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The matrix element for the elastic scattering of photons by atomic hydrogen is evaluated
analytically in closed form in the nonrelativistie case including retardation. The method of
integration is similar to the one used previously by one of the authors for the dipole approxi-
mation. It is based on the possibility of expressing the matrix element in terms of the Green's
function for the Coulomb field, for which the momentum-space integral representation de-
rived by Schwinger and others is then used. Some integrations yield the matrix element in
terms of essentially two hypergeometric functions of Appell's type E~, with variables and pa-
rameters depending on the photon energy. A discussion of the result is given.

I. INTRODUCTION

Some time ago an exact analytic formula was de-
rived for the matrix element of the elastic scatter-
ing of photons by atomic hydrogen in the nonrelativ-
istic dipole approximation. The result was ex-
pressed in terms of the Gauss hypergeometric func-

tion zE„with variable and parameters depending

on the photon energy. ' %e shall now extend this
result to include the effect of retardation. ' The

method used is similar to the one of Ref. 1. It is
based on expressing the matrix element of the pro-
cess in terms of the Coulomb Green's function and

then performing the integrations in momentum

space.
The nonrelativistic elastic scattering of a photon.

by a bound atomic electron, retardation included,

is described by the Kramers-Heisenberg-%aller
matrix element ':

6)I = (s,.sz)[e""( "z'"]((,

1 S[e '"'(s ~ P)] [8'""(s, P)]„,
m „E„(E((+«+is)-

1
S

[e'"('(s('P)jo~[~ (sz ~ P)]e (1)
rn E„(E(,—«)-

Here v, and v2 denote the initial and final momenta
of the scattered photon of energy x = ~, = &~, s, and

s2 are its initial and final polarizations, P j.s the
electron momentum operator, E„are the eigenval-
ues of the energy spectrum, and Eo is the ground-
state energy.

The matrix element% may be expressed in terms
of the Green's function G(rz, r„Q) of the atomic
field, which is considered to be of Coulomb type
in our case. Indeed, taking into account the expan-
sion in energy eigenfunctions of the Green's func-

tion [see Ref. 1, Eq. (3)], Eq. (1) becomes

where

9R = (s(' sz) 6 —gs((sz&[iiu(Q) + B(((Qz)]~ (2)

11;,(Q) =(I/m) J J u, (rz)e-("z'zp»G(r„r, Q)

&P,(e'" ' ((,(r, ) dr, dz„

Because G(rz, r„Q) = G(r„rz; Q), P is Hermitian,
and (((((r) is real, we have

II(,(Q) = 11„(Q).

Therefore, (2) becomes

II = (s,.s z) 6 —Q s „s@[II(,(Q, ) + Il. ((Qz) ].
&zf

Rotational invariance arguments indicate that

II(&(Q) should have the following form:

II;~(Q) = 5;,&(Q)+ v„v» Q(Q) + v„v@8(Q)

+ v» v»S(Q)+ vz, vz( T(Q),

where v& and &z are the unit vectors of e, and Tcz.

It then follows that

Q s„.s„n„(Q)=(s,.s,)&(Q)+ (s, v,) (sz v, ) Q(Q).

(7)

With Eq. ('7)„ the matrix element II of Eq. (6) can
be written

% = (s, .s,) M+ (s( ~ v, ) (sz. v() &,

and II(&(Q) is obtained fromii(((Q) by interchanging
i,j and x„—~2. The quantities 0, and 03 are given
by

Q, =E,+«+is = —~E,
~

+«+ie,

Qz-E, —« —~E,
~

—«.
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fd = e —&(Qi) —&(Q~),

A" = —K'(Qi) + Q(Q[)) ].

The calculation of gg is thus reduced to the evalua-
tion of 8, P(Q), Q(Q), which will be carried out in
Sec. II.

