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A convenient and accurate numerical method is given whereby inelastic scattering informa-
tion can be obtained by construction of the Fredholm determinant det[1-G(E +i€) V] for the
coupled Lippmann-Schwinger equations. The method is noniterative and is easily applied
when the potential matrix is nonlocal or energy dependent. It is shown that the determinant
det[1-G (E +1€) V] may be factored as det[1-® G(E)V]det(1—iR) when ®G(E) is the principal-
value Green’s function and Ris the usual R matrix of principal-value Lippmann-Schwinger
theory; the R matrix may be obtained from det[1-G(E +i€) V] by a single partial triangular-
ization. As a simple example of the extraction of the R matrix from the Fredholm deter-
minant, the problem of electron scattering from hydrogen atoms is considered in the 1s,
1s-2s, 1s-2s-3s, and 1s-2s-3s-4s close~coupling approximations. The use of optical
potentials in the Fredholm theory is discussed: The two-channel problem originally sug-
gested by Huck is solved numerically by construction of an optical potential.

I. INTRODUCTION

The fact that the S-matrix elements for many-
channel potential scattering can be extracted from
a single function of the channel momenta has been
pointed out by LeCouteur!; Newton? has noted that
this function is the Fredholm determinant for cou-
pled many-channel Lippmann-Schwinger equations,
Blankenbecler® has rederived these results using
functional techniques; the necessary functional
derivatives are evaluated using a prescription for
the analytic continuation of the determinant as a
function of a single complex energy., More recent-
ly, Newton® has given a formal extension of the
method to the case of continuous channels and dis-
cussed the relation of Blankenbecler’s analytic-con-
tinuation methods to the original derivation® based
on the generalized Jost function.

Although these formal results are of great intrin-
sic interest, they have not been used in practical
applications, except in very low orders of approxi-
mation.® These low-order results display the ana-
Iytic properties and other qualitative features ex-
pected of the exact solutions, but certainly do not
provide a computational method suitable for gener-
ating results which might be compared with experi-
ment. It is the purpose of this paper to provide

such a computational method.

In an earlier paper on one-channel scattering,5 it
was shown how a modification of Fredholm’s orig-
inal formal derivation of the method which bears
his name provides a practical and accurate numeri-
cal scheme for the approximation of the determin-
ant of an infinite-dimensional operator. In Sec. II,
these earlier results are reviewed and the extension
to many-channel scattering is presented via New-
ton’s “substitution” rules.>* It is noted that the
Fredholm determinant D(E +i¢)=det[1 - G(E +i€)V]
may be factored as det[1- ®G(E)V] det[1 - iR(E)],
where ®G(E) denotes the principal-value Green’s
function, and R is the usual R matrix of principal-
value Lippmann-Schwinger theory.® It is then shown
that this factorization allows the R matrix to be ex-
tracted from D(E +i€) by a single partial triangular-
ization. Section III contains a simple example of
the method in the case where the potential matrix
is nonlocal and energy dependent; the problem of
inelastic electron—hydrogen-atom scattering is
treated in the 1s-2s, 1s-2s-3s, and 1s-2s-3s-4s
close-coupling approximations. In Sec. IV the use
of optical potentials is briefly discussed and a sim-
ple numerical example presented. Section V con-
tains a summary and a conclusion.
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II. FREDHOLM DETERMINANT
A. Calculation of Many-Channel Fredholm Determinant

In the case of elastic scattering from a fixed
spherically symmetric potential ¥V, which may or
may not be local, all scattering information is con-

tained in the “reference”” determinant
_ z-H\ _ (21+1)
D(z)-det n—ﬁ =1 det[l—hG,(z)V]
- 1

=1 D(z)@+V | (2.1)
1

where H=H°+)V and the D,(z) are the “reference”
determinants for the individual partial waves.

