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Faddeev equations together with the Coulomb t matrix have been used to determine the as-
ymptotic amplitude for electron capture from neutral hydrogen by fast protons. The results
show that in the high-energy limit the capture cross section should go down as v, whexe e
is the velocity of the incident proton. The capture amplitude is identical to Drisko's second-
Born-approxixnation calculation except for a complex energy-dependent phase factor which
ultimately appxoaches unity with sufficiently high incident energy. The major contribution to
the three-body capture amplitude can be shown to come fxom the on-enexgy-shell two-body
t matrix, ln agreement with geDerR1 theorems coneerDlDg scattering fx'om coInplex systeDls ~

At high incident energies, the on-energy-shell contribution to the capture amplitude (not the
eloss section) will deereRse Rs 8, while the off-energy-shell contlQUUID coQtx'lbutloQ will
decrease as e . The contributions from the sum of the infinite number of two-body bound-
state poles can be shown to convexge, and the sum can be explicitly performed at high enough
incident energies in all except the forward direction. The bound. -state contributions to the
CRpture amplitude go dowD Rs 5 ~ which is xnuch less thRQ the coDtiQUUIQ coQtrlbUtlons.

I. INTRODUCTION

Most of the recent investigations in the asyrnp-
totic behavior of electron-capture cross section
from hydrogen at high energies involve the use of
either some kind of Born and distorted-wave ap-
proximation ~ or the impulse approximation. The
approximations usually consist of a Neumann type
of iteration of an integral equation whose kernel
contains d1sconnected diagrams» Moreover~ the
convergence of the Born series for rearrangement
three-body scattering has long been questioned.

lt is the purpose of the present paper to investi-
gate the asymptotic behavior of electron capture
with Faddeev's equations. 6 Other than the obvious
advantage that the kernel of this equation does not
contain disconnected diagrams and an iteration of
such an equation may well converge in the same
sense that a Born series converges for sufficiently
high incident energies in two-body scattering, there

is the additional advantage that the Coulomb two-
body t matrix7 is known in closed form. %6 shall
make use of some of the high-energy-approximation
techniques developed by Drisko' for the Born series
which also happen to be applicable to the Faddeev
series. To be specific, we shall consider the
following reaction at high incident energies:

P+ H(ls) -H(ls)+ p.
In the following, we will develop the general

formulation and introduce the coordinate system
as well as the notation in Sec. II. Vfe shall use
I ovelace's formulation for the three-body scatter-
ing, which is more convenient for our purpose than
the original Faddeeve equations. In order to facili-
tate comparison with previous results fol the
reader, we shall use the same notation as those
used by I ovelace, by Drisko, ' and by Mapleton
wherever possible. The actual integral equation
used, as well as the series expansion, will also be
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developed in this section. It will be shown that if
we make use of Mott's theorem and neglect the
px oton-proton interaction, the coupled integral
equations x'educe to a single integral equation. For
the remainder of this paper, we shall be concerned
mith only tI:is equation. Actually, me can shorn
that there mill be tmo integral equations mhich are
identical on the energy shell but have different
analytical continuations off the energy shell. If a
Neumann iteration of the two solutions is made,
then the first terms correspond to the prior and
post first Born matrix elements, which are, of
course, equal on the energy shell. The second
terms correspond to the second Born approximation
with the initial and final-state partial Green's func-
tloQS, Each of the higher-order telnls can be iter-
ated to give a Born-type series, although the con-
vergence of such iterations is open to question.

In Sec. III we shall show that the second term in
our iteration in the high-energy limit corresponds
to Dl'lsko s and Mapleton 8 l'esult except for a
complex energy-dependent phase factor, which
eventually approaches unity as the incident particle
velocity increases to sufficiently high values. We
mill also be able to shorn explicitly that the princi-
pal contribution to the total cross section comes
fxom scattering angles at which the tmo-body t
matrix is on the energy shell.