II. CALCULATION OF 6, P{g), g{Q~.

The evaluation of 8 is immediate. Introducing
the expression of the ground-state energy eigenfunc-
tion of a hydrogenlike atom uo(x) in Eq. (3), one
finds

& =(I+[(«,—«,)'/4~']}-'=(I+ («'/ya)»na —,'8}.-&,

2 2 ~ 2&(«', —«z) =4«sin —,e. (12)

in order to determine P(Q) and g(Q) we begin b&
expres»ng Hgq(Q) as a momentum-space integral.
We get from Eg. (4)

»«Q)=(I/ ) J' J'f„f„.(p, —.)G(p. , p;Q)

x +o (pg —«g) dpi' dpi'~ (13)

where uo(P) and G(p2, pq,
' Q) are the Fourier trans-

forms of uo(x) and g(rm, r„Q).
We shall us«or G(p2, p„Q) the Schwinger inte

gral representation. This may be written as

where X= o.Zm, and we have taken into account that

1[»(~«J so'( ~ [&'S,-$~)'+()'l+&)[I&[+&)((-o)'/4)]') (14)

where

&=(y/g), X'=-2mQ,

and X is chosen so that

Introducing Eq. (14) and the expression for uo(p) [Ref. 1, E(I. (14)] into (13) we find, after interchanging
the order of integrations,

()~(tn)= ~Jc'
( ) f p-'" f (' ) ) gp

p2 —K2 +X X py —p2 +Q py+X p2+X pg —Ky +X (18)

In E(I. (18) we have abbreviated

o' = (1 —p)'/4p.

Now, because

Sg = K2 S2= OP

(2O)

it is easy to derive the equality

s'J(x'x x)Q SHSV TU -—q ~ s1fS2y
&sS ~Kg~ ~K2y

(21)

which contains the parameter-dependent integral J(X; X, p) defined in E(I. (Al) of Appendix A. This enables
us to write E(I. (17) in the form

y5 g efer (o+)I g2 y 1 p2
ESU as'((gg((() = Tx~ . p

' Z s~;sgq — z(x~; 1, k))dp.
2 slM'T &2y P P

(22)
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In Eqs. (21) and (22) it is understood that after tak-
ing the derivatives of J(X; )1, X) with respect to v„,
K», one should set Kg = K2= K.

The calculation of the integral J'(X; X, p, ) is per-
formed in Appendix A, the result being given by Eqs.
(A6)-(A8). Noting that b of Eq. (A8) is independent
of p and taking into account Eq. (19), it is easy to
show that

d 1-p, 8g 1 da

dp pd ( ''P) X'' bd-X a — p

x (1-x,p) "(1—x, p) "dp,

provided that Rec & Rea.

Hence, Eq. (28) becomes

Q s„s„II,q(Q) =128&'X'

F,(2 —7' 2, 2; 3 —3;x1,x2)
(2- 3)[(X+X) + x']

(29)

Furthermore, using Eq. (20) one finds that

d 1 —p
~Kit ~K2) dp p

, ,
t' 1 [(X+)1)'+~']4

=Sv ] S1 s2~
(

2 b)2

4X [(X+X) +z ]
p (a —b (24)

a'- b = (1/4P') [(X+)t)'+v']'(1 —sp+Pp'), (25)

where

(X-)1) +22 4X (7C, —7&2)2

(X+X) +K [(X+)1) +x ]

(X—X)'+ x'
(X+ )t) '+ ~'

(26)

(27)

We now return to Eq. (22) and insert Eqs. (24) and

(25) in it. We get,

Q s1i s2f Hi j(Q) = »8»
I . 2 2]4

5 3& 2e'" ( (» S2)

I,2sin11r, X+)1 +x

(0+ )
p' '(1 —sp+Pp') 'dp

1

16X'(s, x2)(s2 x1)

[(X+X)2+ ~']5

(0+)
x p (1 —sp+pp ) dp

1 (28)

The result may be expressed in terms of Appell's

hypergeometric function F,. This has the following

integral representation:

I'(c)
x

r (0+)

c

d -iffa

p p
ze a-1(1 )c-a-1

2 sinpa

Here we have set K& = K2 = K after performing the
derivatives with respect to x,», &2q Usin. g Eqs. (A7)
and (AS), with z, =x2=x, )1= P, , the quantity a —b

appearing in (24) may be expressed in the form

+
( )( )16X F, 3-;3,3;4— 3 x„x)2
Sy ~ Kg Sp ~ Ky (3- 3.)[(X+g'+ ~2]5

(30)
The variables x„x& of tI;e Appell functions F,
a.re obtained from

I

sP +PP (1 x1P)(1 x2 P) 1 (31)

and are equal to

Xg p
—X -A. —K +4X K) ~ K~

+{ 4X'(T(1-T(2)'[X'—(7(, + Tc2)
2

+ ~x'- &'- «')'IP')/nx+ ~p+ «'I' .