D,(E +ie€) is the Fredholm determinant for the par-
tial-wave Lippmann-Schwinger equation

by (or) = ¢y (k7) + MG, (E +i€)Vr)h; (kr) . (2.2)

Hereafter, we will drop the subscript 7 with the
understanding that we are always considering one
partial wave,

In I it was shown that the usual expansion

. « dE,V
D(kO)ED(EHe):l—)\[ o
b 1

A (® (= __dE, dE, Vi Vis

21 | E+ic-E, Evic-E, | Vy Va

(CROL B ® dE---dE,
S - -
n! A A (E +i€ - E,) -+ (E +ie~E,)

Vig Vig o Vi,

X ooe

Vi eee Vo (2.3)

with
V=G| VY= (2/mVEE; fo‘” arv%,(ky)Vr)i, (k;7),
(2.4)

J

1-2G, )V =AG,y(z)VE ...
1-2Gp(2)VE +vo _AGpRVE* ...

D(Z)=det[1—7\£(z)l/] = —AGyl2) V'
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k;=V2E; and ky=v2E, could be evaluated numerically
by calculation of the single (complex) determinant

i 1
D(ky)= 11 (W) D'(ky) , (2.5)
i=1 \2Ro~ 2R}
where
+i7r1710
d'(ko) :
D'(ky) = .
+imV,q
T e =T leitle| ()

In Eq. (2.6), d’ (k) is defined by
d'y=(GRE-3k3) 0= Viy, $7=1,2,.00,m (2.7a)

17”= Riw; Viy VRjw5,  1,7=0,1,2,...,m  (2.b)
where the k; and w; are the quadrature points and
weights necessary to approximate integrals of the

type

© dE
® /’ }Z(k—l I_;’:%kﬁ (2. 8a)
0
by the sum
n ; 3
Z wik,-(ZIVIH . (2. 8b)

!
i=1 E_%ki

Scattering information is extracted from D(k,) by
direct calculation of the one-channel S matrix:

-2ioey _ DIE —i€) _ D'(ky)*

D(E +i€) ~ D'(ky) * (2.9)

Sz(k0)=e

The extension of these results to many-channel
potential scattering is immediate: Again corsider-
ing a single partial wave, we have

_)\Gll(g)vw

’ (2.10)

“AGoR)VH = AGo(2)VE cev 1=AGyq (R)VE® «v

where H° and the unperturbed Green’s functions G,,(z) are assumed to be diagonal in the channel indices

1’2,""&,6,'

detD(z) = exptr InD(z),

which gives®

..; V*® is the potential matrix for the many-channel problem at hand; V** may be local,
nonlocal, or even energy dependent. The many-channel analog of Eq. (2.3) is obtained by use of the identity

7

(2.11)



2 FREDHOLM METHOD. II. A NUMERICAL PROCEDURE - - - 1769
kadka Vaoz
1 3,2 10R) V11
D(kka0,°°'v Oy'°') D(E+Z€) =1- )‘Zf g(kg)2+i€"%(ko;)2
xz E kS dkSkydk) iV
]ﬁl.P@%fne—%@wﬂ&w$?ne—aﬁﬁl vie vE | "
iU Vig e Vi
VBZ? Vgg
A" ® ke dR% RS « « <kpdky
-y 112 non__ coo, (2.12)
T E f B ®EFvie - 5E - D +ie - 3] '
V’:ll“ ) V,'.'Z
—
where k5 =V2(E - E,), E, being the threshold energy  are approximated by the sum
for the ath channel; the matrix elements are
w© wSk (k ) . .
Vf‘f=(2/7r)‘/ku¢k3 j(; d,r,rzjl (k?r)V“B('r)j,(k?'r) Z T—(k—o)z%_—fr(k—aé— z7rs1gn(k°5)9(E—Ea)f(k8‘) )
(2. 14b)

(2.13)
The sums over channel indices are over all chan-
nels (open and closed), and are unrestricted.