In Sec. IV, me shall consider the tmo-body bound-
state contx'ibutions. Since there are an infinite
number of bound states, some speculation has been
raised over whether this contribution will be finite.
Within the limits of our approximation, me will
show that the infinite sum over the bound-state con-
tributions mill not only converge, but in the high-
energy limit me can actually perform the sum ex-
plicitly. Furthermore, the contribution from
these bound states mill go down with energy much
more rapidly than the continuum states and hence
cannot be slgnlflcaQt at, high enough lncldent eQex'-

gies. In the special ease of resonant symmetric
capture given by Eq. (1), the bound-state contribu-
tions diverge in the forward direction. If, however,
the incident particle is a deuteron, or, if the final

unperturbed state is not identical mith the initial
unperturbed state (for example, an excited state),
then no such divergence occurs and the entire
bound-state contribution remains small in compari-
son mith the continuum-state contributions at high

energies.

3+(12)-2+(13). (2)

II. GENERAL FORMULATION

We consider an incident ion 3 (e. g. , a proton or
a deuteron), which captures an electron 1 originally
bound to a nucleus 2. Equation (1) can now be ex-
pressed as

As mentioned in the Introduction, the Faddeev
equations for rearrangement scattering consists of
tmo sets of coupled integral equations: One set cor-
responds to using the initial-state interaction and

the other set corresponds to the final-state inter-
action. Using I ovelace's notation, we can mrite

(~pi Uss ~as)

=(V, + V,)-(U,', U,', U,', ) G,T,

GQT) GQTg

0 GQTa ',

~is) 0 TaGQ TsGQ Uga

Uss =- (Vz+ Vs) T&Go 0 TsGs i Uss

Usa TiGQ TaGo 0 ~sa

(3)

where the + superscript denotes initial-state inter-
action and the —superscript denotes final-state
interaction; U, &

is the three-body amplitude going
from an initial state with particle i free and the
other tmo particles bound together to a final state
with particle j free and the two other particles
bound together; and T, is a generalized tmo-body
t matrix in the three-body system and occurs as
the product of the usual tmo-body t matrix and
the 5 function in moxnenta for the free particle i.
The energy variable of the tmo-body t matrix is
the total energy minus the kinetic energy of particle
i. V, denotes the two-body interaction betmeen
the two x'emaining particles when i is the third par-
ticle.

We shall only be concerned with the final-state
interaction given by the second set of coupled
equations in Eqs. (3). The superscript minus sign
mill henceforth be dropped. We shall, furthermore,
make use of Mott's theorem, which essentially
states that in an exact atomic-scattering calcula-
tion, the contribution of interactions betmeen the
protons to the scattering amplitude should vanish
in the limit mhen the electron-proton mass ratio ap-
proaches zero. Thus, we may set V& and T& to
zero. The integral equations can then be simply
decoupled and we can very easily obtain the follom-
ing single integral equation for the reactions given
by Eq. (2):

Usa = Vs —TaGo~s+ TaGQTsGQUsa ~

This is a single inhomogeneous linear integxal
equation with the kernel given by TaGoTsGo

A Neumann iteration of this equation mould pro-
duce a series expansion in the T operators and the
free-space Green's functions. The actual scatter-
ing amplitude can be obtained from this series by

taking the matrix element between the initial and
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= time
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(c)
= time

FIG. 1. Diagrams for the first three terms in the
expansion for Faddeev's series. (a) Matrix element
&fl Vz li), which is identical to the first Born term in
final-state interactions; {b}matrix element &f I TzG5V3 Ii),
the same as the second Born with final-state partial
Green's function; {c}matrix element &flTzG(&T3G0V3{i),
which bears no simple relation to the Born series.

final states. Thus,

&fl V32lz) = &fl Vzlz& -&fl T2GoV3 lz)+&f1 T2G0T3G0V31 z&

—&fl T2G0T3GOT2GOV31z&+ ~ ~ ~ .
Each term in this series represents a connected

diagram. The first three terms are given by Figs.
1(a), 1(b), and 1(c), respectively.

It is easy to see that the first term on the right-
hand side of Eq. (5) is just the first Born term in
the final-state representation. The second term
and the higher-order terms can be easily iterated
to produce the Drisko' Born series.

The Neumann iteration can only provide a means
for studying the high-energy behavior and, of
course, will not provide any information on three-
body bound states, which can only be studied if a
proper Fredholm expansion is made of the integral
equation given by Eq. (4).

We shall, for the most part, be concerned with
the second term on the right-hand side of Eq. (8)
and will consider the resonant symmetric reaction
given by Eq. (1).