Comparing Eqs. (7) and (30) we find the desired
expressions of P(Q) and Q(Q) are3

~( )
128K'X F1(2 —v; 2, 2; 3 —7; x„x)

[(X+)1)'+ x']' 2 —7.

(33)

( )
20481'X'x F1(3 5; 3, 3; 4 —~; x„x)

[(X+X)'+ x'] (3 —1)
(34)

III. DISCUSSION

We shall now discuss some of the properties of
the matrix element derived in Eqs. (8)-(11), (33),
and (34). With retardation included, 3R is consid-
erably more complex than in the dipole approxima-
tion, both concerning the angular and the photon
energy dependence. Thus 3g now depends separately
on K and Z, whereas in the dipole approximation,
the dependence on these quantities was concentrated
in the unique variable

(X'/2m) Z'8

where 8 is the rydberg. Furthermore, M and K
are angle dependent.

In order to achieve a better understanding of our
result we shall use series expansions for the Appell
functions F, contained in P(Q), Q(Q). Note that
these have the parameters b equal: b&= b&. Various
expansion formulas have been established especially
for this case. However, as the one convenient for
us does not seem to have been considered before,
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we have derived it in Appendix B [see Eq. (B5)].
The evaluation of the quantities contained in Eq.

(B5) yields, on account of Eqs. (31), (26), (27),
and (12):

x)+ x, —2(xgx, ) = s —2p
16«'X' sin'-,'8
(X+X) +x ]

1 —(x x )' —1-p'i—
(X+ A.) +x

(36)

where the convenient sign of (x&xm)'~ has been
chosen. Furthermore, we shall denote

u= (x,x,)'~'= [(X-X) + «']/[(X+ x) + «'] . (37)

Thus, using formula (B5) in Eqs. (33) and (34) we

get

2A.
' "

(2),P(Q)=, , g,' ~ sm'-, g
(X+A.) +z ~ pr

r, = X/X, = 1/(1 —k) 'i,
~, = «//X, = I/(I+ k)'~' . (42)

In this case, the quantities M and N are real. Be-
cause the Appell function F,(a; bq, bm, c; x» xz) is
a meromorphic function of its parameter c, having
poles for c= 0, -1, -2, . .. , it follows from Eqs.
(33) and (34) that P(Q) is singular for 7. = 2 and 3,
4, . .. , and Q(Q) is singular for v=3 and 4, 5, . . . .
Taking into account Eqs. (42), one sees that the
singularities occur only in P(Qq) and Q(Qq), for pho-
ton energies corresponding to the Lyman spectrum,
in agreement with the resonant structure of Eq. (1).
Below the threshold, the retardation corrections
to the dipole approximation result of Ref. 1 are
very small for atomic hydrogen, of order (nZ)
or less.

Above the photoelectric threshold (k & 1), we have

v, = i/(k —I)'~', v, = 1/(1+ k)'~ (43)

~,F,(l, —I -p ~, 3+p-w; u)
2+p —7'

2«' " (3),
Q(Q)=(X «a a Z, -~r»n a8X+A. +x ~ 0 p!

2Fi(1, —2 —p —v, 4+p —7'; u)

+P ~ 7
(39)

The variable uq, obtained by setting X= X& in Eq.
(37), is complex and

luau!

='1. When k varies, uq

moves on the unit circle centered at the origin of the
the complex (u) plane. As regards u2, correspond-
ing to X2, it is positive real and 0 & u2 & 1.