Just as in I, the sum in Eq. (2.12) may be evalu-
ated directly by working backwards from Fredholm’
original derivation of the identity of Eq. (2.11).

We introduce a numerical quadrature such that inte-
grals of the form

r

S

0

R dk®f (k*)
3(k8)% +ie - 3 (R%)?

adkaf(ka

=] IeoE-IeoR

—im sign(k‘(’,')e(E -E,)f(k§)

where k% are the quadrature points and w{ the ap-
propriate weights. ©(E - E,) is the usual step
function which has been inserted to take into account
the fact that the Green’s function G ,, (E) has no
imaginary part for real energies below the thresh-
old E,. The function sign is defined as sign(k®)
=k*/|k*| , for real k*. In general, a new set of
quadrature points 2% and quadrature weights wf
must be used for each open or closed channel., It
may now be verified by direct expansion that if all
the integrations in Eq. (2.12) are replaced by nu-
merical quadratures of the form of Eq. (2. 14b), the

(2.14a) sum of the series may be represented as®
J
1 32 B 0o /(31
D(kj, kSye o R, By, - vy kg = 11 Tﬂ—r-rz D'(kg, ..., kY, (2. 152)
a=1 i=1 (k ) - (ki)
where
Dy, B, oo R, G, RY) o i
i ! RS RY LA S AR LA
' | | dl - - -
‘_ill l | Zn | eo°
| _l _______ |+ 1;7T_V_,f0_+_z7T_V _____ + _177_17_,}3_
| |
: l l : I
. [ T o Lt ..
: : :+iﬂ7’1’0+iﬂ7;',,2 +inV g
’ | ! . 15b
= du : | A ] (2. 15)
......... e A AT AL RS
- -y | | ~ - - -
-V -V o = TE e T N1 im TV R in VR +inV g
4 T 4 Vv vn Vi 7BLein V3
o o o o 0 o o o] o ole o o o @ e o sfe s s s s s 0 6 6 4 e e e s s e
[-Vate.. =73 L V@ eee =70 | 4in V2 < lagm VY
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and X has now been set equal to 1. In Eq. (2.15b), the matrices d}; are defined by

(E;B)ii :% [(k% 2o (k?)z] 5ijéatﬂ - ‘70:? ’

where

7 B — o aB
7 =VET W Vi VEBwE
’

I-.-/(i’t[)3= (kg)“kofwf‘v?(f k()wg ’ i=0,1,2,...,7’l', ayB:1y2$"'yn

wi=EYP™T .

Since this determinant is finite dimensional, it can
be evaluated by standard numerical methods. The
S-matrix elements can then be calculated using the
“substitution” rules of Newton,* whose notation we
follow:

D (E

~—

Dy (E)

Saalf)= 5 (&) ~ DL (E) (2.182)
[Sys (B)]2= DL (E)Dj ([f))(;ﬁz;ﬁ (E)D(E)
_ D" (E)D;" (E) - D3 (E)D'(E)
B [D(E)]* " (2.18b)
where
DRy, ke, .. R, oo RO =DRARE i, —RE, ol R,
(2.19a)
P (T30 TR TN T SRR %)
=DE5EE, oo, =R, o, =k, oo kY . (2.10b)

This direct procedure is used in Sec. IV in a simple
illustration of the use of optical potentials in the
Fredholm method; however, as we shall see in the
following paragraph, there is a more efficient man-
ner of extracting the S matrix from an approximate
Fredholm determinant,

B. Factorization of Fredholm Determinant

Calculation of the S matrix for 7 open channels
by direct application of the substitution rules of
Eq. (2.18) involves the numerical evaluation of
L9 +1) +1 complex determinants, If the discrete
approximation to D(E +i€) involves even a moderate
number of quadrature points for each channel, it is
clear that for a problem involving several channels
we may have to evaluate a large number of very
large determinants, a rather dismal computational
prospect. The first hint that this estimate of the
number of determinants to be evaluated is too high
is that in the case of one open channel (7=1) we
have 37 (7 +1)+1=2; however, in an actual calcula-
tion, only one determinant need be evaluated. This
is because for one open channel