If p&, p2, and p~ are the center-of-mass momen-
tum coordinates of all three particles and k, and
kb are the initial and final reduced momenta of the
free particle with respect to the center of mass of
the initial and final bound systems, then we may
write

(&l&aGa&'rib&= fr(5a M&' —)&(5a'+»&(5a" 5a'&(5'5a'l&a(»l5 "5('&

V3(p2 p 2)~(53 p3)

(p,"+p3")'/2m+p," /2M+p3"/2M —s —ze

xgb ps+M kb 0 p2-kb d p2d p3d p2" d p3"d p2d p»
(8)

where p& has been eliminated by using the cen0er-
of-mass system, g, and gb are the initial and final
ground-state hydrogen wave functions in momentum

space, {}(p3+k,) is the plane wave of the incident
particle 8 with respect to (1, 2), {}(pz-k,) is the
plane wave of particle 2 with respect to (1, 3), S
is the total energy, and k is the reduced momentum
vector of particle 1 relative to 3. Thus,

2

2}z 2(M+ m) 2p, 2(M+ m)
(8)

velocities of the free particle with respect to the
center of mass of the initial and final hydrogen
atoms.

Conservation of total initial and final energy en-
ables us to write

M(M+ m)
2M+ m

M(M+ m)
b I b &

M
"M+m

where v, and v, are the initial and final relative

(7)

where we have set 8= c=1 and the fine-structure
constant o(= e . From Eq. (8), Ik, I = (k, I for the
resonant symmetric reaction in Eq. (1). Hence we
may set v, =vb=v.

III. CONTINUUM-STATE CONTRIBUTIONS

The matrix element in Eq. (6) can be evaluated
by using the closed-form expression for the two-
body I; matrix, ' which is given by
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1+1(x)(k,'~ r,(~,) ~k,")=—
7 3-2 —= —c( (-,m)

mM
M+m ka

&" t+1 dt
())e=2 S(1pe"-') 'f

. , (~ -~',)(u, "-n,')
}'Ia(kg' —k~")

The contour for the integral in Eq. (10) is given
by Fig. 2(a).

By substituting Eq. (9) in Eq. (6) we obt»n a sum
of two terms, corresponding to the two terms on

the right-hand side of Eq. (9). The first term, which
we shall denote by 1.& ', is given by

J-2"=2 2 g.*~ p2'-M k. I~(p&'+k. ) ~(pm"-pm')

[M(p2'-p, ")+(M+m) (p,'-p,")]' (p,"+p,")'/2m+ p,'"/2M+ p,'"/2M -g -f~

xe(Ps' —Ps)ds(Ps+M )ss)e(Ps )ss)d Psd Psd Ps d Ps d Psd Ps

where k2, the relative momentum between particles
1 and 3, is expressed in terms of the center-of-
mass momenta pz and p& through the relation kz
= ps+ (M/M+ m) pz. A corresponding expression
holds, of course, for k~". Equation (13) is identi-
cal with the second Born matrix element M(V2p V3)

of Drisko' and may therefore be evaluated in the
high-energy limit in the same way. If no other

terms were considered, the total cross section
from I-&" shouM show a velocity dependence of
v ' at high energies. This term predominates over
the first Born (I)

'
) and the third- or higher-order

Born tel Dls.
The second term I ~z" corresponding to substituting

the second term on the right-hand side of Eq. (9)
into Eq. (6) is given by

,(., M - 2 /(1+ /M)W
" f+»'""'

ss(lyse/sd) J '( M+se ' 1-esps(seA) ()-) J

m (2M+ m), 2 2mS I Vs(pa-k&) g&(ps+ IM/(M+ m)]k&) de
p"M+m p' ' (M+m)' p' 1+m/M (p&+p&)'/2m+P2'/2M+PV2M-~-I&

where

2m/(1+ m/M)
S-[(2M+m)/2M(M+ m)]p'

Tile 11Iteglalld In Eq. (14) contains both the
bound-state contributions from the two-body t ma-
trix and the continuum contributions. We shall
consider only the continuum contributions in this
section and will consider the bound states in
Sec. IV.