The imaginary values of v', , Xq make P(Q, )Q(Q~),
and therefore also K, complex. Because @, P(Q~),
and Q(Q«) are real, we have from Eqs. (8)-(10)

To obtain the convergence condition of these ex-
pansions we note that on account of Eqs. (5), (15),
and (16), the values X of interest are X positive
real and X pure imaginary (negative). Now, for X
positive real, lul &1 and for X imaginary, lul =1.
Consequently, as discussed in Appendix B, the ap-
propriate convergence condition is given by Eq.
(B9). With Eqs. (36) this becomes, for both P(Q)
and q(Q),

(x~/x') sin'-,' 8 &1 (40)

It follows that the series for P(Q) and Q(Q) are con-
vergent for a/l 8 if

Im5R = —[(sqs2) ImP(Q&) + ( s, vm)( s«T&) ImQ(Q&) ].
(44)

97e now show that Immt; can be expressed in closed
form for any scattering angle. Indeed, noting that

Tf —~+g p u] —&/ uj p
1/

we find
g2 ~ (2)p ( 2

rmp = —.(p —p")= —, Z I

——', Sin'-,'S)
2i i pp P&

«Fy (1 1 p 7» 3+p +f jug)
[(X+X,)'+ «'](2+ p —7,)

«'/Z' & 1 (41) «F, (1, —1 —p+7'„3+p+ v, ; I/ug)l (45)
[(X —X,)'+ x'](2+p+ v, )

Now, the ratio «/X characterizes the magnitude
of retardation. Therefore expansions (38) and (39)
exhibit explicitly the succesive orders of the re-
tardation corrections. The dipole approximation
corresponds to setting «/A. = 0 in Eqs. (11) and
(37)-(39) (however not in X). Then P(Q) reduces
to the expression given in Ref. 1, Eq. (54), and
Q(Q) = 0, so that K of Eq. (8) reduces to that of
Ref. 1, Eq. (7), as should be.

For photon energies below the photoelectric
threshold, that is 0 &«&1, from Eqs. (15), (16),
and (5) we get

The long expression in large parentheses in Eq. (45)
may be transformed using the formula for analytic
continuation of a hypergeometric function 2E, of
variable u to functions of variable 1/u. ' Thus, we
have

p(Q )
&' ( —u, ) "'&(1—u, )' ~ "'P
i (X+X,)'+x' p=6 p!

I' (2+p —7.,) I' (2+p+ 7,) ~' (1 —u, )'
(2p+ 3) I

(46)
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with

Iarg(-u, )I &m.

In order to satisfy the preceding condition we

must take

arg( - u, ) = 2)c - w,

With Eqs. (44), (47), and (50), the imaginary part
of the matrix element roSR for forward scattering
(cc, = cc2) without change of polarization (s, = sz) is

( )
64m q' exp( —2q)t)

3 '(1 + r!')' 1 - exp( —2')

where X is given by

2&tx, I 2 (k —1)"'
X

= arctan z 2 ', = arctan

([l-k-,'( )']'+( )~- .

One can thus check the "optical theorem"

I Im(roKO) = (cc/4') gq, (52)

and 0 & X & w. Consequently, we have

( —u, )'& = exp[( —2x+ v)
I ri I ]

Because we have

( +P+ g)=(2- &g), (2+r(),

2'!7'c l(1+ I r, I ) exp( —v! r, I)
1 —exp( —2& I r, I )

(2p+3)! =6x2+(2)c, (—,')c, ,

Eq. (46) becomes

Imp(Q, ) =
64& I T& I (1+ I v', I') exp( —2 I Tg I )t)

1-exp( —2m! r, I)

x'x'
[(X', —x' —cc')'+ 4cc'X', ]'

pro (4)pP I (Xg —X —K ) + 4 cc Xy)

This may be written

64m qe exp( - 2q lt)

3 (1+r! )' 1 —exp( —2v7!)