0,j=1,2,...,n,

(2. 16)
@,6=1,2,...,1 (2. 172)
(2. 1)
-
D(= ) =Dk ,)* (2. 20a)
and thus
S;(k o) =Dk o )*/Dkyg) . (2. 20b)

This result is generalized in the following para-
graph,
The derivation hinges on the fact that®*
(2.21)

where @ is an orthogonal projector and det, denotes
the fact that the determinant is only calculated in
the subspace defined by the projector @, Aoo=QAQ,
and (A o) denotes the matrix representation of A
in the @ subspace. Consider

D(E +i€)=det[1 - G(E +i€)V] .

We rewrite this in terms of the principal-value
Green’s function

®G (E)=3[G(E +i€) +G(E -i€)]: (2. 23a)
D(E +i€)=det{1 - [*G(E)V - inPy(E)V]}, (2.23b)

(2. 22)

where
- imPy(E)V=%[G(E +i€) - G(E - i¢)]

and Py(E) is a projector onto those eigenstates
|E,) of H 0 which describe open channels at energy
E. We have at once

D(E +i€)=det{1 - [PG(E)V - inPy(E)V ]}

:det[l - @g(E)Y] det (1 +i1TP0(E)_Y Y-——(;(];.—(E—)F)

=det[1- ®G(E)V]
. 1
X detp0<E>[1 +z1r<V TTeCEYV G’Q_(E)l’ )PO(E)PO(E)]

=det[1 - ®G(E)V] det[1 -iR(E)] , (2. 24)

where the matrix elements (which are numbers) of
R(E) are defined as
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Ry (B)=-1(E,{V[1-eGE)V]}IE,) ,
(2. 25)
which is the usual definition of the R matrix.® We
now see that

D*(E +ie)  det[1-®G (E)V] det(l+iR)
D(E +i€) ~ det[1-®G(E)V]det(1-iR)
1+iR
=det(1_i5) (2. 26)
and thus that
D*(E +ie) _
m ~det(§) . (2.27)

Equation (2, 27), which was originally derived by
Newton,! is a generalization of Eq, (2.20a). We
now have the additional factorization

D(E +i€)=det(l - ®GV)det(1 -iR) ,

which will allow direct extraction of R from

D(E +i€), as is shown in Sec. IIC, The advantage
of this extraction is that the S matrix can be easily
obtained from R by inversion of a matrix whose di-
mensionality is determined by the number of open
channels, rather than by the number of numerical
quadrature points.

C. Extraction of R Matrix from Fredholm Determinant

The R matrix may be extracted from the discrete
approximationto D(E +i€)by introducing a Gaussian'®
transformation which triangularizes D’ (E +ie), ex-
cept for the last 7 columns. This may be seen as
follows,

In a symbolic notation, we write Eq. (2.15b) as

D(E+ie)=(n M 3 Ea)D'(EH'e) (2. 282)
a=1 {§=1
n n 1 ! iﬂj’
=( HE- a)det --------- .
a=1 {=1 i - VT 1+i,n,i'/o
(2. 28b)

In Eq. (2.28b), the dimension of the matrices d’,

¥,, and ¥ are NxN, nx7n, and nxN, respectwely,
where, again, 7 is the number of open channels? and
N is the total number of numerical quadrature
points used to construct d’. Introducing a Gaussian
matrix N® which triangularizes the first N columns
of D’, where D’(E +ie)=det(D’), we have

D'(E +i€)=det(N°'D") (2. 29a)

—aet(’—"d a é) (2. 29b)