To evaluate the integral in Eq. (14) in the high-
energy limit, we note that as k, and k~ increase
with incident energy, the integrand is always dom-
inated' by the two peaks from the initial- and final-
state wave function

M
gfjl pa ~ ky I and gy ps+ ~ ky

The peaks occur at pa= [M/(M+ m)]k, and p~= - [M/
(M+ m)] R,. The only other sharp peaks in the in-
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t- plane

JZZ g/ZaaZP/j/JJs/s
ILIES/JrJJJEIJrIIE

[1 —exp(vo. a)] '

2m

[(1+m/M) (4n' —1)]' '

(o)
( I e2w(4n -1&-&/2)

where the incident velocity is expressed in terms of
the dimensionless quantity n= v, /2o. and the last
step is obtained through neglecting m/M in compar-
ison with unity.

The interaction V~(pz -k,) may be taken out of the
integrand in the same way. Thus,

A AkfF'
rig t r igrpi

ieger

M Q
t/'3 k, -kq =-

(18)

(b)

FIG. 2. (a) Contour for the integral representation
of the two-body t matrix. (b) Contour for the evaluation
of the integral in the complex t plane at high energies for
the continuum contribution to the capture amplitude. The
diagram shows a pole at t =x for a scattering angle
~& vsse/M.

Since the initial direction is fixed and the kinetic
energy is conserved, the initial and final reduced
momenta k, and k, contain only two variables and
may be expressed in terms of the incident velocity
and the scattering angle. Furthermore, most of
the scattering occurs at such small angles (of the
order of m/M) that it is convenient to introduce the
parameter A. given by

2 sin~6

where 8 is the scattering angle. Neglecting terms
of order m/M, we can write

tegrand occur at the poles of the two-body t matrix.
These poles occur when the variable p2 takes on
such values that the expression [1 —exp(vnA)] ' di-
verges. These values for pz are far from the re-
gion where g, (pq —. [M/(M+ m)]k, ) peaks. In fact,
where the latter peaks, the rest of the integrand
including the above expression for the two-body
poles are slowly varying functions of p2. We can
hence use the integral-mean-value theorem for
p& and factorize out of the integrand' all the slowly
varying functions, replacing pz = [M/(M+ M)] k,.
Thus

V3([M/(M+m)]k, -k~)- —[2v m n(1+X)n ]
' . (18)

Thus n» 1 implies that the incident velocity is much
greater than the orbital electron velocity of the
hydrogen atom.

By the same token, since the final-state wave
function g, (p3+ [M/(M+ m)]k~) has a sharp peak at
pa= —(M/M+ m) k~, we may factorize out the de-
nominator involving simultaneously t, p2, and p3
from the integration over pa and p3 by replacing

pa with (M/M+ m) k, and ps with —(M/M + m) k„.
Thus we finally obtain

[ g.*(p,'-[M/(M+ m)]k.) g*, (p, + [M/(M+ m)]kd ds ~ dst'- x' J $2+ p3)'/2m+Pa'/2M+Ps/2M —S —&~
(19)

where

1+ 2'(m/M) n I+~ (m/M) n l I+I-'(m/M) & 8~ — g -
k —™

4(1 -m/M)n'- I (I+ x)n 4(1 -m/M)g —1 A + I M+ m

(20)
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t+ 1 dt

J„ t -I t' x'-
4i 1

v'm'nn'(I+ ~)' ~ —3 —(4t/n) (1+~)'"

~(1+) t+ 1 f/Pg

1 x (21)

The integral over p2 and p~ can be transformed
into cylindrical coordinates and expressed in terms
of n and A.'. Thus, in the limit when we again ne-
glect terms of order m/M in comparison with unity,
and 1 in comparison with 4n,

(g) 4z 1
v m o,'n (1+X) (e' " —1) X —3 —(4i/n) (1+&)'

Substituting Eq. (24) into Eq. (21), we obtain

4[1 -Sn (X —3)/(X+ 1) —2Cj
v m o.'n (1+X)~[X —3 —(4i/n) (1+&)'~ ]

As mentioned above, the term L2" is identical
with Drisko's second Born approximation. The
first term in the numerator of Eq. (25) is in fact
identical with I.&

' except for a sign, Hence the
entire matrix element L, is given by

L2—- I z +Lz(1) (2)

2n (X —3)/(&+ I)+SC
w I nn6(l + A.) [A. —3 —(4i/n) (1+X)'I ] '