APPENDIX A. BASIC MOMENTUM-SPACE
INTEGRAL

The momentum-space integrals considered in the
text can be expressed in terms of

&(&; ~, ~)=f 5«Sidle(52 ~2)'+u'1

&( [X (P2 Pl) + n(pc+ H) x (p2+ X )]

x [(p, cc,)'+ X']-} (A1)

where o& is the nonrelativistic total cross section
of the photoeffeet, retardation included. "

In the ease of forward scattering, we have K
= (s, sa) M; for not too high photon energies, M re-
duces to its dipole approximation [see Eqs. (11) and

(38)]. The retardation corrections come in through
the powers of (cc2/&~) sin —,'e and are significant only
for g40 and higher values of z/&. It turns out,
however, that for z= &, relativistic corrections are
also become important. Therefore, a numerical
analysis at higher energies should be based on a
complete relativistic treatment. The present work
represents a preliminary step towards an analytic
solution of this problem.

& ([1—k-,'(nZ)']'+ (nz)'] '

x 2pg (2 —j'c!) 2+$7!, 2 ~ v) )

where the notation has been introduced

~ =
I ~il =(k —1)'", (48)

where n is a positive real constant. '
In order to evaluate this integral we shall suppose

provisionally that X, &, p, are positive real param-
eters. The integration over p, occurring in Eq, (Al)
can be easily performed'3:

v = —(nZ)' (k —1)Q1 —k —,
' (nZ)']'+ (nZ)'] ' sin' -', 8 .

(48)

Equation (47) has been established supposing that
condition (41) is satisfied. Nevertheless, by analyt-
ic continuation of the 2E, function involved, Eq. (47)
remains true for every value of z.

Proceeding similarly in the case of Imp(Qc), one
finds

(~ ) ( Z)2 2567T g (1 + 4 'c! ) exp( —2r!!c)
15 (1+q')' 1 —exp( —2cc7!)

where

q=X [X + n(pz+X )] pz,

A'= n(1+ n)X (p, + X ) [X + n(p, + X )]
(A3)

f

dpi'

[X'(Pa-Pi) + n(Pc+X')(Pa+X )] [(Pi -Tci)'+X']

[X'+ n(p,'+ X')]' [(p, —q)'+A']'[(p, —cc,)'+ X']

A [X +n(p +X )] [(Kg q) +(X+A) ]

xk2{[1—k —,'(nZ) ] +(nZ) ].

&,E, (3 —ir!, 3+ i', ~; v) . (50)
The result of Eq. (A2) is valid provided X and A are
taken to be positive.



Taking into account Eqs. (A&) and (A3), (Al) be-

g'
~(X ~ &~ p)=[ (1 )p/~ X

dp2"
[(p — )'+ p'](p'+X')[p -k')'+ ']

y= (1+a)X'+ n{&',+ X') + 3/ X[+(1+c.)]'»',
kg=x y gg (A5)

~'=X'y ][a(1+a)]"'{X'+xf+X')+(1+2a)XX]3.
The three-denominator integral of Eq. (A4) was

evaluated in the general case by Lexis. ' Using his
result Rnd replacing k1, v by their values, me fiQRHy
find (after an elementary but rather lengthy calcu-
lation)

m'. 1 a+ 5"'
~~1/3 3 1/8 ln X/3fG(1+&)f X 5 g-Q

(A6)

a=x'[(K, -X,)'+(&- p)']+ pX[(X+~}'+&~]

+XX[(X+p)'+xf]+fn+[n(1+a)]'/'j

&[(X+X)'+xf][(X+p)'+z', ],
b = —X~[[(x,'+ X' —X') rc ~ —(x,'+ p,

s -X3) x~ ]

+ 4X [xgxm —(Kg Kg) ]j'

The principal value of the logarithm appearlQg in
Eq. (A6) shouM be chosen. Note that the result is
independent of the sign of 5

&e derived Eq. (A6), supposing that X, X, p
mere positive real. However, it may be shown that
lt hoMs under more genex'Rl conditions.

