may also be viewed as a second-
order evaluation of the equivalent potential, 1213

(c) The excitation energies are replaced by an av-
erage value A and the potential in which the projec-
tile propagates in the intermediate state is made
independent of the target state. This allows some
completeness evaluation of Eq. (3).

(d) The Function A is replaced by some separable
superposition such as (11) or (29) which makes the
nonlocal rapidly varying Eq. (5) equivalent to a set
of coupled local differential equations.

(e) The separability is specialized to one term, A
is set equal to zero, and the potential that the pro-
jectile sees in the intermediate state is set equal to
the static potential. This allows the decoupling of
the pair of differential equation.

(f) The eikonal approximation is used to solve the
equations,

We have tentatively attributed the deviation of the
theory and experiment at large and small angles
and low energies solely to approximations (5) and
(6), neither of which are really necessary and both
of which will be removed. The first three approx-
imations seem absolutely necessary to yield any
remotely tractable form for the theory. However,
the fourth may not be necessary, that is, Eq. (6)
may yet be solvable,
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Total cross sections for single-electron capture by C* from the target gases He, Ne, and
Ar were measured at laboratory energies between 400 eV and 40 keV. The fast-collision
products that scattered less than 1° were charge analyzed after single collision in a gas cell.
Experimental results are interpreted in terms of pseudocrossings of the adiabatic potential

curves for the initial and final states.

The cross sections for C** +He and C* +Ne are con-

sistent with the second maximum predicted for distant pseudocrossings by a numerical so-

lution of the two-state semiclassical approximation by Bates, Johnson, and Stewart.

Elec-

tron capture with an Auger-type ionization of the target is exothermic for C**+Ne and
C* +Ar and is considered as the explanation of the large (50 A2 and slowly varying cross

section measured for C4* +Ar.

I. INTRODUCTION

Low-velocity collisions between heavy particles
frequently are described by the adiabatic potential-
energy curves of the quasimolecule formed by the
colliding atoms. The adiabatic description is ap-
propriate when the relative velocity (V) of approach
is small compared to the orbital velocity of internal
electron motion, An electron transfer between col-
lision partners is viewed in this model as a transi-
tion between states of the quasimolecule in a region
of internuclear separation (R) where the adiabatic
potential curves for the states are sufficiently close
for an appreciable transition probability to exist.
Collisions of multiply charged ions with neutral
atoms are particularly interesting because the phe-
nomenon of pseudocrossing of the adiabatic poten-
tial-energy curves significantly effects the transi-
tion probability.

The dominant process in multiply charged ion-
atom collisions is usually single-electron capture,
e.g.,

C*+He—~C¥+He'+ AE, , (1.1
where AE; is the energy defect between the ith pair
of initial and final states at infinite R. In the pres-
ent experiment, a beam of C* ions was directed
through a thin gas target under single-collision con-
ditions, and the fast-collision products were sepa-
rated and measured according to their charge. The
ratio of C* to incident C* (ground state) provided
the total cross section for single-electron capture
without regard for the excitation state of the prod-
ucts. Since the relative collisions velocities were
in the range of (1-8) x10" cm/sec, consideration
of the adiabatic curves is appropriate. [For a car-
bon projectile, we have Ei/Z=25,2Vy, where E,,
is in eV, and Vj in units of 107 cm/sec. ]
Potential-energy curves for process (1.1) that
include only the target polarization in the initial
state and the Coulomb repulsion in the final state
are good classical approximations for R 2 2. 5q,.
If AE is positive (exothermic) and the states have
the same symmetry, their adiabatic potential curves