(28)
Hence, in the high-energy limit n» 1, we have

where

4+ 2(m/M)x&l
Sn 1+X

8C
v'm'o. n'(I+ X)'[X —3 —(4i/n) (1+x)'~']' (

I'"' t+1 '+" dt

J t —1 t —7

f oo

(22)

where C is the residue at t=X and is given by

1 1
1

4+ 2(m/M)A.
2 16n 1+A,

(23)

For the case when x &1 (8 & &3m/M), the pole
lies on the right-hand cut. In Hostler's' paper, a
condition is introduced which excludes the pole
from the interior of the integration path of the
Coulomb Green's function. Such a condition is
equivalent in our case to adding a small negative
imaginary part to X and then letting it approach
zero at the end of the calculation. The result for
both A, & 3 and A. & 3 is hence given by

t+ 1 '/'" dt

= —in(1 —e' ")+ in(x —1) (1 —e' ") —2' c

Hence, in the high-energy limit x- 1. Actually
x&1 for A. &3 [8 & & 3m/M], where the major contri-
bution to the scattering occurs, and x&1 for A. &3.

The integral in Eq. (21) may be evaluated by
considering the integral over the contour in Fig.
2(b). If we neglect contributions to the integral
from Itl- ~, we may write for the case when x &1

and A. &3

From the expression for C given by Eq. (23), we
obtain I2CI =1. Furthermore, as n- ~, the quan-
tity 2C - 1; hence we can write

4 c e(n)

v'm'o. n'(I + x)' [x —3 —(4i/n) (1+y)»~] (28)

where y(n)-0 as n-~.
Equation (28) is identical to the second-Inborn

term except for the complex phase factor, which,
in any case, approaches unity for sufficiently high
incident velocity. Thus, for large n the matrix
element L2 goes down as n power for all values
of X, except at A. = 3, where it goes down as n '.
Since L j, which is identical to the first Born ap-
proximation, goes down as n for all angles, L2
is obviously the dominant term at sufficiently high
incident energies. One can also show that the
higher-order terms in the Faddeev expansion of
Eq. (4) must necessarily go down more steeply
with increasing n. Thus, for sufficiently high
incident energy Lz becomes the only important
term, and it is trivial to show that the total cross
section is given by

o f. l1.2-l'd&-I/n" . (28)

This assumes, of course, that the bound-state con-
tribution to L&, which we will consider in Sec. IV,
is negligible in comparison with the continuum
states.

It is interesting to note that the principal contrib-
ution to the capture amplitude occurs at A. = 3 for
high incident energy (n» 1), where the amplitude
decreases with n as n instead of n for other
values of X. From Eqs. (20) and (21) this means
that

A, -3
m 1 —

p -2Csn' ~+1 (24) ' =' p'=m+m "p'= I+m ' =
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which from Eqs. (11) and (9) implies, in turn, that
the two-body t matrix is on the energy shell.
Hence, it would appear that we have here a direct
verification of the theorem that at high incident en-
ergies the major contribution to scattering from
complex systems arises from the on-energy-shell
two-body t matrix. The reason why the two-body
t matrix should be on the energy shell for A. = 3
instead of some other value can be understood by
considering the classical Thomas""' model for
high-energy capture and energy-momentum con-
servation. Actually, from Eq. (21), x= 1 for
n»1 irrespective of A.; hence at sufficiently high
energies, the two-body t matrix is always on the
energy shell irrespective of the scattering angle.

IV. BOUND-STATE CONTRIBUTIONS

mMe 12 2

p2 =k-a 2M+m JN (so)

The high-energy-limit result for the matrix
element Lz in Eq. (28) does not contain the two-
body bound-state contributions which should, in
principle, be less important at high enough incident
energies, since the singularities arising from the
two-body poles are much farther away than the
two-body continuum. We shall evaluate the bound-
state contributions in a way similar to what we

did for the continuum. Each bound-state pole has
an inifinitely sharp peak and we can make the
same type of approximation as we did for the peak-
ing of g, and g,.

From Eq. (14) we note that the bound states
occur when

where N=1, 2, 3, . . . . The direction of JN is arbi-
trary as given by Eq. (20) and may be taken as
along k,.