A NUMERICAL PROCEDURE -

1771

= det(N'd’) det(B) , (2.29¢)
where N¥d’ is the NX N upper triangular matrix
which arises directly from the complete Gaussian
triangularization of the matrix d’; B is a new ma-
trix. Use has been made of the fact that the Gaus-
sian matrix y” , which gives rise to the partial tri-
angularization, has unit determinant.!® The fact
that the Gaussian transformation does not inter-
change columns implies that all scattering informa-
tion is contained in the determinant of the nxX7n ma-
trix B, as the sign changes needed for use of the
substitution rules only affect this part of D(E + ie).
The fact that the Gaussian transformation preserves
the symmetry'! of D’ allows us to write

det(B) =det(l - iC) , (2.30)

C being a real symmetric 7Xn matrix. We now
note that

det{1 ~0G(E)V]= IT [T ——s det(d@) (2.31a)
o=l i=1 E E -
and that
det(d’) = det(N"a’) . (2.31b)

The factorization
D(E + i€)=det[1 - ®G(E) V] det(1 - iR),

when combined with the results of Egs. (2.29¢) and
(2.31b), allows us to conclude that det(l — iR)
=det(l -iC). The fact that det(1 —iR) and det(l - iC)
contain the same scattering information'? and the
fact that the R-matrix decomposition of the S matrix
is unique allow us to conclude that not only are the
determinants equal, but that C= R, to within irrele-
vant signs of the off-diagonal elements. This im-
plies that an appropriate computational procedure

is to carry out the partial triangularization of Eq.
(2.29p), which may be done entirely with real arith-
metic, and then to simply read off the R-matrix
elements. The S matrix is then easily constructed
as

S=(1+iR)/(1 -iR) . (2.32)

This result may also be obtained in a direct, if
more complicated, manner by noting that if the wave
fu?ctions YE(k§7) are expanded as in Sec. III of
I,’i.e.,

i(k37)=j;(k8‘v) —; C?(k?)fz(k?"’) , (2.33)

then the partial triangularization of Eq. (2.29b) im-
plicitly solves the coupled principal-value Lipp-
mann-Schwinger equations

¢§(k6"7)=jx(k3‘7’)+za) f @Gaa(kgs 1) 7'

Vos(r")5 (egr”) av’
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TABLE 1. Convergence of the s-wave 1s— 2s inelastic cross section [in units of m(ay)?] in the 1s—2s close-coupling
approximation as a function of the number N of numerical quadrature points. The results are compared to the earlier
work of Marriot® and Smith.® The energy of the incident electron is 0.5 a.u. The total computation time for calculation of
0%y and 07, was 6 sec for the 33-pt calculation and 19 sec for the 66-pt calculation. In each case most of the time was
taken by matrix-element calculation. The runs were carried out on a CDC 6400 computer.

33 pts 44 pts 66 pts 88 pts Marriot? Smith?
Singlet oy 0.292 0.290 0.288 28 0.28836 0.288 0.286
Triplet 07y 0.00299 0.00295 0.002916 0.002918 0,002 74 0.0036

®R. Marriot, Proc. Phys. Soc. (London) 72, 121 (1958), Marriot solves the close-coupling equations by a noniterative
method due to Percival, which has recently been rediscovered by Sams and Kouri [J. Chem. Phys. 51, 4809 (1969)].
’K. Smith, Phys. Rev. 120, 845 (1960). Smith solves the close-coupling equations by iterative solution of the integro-

differential equations.

and, at the same time, constructs the R-matrix
elements in such a way that the coefficients c{()
are never explicitly displayed. These coefficients
may be easily obtained, if needed, by back substi-
tution'® from the triangularized form of the operator
[1-®G(E)V], Eq. (2.31b). This alternative deri-
vation removes the possible sign ambiguities in the
off-diagonal elements of R.

III. R-MATRIX RESULTS FOR INELASTIC
SCATTERING OF ELECTRONS FROM HYDROGEN

As a simple example of the method, and as a test
of its numerical feasibility, calculations have been
carried out for the problem of s-wave scattering
of electrons from hydrogen atoms in the close-
coupling approximation, with the restriction that
only excitations to S states of the target are allowed.
In this approximation the matrix elements of the
potential are given by'?