First, it maybeshown thattheintegral J(XS; X„p,)
is an analytic function of X in the (X ) plane cut
along the negative real axis, whatever X and p, com-
plex, provided that Rek+ 0, Re p, 4 0.'5 Fux'thexmore,
it is not difficult to see that Z(X'; X, p) is an ana-
lytic function of A. in the Re%. &0 half-plane, for any
X in the cut plane and for any complex p, fox which
Re@,4 0. A similar property exists with respect to
p, . OQ the other hand, the right-hand side of Eq.
(A6} is an analytic function of X, X, p,. Therefore,
the equality (A6), which was derived for X, X, p
positive real, will hold by analytic continuation for
any X in the (X ) plane cut along the negative axis
and fox' Rny X, p, for mhicb He%. &0, Hep & 0. It fol-
lows that if X, A~, p, appearing in Eq. (Al) are
complex, one should undexstand by X, X, p in Eq.
(A6) the square roots for which'

APPENMX 8."EXPANSION OF THE APPEI. FUNCTION
I'& (a g,b;c;x& ~z ).

%e shall Qow derive an expansion of the AppeB
function for the case in which the pax'ameters b& Bnd

bz are equal (bq= bq= b), followingamethodof Nagel.
Slppo83ng px'ovis1OQRlly that Rec &ReP & 0, we cRD
use the integral x'epresentation ~

F (a b b c xx)- [I'{c)//I'(a)l"(c-a)j

&1 p~ -~(1 p)'-'-'[(1 —x~)(l —xzp) j dp (81)

Taking into account the Mentity"

{I-x~)(i -xV) = [I- (xixm}"'p]'

[&&+&a 2(&t~a) JP

)x'
[1 (x x )g/g ]8

we may write

[(1-xy)(l —xmp)] '= [1 —(x,x,)"'p]"

„p (b}, [x, +xg —2(x,x,)'/~ jp
[I (x x )1/3 ]8 ' (83)

The series contained in Eq. (83) is uniformly
convergent in the interval 0~p ~ j., provided that
x&, xz are sufficiently small in module. Therefox'e„
when introducing (83) into (81), it is possible to
integrate term by term. Then, by using the stan-
dard integral representation fox the Gauss hypex'-
geoIQetx'1c funct1on, we have

r, (a;b, b;c;x„x,)=Z [x;+x, -&(xgxm) ]
" (a), (b)~ i/2 p

p~g C

@fan

j

xp"&(a+p, 2b+2p, c+p;(x, x,}'/'},
{84)

(a)~ =a(a+1)~ ~ ~ (a+p -1) .
Furthermore~ using a transformation property

of the, E, functions, '0 Eq. (84) becomes

&, (a;b, b;c;x,x,)=[1—(x, xe)'/'j' ~'

„"(I), (&), «, +ma —2(saba)"'. )'(c),p}, [1-(x,x,)'"j'

x ~&~ (c- a, e —2b -p, c+p; (x, x, )'/~) .
(86)

It follows from the derivation of (85) that the
series 18 convergent fox' g» x3 small enough in

-module. In order to determine the convergence
domain of the expansion we shaB consider the Rs-
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ymptotic behavior of its terms for large p. For
p-~, these becolne equal to

&2Eq(c —a c —25 —P c+p'(x x }~~2)

The asymptotic behavior of the function ~E, (a, b
—P, c+P „' x) for large positive values of P has been
worked out by Perron. a' The general result applied
to the present case yields the two alternatives:
(i) lf l (x~ xz)'~~ l ~ l, then the function

Ps(c-s, c —25-p, c+p;(x, x,)'~')

tends to a quantity independent of P. (ii) If
l(x, x2)'Ial & I, the function (BV) behaves as

(Ba)

Factors, independent of p ol containing powers of

P (without influence on the determination of the
radius of convergence), have been ignored in (B8).

Introducing these results into (B6), we conclude
that (i) if l(x, x~)' l

& I, the series (B5) converges
fol

([x,+x, -2(x, x,)'"]/[I -(x, x,)'~']'[ &i; (BO

(ti) if l(x, x2)' ! &l, the series (B5) converges for

x, +x, —2(x, x,)'~'! x, +x, —2(x, x,)'~'

[l —(x, x,)'"]'
,

''I 4(x, x,)'"
(Bio)

Equation (B5) has been established under 'the con-
dition that He~ & Re& &O. Ho~ever, because of the
analyticity of the hypergeometric functions with re-
spect to their parameters, it remains true for any
values of 8 and c.
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