We shall divide the domain of integration for p2
into shells such that each bound state occurs at a
value of p2 between two consecutive shells. In
this way we have divided our integration domain
for p2 into an infinite number of small domains.
The expression for L2 ' given by Eq. (14) then be-
comes an infinite sum over such domains. We can
then first make a Taylor-series expansion of the
expression which gives us the bound states [i.e. ,
the left-hand side of Eq. (15)] about each bound
state p2= J„. Thus we may write

2vi(2+ m/M)N
1 —exp vc.H =—

mM o.2

where

2m/(1+ m/M)
S-[(2M+ m)/2M(M+ m)] (y„+Z„)

and where yN = p2 —JN.
We shall then make the further approximation

that the limits of each domain in the integration
over y„be replaced by infinite limits. Such an
approximation can only overestimate the sum total
of the bound-state contributions and hence does not
present a special problem to our efforts to show
that the bound-state contributions are small.

The matrix element L~ ' given by Eq. (14) be-
comes, neglecting terms of order m/M,

M 1 M 1 t 1 '~~(2

(
2

) ( )~
2mMS m(2M+m) ~ )g (J„+y„)M
M+m (M+m) " M+m

g~(ps+ [M/(M+ m)] k~)

(y„+3„+p~)'/2m+ (y„+3„)'/2M+Ps'/2M —S —ie (&2)

We shall first consider the integral over p3. This
can be done in the same way that we did for the
continuum contribution to 1.2. Since in the term
I-2 we only have a complete two-body t matrix for
particles 3 and 1, the only prominent peak for the
integral over p3 comes from the final-state wave
function g, (p~ + [M/(M + m) ]k,) at ps = —(M/M + m)k, .

In order to facilitate approximation procedures,
we introduce q=p~+(M/M+m)k, . Thus, we now
have an integral over y„, q, and f and g~(q) peaks at
q=0.

By neglecting all terms of order m/M or higher
in the denominator for the free-space Green's func-
tion, we obtain



1818 C. P. CARPENTER AND T. F. TUAN

(y~+ J~+ pa) (y~+ Jw) pa
2m 2M 2M

(yg+q) (JN -ka) mn'
~ a 1 . (33+ ~n +~ -ic.

m

In deriving Eq. (33) we have dropped terms such
as (y„+q) which can be neglected in comparison

with (y~+q) ~ (J„-ka), since Jat-ka is of the order
ofmnnAinthe high-energylimit. Weshallassume
that the rest of the denominator involving t~ —1, yN,
and q may be taken out of the integral over y„and
q, with the variables y~ and q set equal to zero
where the integrand peaks.

Thus, again neglecting terms of order m/M and
using Eqs. (7) and (17), we obtain

M i 2mMS m(2M+ m) a /(y„+ J„)M m(2M+ m) a 2mMS
kq a y~+ J~M+m ' gM+m (M+m)' "

~ M+m ' (M+m) " M+m,

M M m(2M+m) a 2mMS a 1 a
pa o„

M+m ' M+m " " (M+m) " " M 1 X 4 ' 2

1 3 4n 2'll

+~ 2Q o'g+ — =t +pg as yg 0 q 0

where z.„is defined by the last equality in Eq. (34) and o„ is defined by o„=1 —1/N &0 It is. at once clear
that y„&0 for all N, X, and p.

Hence, upon taking the entire t integral outside the integral over y~ with its dependence on y~ set to zero,
we obtain

™ma2 ~ 4 I g- ~ & ~ 1 ~ t+1
la =4 a a a Z — .I, g, yN+ Jat — k, l

V(y„+ J„-ka)
4& m v „~ Ã~1+Xj „' M+m JN ~ yg „ t- t +y~

1/8 32mM 2M+m - a (y„+q). (J„
gap/) M

S-
( )

(y„+JN)
" " + &n +Q l-ie daqd~gg . (36)

We may evaluate the integral over q by introducing cylindrical coordinates, with the z axis along the vector
k, —JN. Thus, denoting the q integral by I„we have

ga(q) daq

2q ~ (Z„- ka) + 2y„~ (S„—k,) +m ana(kn '+ 1/N') —i e

4&2m
l

(mn)"'d'q
m ma '+ q' ' 2q „- & +2y„~ „-k~ +m'&' ~n'+1 N' —ie

(mn)' 'dq
[(mn) + q,'] [-2q, IS„-kaI+2y„(J„-ka)+m'n'(Xn +1/N ) —ie] (36)