V?jB: <]0(k?)| Vaﬁ(y) + WaBle(k?)>
(+for singlets, - for triplets),  (3.1)

where

Voa() == %6as+ %/; (r"Var' ¢ (r' )ps(r’)

+/w v'dv' ¢ )ds(r") (3. 2a)

£(jolk$)| Wasjo®) ) = +{ (Eq + Eg - E) fo” r'dr’
X Gok§r Nps(r”) fo'” (")2dr "oy r N o (7 ")
+ o7 rPar (g osr) [(1/7)
X 7" "oy NiolkGr )
+f:° ) dr' o, (r)iBE v}, (3. 2b)

where the ¢, (#) are the radial hydrogenic wave
functions with energy E,. In all the calculations

reported in this section, the matrix D’ was con-
structed as in Eq. (2.15b) and the R matrix ex-
tracted by the partial triangularization of Sec.
IIC. The Gaussian method with partial pivots'*
was used to carry out the triangularization. Table
I shows convergence of the 1s - 2s inelastic cross
section as a function of the number of quadrature
points for the 1s-2s calculation. Table II gives
the inelastic cross sections in the 1s, 1s-2s,
1s-2s-3s, and 1s-2s-3s-4s calculations for an
electron of initial kinetic energy 0.5 a.u. incident
on the ground-state target.

IV. USE OF INELASTIC OPTICAL POTENTIALS IN
FREDHOLM METHOD

The numerical method described in Sec. IIC be-
comes unwieldy for a large number of channels;
this is simply because the finite-dimensional ap-
proximation to D(E +i€) becomes prohibitively
large. The numerical problems raised by the
growth of D(E +i¢) are easily overcome by the use
of optical potentials. This is easily seen by con-
sidering a two-channel example:

TABLE II. Cross sections for s-wave excitation of
ground-state hydrogen atoms in the 1s, 1s-2s, 1s-2s-3s,
and 1s-2s-3s-4s close-coupling approximations. The in-
cident electron has an energy of 0.5 a.u. The cross sec-
tions are given in units of m(ag)?, a, being the Bohr radius
for hydrogen. Agreement with the work of K. Smith [ Phys.
Rev. 120, 845 (1960) ] is satisfactory where comparison
can be made.

Calculation 1s 1s—2s 1s—2s—3s 1s—2s—
3s—4s

Singlet o]; 1.07 1.13 1.23 1.25

oYy ees 0.288 0.167 0.166

ol e 0.058 0.031

Oy e 0.015
Tripletoj; 3.87 3.87 3.87 3.87

0y **° 0.0029 0,0027 0.0027

o3 o 0.000066 0.000 054

oy oo oo 0.000003 9
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i
1—611(E+i€)V11 : —Gn(E'FiG)Vtz )

(4.1)
Writing G,, =G, (E +i€), this may be factored as

D(E +i€ ) = det(l _Gllvll) det(l _G'Z?-VZZ)

|
X det( :G—z'szI7('i"-_G—£sz;)'IT(';}LYLZ'/E:1"91111'1“)) .
(4.2)
Noting that
9”: G;i/(1 =GV

and that

IA
det('é ;) -det(I -AB)=det(I -BA), (4.3)

Eq. (4.2) becomes
D(E +i€)=det(1 =Gy Vyy) det(l =G,,Vs,)

X det(l=G13V1382Va) . (4.4)
Since Eq. (4.4) is an identity, we can use the sub-
stitution rules of Sec. IIA to extract scattering
information. The advantage of this form of the
equation is that all the determinants have a di-
mensionality determined by the number of quadra-
ture points needed to approximate one channel.
The term Vi, $5,V5 isknownas the generalized op-
tical potential'® in the case that channel 2 is
closed; Eq. (4.4) gives an indication of how the
optical potential may be used to describe inelastic
scattering when channel 2 is open. Similar results
may be easily obtained for more than two channels.
As an almost trivial example of the use of in-
elastic optical potentials with the Fredholm meth-
od, we consider the two-channel problem originally
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proposed and solved by Huck. 6 The Huck poten-
tial matrix is defined by

V11=Vy=0,

V=V =3¢ for r<1 (4.5)

=0 forr>1.