The integrand of the last term in Eq. (36) contain two poles at q, = limn and one pole at

2y ~ (J„—ka)+m n (Xn +1/N )
213'„-k, I

The integrand vanishes for large q, in the complex q, plane in both the upper and the lower half-planes.
We would obtain the same result as e-0 irrespective of whether we choseour contour in the upper or the
lower half-plane. Hence, for simplicity, we choose our contour in the upper half-plane and obtain

4' v m(mn)a~a

[2yg (T~- k, ) —2im nl J~ —k, 1+m'n'(Xn'+I/N') —i&]
' (37)

The integration over y& may be performed by
first making the additional assumption that since
y& = 0 corresponds to the pole for the Nth bound

state, we may also remove the function

. 2mM 2M+m ~ )a.M+ m 2M(M+ m)
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which is slowly varying in the neighborhood of the
bound-state pole from the integrand, with yp again
set equal to zero. The integration over y~ now be-
comes

&r.*(y»+ J» [~-/(~+m)1k ) I'(y»+~» "b) 3

2w'

'» I'~(1+&)'nV

{(+[pi/((+i)](m/M)}'" ') '

(39)
Combining E[ls. (3V)-(39) and (35), we obtain

= —(v 2/v') (mo()'/' o(Iy „,
where

'"=j [( "( .-.)']'[A y;1'~

A = J» -k„~A
~

„—., m o(n&&,

s = J»- (~/M+I)k„~ a
~

—. ,

(33)

1

(Xn + 1/N ) —2in v X —R

x 2t z

{)+ [2 i/() ~ X)](m/M)}'" )

It can be seen that near the bound state (y»= 0) and

in the high-energy limit, theterm(m(]. ') is smallcom-
pared with B -

~ rn v . We can introduce the small
parameter x= (me[)2 and use differentiation with re-
spect to the parameter z, together with Feynman's
parametrization technique and the approximation

x= (mo. ) «(13 —A) - —,'mV (I+X),

to obtain (see the Appendix}

( I+ I dt (40)

Since, from E(I. (34), y» &0 and N is a positive in-

teger, the contour for the integration over I; is re-
duced to the one shown in Fig. 3(a). To avoid the
troublesome Nth-order pole at (= 1, we consider
the integral over the large circle R [Fig. 3(b)] and

write

t-plane
1 t2+ y&2 ~ 1 g2+ y&2

ft+1 dt (+1 dt

(41)

where r represents the small circle, and the inte-
grals are all taken counterclockwise. In this way
the integral over the Nth-order pole (where N can
go to infinity) is expressed in terms of integrals
over two simple poles. Thus,

—2iv(-1)" sin2NH

yg
(42)

(b)

FIG. 3. (a) Contour for the integral is a representa-
tion of the two-body t matrix at the bound-state poles.
(b) Contour chosen for the evaluation of the integral which
avoids evaluating the integral over the +th-order pole.

where 8=tan '
y&.

Substituting E[I. (42) into (40), our final result
for the bound-state contribution I 2

~ is given by

—8 1 g (- 1) sin 2NH

m m o. n», N(1+X)' y»

1
(Xm' ~ 1/M ) —2(m(X —ia) )

x 2tan-'
{)+[Bi/((+i)](m/M)}'i' ) '

(43)
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Since y& ~ N for large N, it is easy to see that the
infinite sum for the infinite number of bound states
converges by trivial application of the Weierstrass
M test. The convergence becomes even more ob-
vious if we apply the high-energy-limit approxima-
tion. We first consider nonforward scattering.
This would include X = 3, where we get our maxi-
mum capture from continuum intermediate states.
From Eq. (34) we have

y~~ Xn'N /(1+X) (n» 1).

Hence, in the high-energy limit,

sin(2N tan ~y~) (- 1) 2N (- 1) 2N(1+ &)

Vg
n» 1 y2 yn2+

The matrix element Lz ' is then given by

(2& 16 1 g 1 1 1
2 2 2ot n11 Ns (1 ~ y)2 y[y 2 (gy)/n]

2tan ' —g

(I+ [»/(I &)](m/~)]'"

where the infinite sum is now given explicitly by

~ —
3 =1.202 .

@) N

In the forward direction X =0, the contribution
from the ground bound state diverges logarith-
mically. A divergence also occurs in Mapj. eton's
paper when he considers the second Born matrix
element with the ground intermediate state. How-
ever, this divergence was canceled by the inclusion
of the proton-proton-interaction term into the sec-
ond-Born term. In our case, however, the proton-
proton interaction cannot be so simply included,

since, as we have shown in Sec. II, the Faddeev
equations will only decouple into a single integral
equation without this interaction. So, with this inter-
action included, there is no simple connectionbetween
the Faddeev equations and the Lippmann-Schwinger
equations other than the inhomogenous terms which
are just the first Born approximations.

To summarize our results, we have found that if
Faddeev equations are used to investigate the elec-
tron capture by protons from hydrogen atoms, we
obtain identical results as the second Born high-
energy-limit result of Drisko except for a complex
energy-dependent phase factor which approaches
unity for sufficiently high incident energies.

The major contribution to the capture amplitude
from the continuum intermediate states comes
from the on-energy-shell two-body t matrix. In the
ultimate mathematical high-energy limit all the
contributions will come from the on-energy-shell
t matrix.

The sum over the infinite number of bound-state
poles converges. Furthermore, the amplitude goes
down as n "as compared with n or m at X = 3 for
the continuum-state contribution.

For symmetrically resonant capture, which is
the reaction we have been considering in this paper,
the forward capture amplitude from the bound-state
contribution diverges. Preliminary results seem
to show that the divergence vanishes for nonsym-
metrically resonant capture.
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APPENDIX

~e consider the integral over f~„as given by Eq. (38). Since (mo. ) is small compared with the rest of
the terms in the bracket, we replace it by the small parameter x and differentiate with respect to z. Thus,

" J [x+(B+y~)'][X+y~]'k 6» [x+(B+y~)'][X+y~]'k, y~

Consider the integral I', where

(Al)

d VN

[x+ (B+y„) ][A+y~] k, y„J o j[x+ (B+y„) ]u+ (1 —u)(A+y„) ) k, y„

d yzdu

, ([xu+ (B —A')u+A ] —[A(1 —u)+ Bu] + [A(l —u)+ Bu+y„]') k, y„
(A2)

Introducing W=y„+A(1 —u)+ Bu, X=xu+ (B —A) u(1 —u), and Y=k, [A(1 —u)+Bu], we obtain

du d3W

J„, (X+ W')'(k. W- Y+fe) (As)
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integrating with respect to the W variable first, using cylindrical coordinates, with k, as axis, we obtain

I dud[X+ W + WzjdWedW, "' "" dW, du

2„~ (X+ W', + W„")([k,] W, —I'+ ie),„„(X+W~)([k, [ W, —F+ ie) (A4)

By considering the contour integral over the upper half m, plane, we obtain

Jo [(a —bu)uj' (k, A+k, .(B —A)u —ik, [(a —bu)uj'~ }
where a=x+ (B —A) and b=(B —A) . We now make the approximation that since x is small, b-x+ (8-A)~=a.
This is a fair approximation, since the error we make is the insertion of an additional term xu in the de-
nominator, but x is a small parameter and u only takes on values between 0 and 1.

We may now introduce the variable r given by

u= r'/(I+ r )

We obtain

dh

Ra J k,Br —ik, (Wa)r+k, A
(A6)

The rest of the integration and the subsequent differentiation with respect to x follow readily.
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Unpolarized and spin-exchange differential-scattering cross sections of Na-Cs are calcu-
lated using our phenomenological potentials for r & 14 a. u. and the difference potential of
Da]garno and Budge for r «14 a. u. The calculated results are in good agreement with the
experimental results.

Spin-exchange scattering is known to play an im-
portant role in many phenomena such as the spin
temperature of interstellar hydrogen, ' radio-fre-
quency spectroscopy experiments, ' optical pump-
ing, and orienting free electrons. Various total
spin-exchange cross sections of alkali atoms have
been measured or calculated. ' More recently
Pritchard, Burnham, and Kleppner~ (PBK) have

measured unpolarized and spin-exchange differen-
tial cross sections using cross-beam techniques.
The work reported here was undertaken as a sensi-
tive test of the validity of the phenomenological
method of generating the interatomic potentials of
alkali atoms suggested by Chang and Walker.

The method of generating the interatomic poten-
tials of like alkali atoms may be extended to include