The two-channel Fredholm determinant is

=det(l — G11V12G2V21)

= det[l -G uZ}n(E +i€)] N (4. 6)

where
2}11(E +i€)= V1szz(E + i€)V'21

is the (complex) optical potential describing the
inelasticity. The substitution rules of Sec. ITA
can now be used directly to evaluate the S-matrix
elements, e.g.,

D,(E)=det[1 -Gy (E +i€)zy(E —i€)] . (4.7)

The actual calculation proceeds exactly as in the
one-channel case described in Sec. II. Results
of an optical-potential calculation for the Huck
model are given in Table III.

V. DISCUSSION

It has been shown that the Fredholm method
provides a practical and accurate numerical pro-
cedure for constructing the S matrix for many-
channel scattering problems. The principal ad-
vantage of the method is that it is easily applied
when the potential matrix is nonlocal and/or en-
ergy dependent. However, it also appears that
the method may be somewhat more efficient than
previously existing methods in the case of low-
energy electron-atom scattering. For the three-
channel close-coupling calculation reported in

TABLE III. Elastic and inelastic cross sections for the Huck two-channel problem [in units of m(ag)?. In each case,
the numerical result is given above the exact result for the wave numbers. k;=1.0 and k,=0.5. For all values of c?,
48 quadrature points were used; eight Legendre-Gauss points were used in each of the intervals 2=0-0.5, 0.5-1.0,

1.0-1.5, 1.5-4.0, 4.0—15.0, and 15.0—45,

= 2 4 6 8 10 12

oqq (humerical) 0.21133 0.796 66 1.44019 1.900 50 2.167 85 2.308 95
(exact) 0.21132 0.796 65 1.44018 1.90053 2.16791 2.30904

(27 0.38901 0.726 23 0.86678 0.849 46 0.767 47 0.674 34
0.38899 0.726 20 0.86675 0.84944 0.767 46 0.67433

09y 1.55602 2.90492 3.46712 3.397 84 3.069 89 2.697 36
1.55597 2.904 81 3.467 81 3.397177 3.069 85 2.697 33

Og9 0.24962 0.94081 1.70045 2.24351 2.558 60 2.72459
0.24958 0.94070 1.700 28 2,243 33 2.558 44 2.724 45
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Sec. III, the procedure is five or six times faster
than standard (noniterative) methods now in use
to solve the same equations.'? If the S matrix is
desired as a function of energy, the Fredholm
method is even more advantageous. Most of the
time in the calculations reported here is spent
in computation of the matrix elements; since a
large proportion of these matrix elements do not
need to be recalculated as the scattering energy
is varied, the method becomes relatively more
efficient for each succeeding energy. Thus, in

WILLIAM P. REINHARDT

[N

the case that scattering information is desired
over a range of energies—for example, near a
resonance or threshold — it seems safe to say that
the method is at least an order of magnitude faster
than other methods presently in use.
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The trapped-electron method is applied to the excitation by electron impact of the (2p2)3P
state, the lowest doubly excited state of helium which is stable against auto-ionization. The
energy of this state, 59.64 +0.08 eV, is in good agreement with theory. An estimate of the
slope of the total cross section for excitation of the (2p2)3P state at threshold gives a value of

4x107% cm?/eV.

INTRODUCTION

Certain of the doubly excited states of helium have
properties which make their observation difficult.

These states, such as the (2p%)°P, (2p3p)'P, and 3P
states, possess even parity but odd orbital angular
momentum. They cannot be detected by a photo-
absorption technique such as that used by Madden



