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Adiabatic Corrections in a Simple Model of Tvvo Interacting
Electronic-Potential Curves*
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Accurate numerical methods are applied to the vibronic problem resulting from bvo inter-
acting intGI"86cting hRrInonlc cuI'ves. 7%"o GXRInples Rle considered, corresponding to either
degenerate or nondegenerate electronic states. The energies are obtained ruth (a) the zeroth-
order Born-Oppenheimer appxoximation; (b) the so-called adiabatic approximation, which in-
cludes the di, agonal corrections to (a); (c) the full vibronic procedure. Several featuxes in the

correlation diagrams giving tIM eneI'gie8 Rs R function of the configuration-intGI'action Matrix
element aI'e given an explanation. We also note that, in the model treated here, inclusion of
the diRgonRl corI'Gctlons does not always lead to Rn lmproveInent of the eneI'gies,

I. INTRODUCTION

Thel 6 Rx'6 vRl ious cil cumstances %hei 6 lt ls
DecessRry to go beyond the usuR1 Born-OppenheiIQ-
er (BO) approach for treating a system of elec-
trons and nuclei. Fox molecules with degenerate
ox' QuasidegenerRte electronic states, this may be
essential, since the near equality of electronic and

vibrational excltRtloD 6Dex'gies may 16Rd to R dy-

namic correlation between electxons Rnd nuclei.
Examples are the Jahn-Teller' ox pseudo-Jahn-
Teller effect, the Renner effect„3 the exciton-pho-
Don coupling 1D dimers Rnd, Dlox'6 g6Dex'Rlly, ln

molecular aggregates. ' Fox normal molecules,
accurate calculations (say within cm ') are usually

done by including the SO-CRH. ed diagonal corrections
to the zeroth-order BO approximation, This is
based on the implicit assumption that this way of
including the coupling between electrons and nuclei
(sometimes called the adiabatic approximation) will

produce better results than those of the zeroth-
order treatment. However, the range of validity
(if any) of this assumption is not clear (cf. for
instance the recent review by Hirschfelder and

Meath ).
Let us recall that fox a system of electrons Rnd

nuclei the total wave function may be written'

q(q, q) = Z y„(q, q)y„(q), (l)

where q and Q stand for the electronic and nuclear
coordinates, respectively, and the p (q, q)'s are
the solutions of the electronic wave equRtlon. The
variational principle applied to Eq. (l) leads for the

nuclear functions X (q) to the set of coupled equa-
tions

[T', + ~.(q)+c.„(q)- w]~.(q)+ Z c.„(q)y„(q)= o,

(2)

where Tz is the Qucleax' kinetic-energy opex'Rtox',

Z (q) is the electronic energy associated with

P (q, q), W is the total energy, and the C„„(q)'s
are the quantities (for I= n) or operators (forIWn) which result from integration over electronic
coordinates. The so-called adiabatic nuclear func-
tions are the solutions of the decoupled equations

[T,+ ~.(q)+ C.„(q)]y„"(q)= W"y„"(q), (3a)

while the zeroth-order BO nuclear functions obey

[r„+z„(q}]p'(q)= w"p'(q}. (3b)

Going from (3b) to (Sa) amounts to what is called
introducing the diagonal corrections. The C „(q)'s
depend critically on the inverse of diffexences be-
tween electronic energies. Thus, when the diRg-
onal corrections obtained by including the C„„(q)'s
in the potential energies for the motion of nuclei
are appreciable, there may be also significant non-
adiabati. c effects. A possible example of this situ-
ation is the first excited 'Z~ electronic state of the
hydx'ogen molecule. Kolos Rnd WO1niewicz hRve

made a very careful study of this state. 9 Owing to
conf igux'Rtlon intel"RctloQ between two electronic
states with different equilibrium distances (David-
son' ), the potential energy for this state shows two

minima sepaxated by a potential barrier of about
6000 cm '. The other electronic state resulting
fl om the 2 x 2 conf lguratlon interaction ls est1mRted
to be about 6000 cm ' above the top of the potential
barrier. The dlRgonal cox'x'ectlons to the potentiRl

energy, due essentially to the nuclear kinetic-en-
ergy operator, are rather large for the lowest state
(about 450 cm ' near the critical internuclear dis-
tance corresponding to the smallest electronj, c
splitting). Thus, for levels which are not located
at the bottom of the wells, both adiabatic and non-
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adiabatic effects should be important. For such
levels, Kolos and Wolniewicz have found that the
zeroth-order energies are in fact better than the
adiabatic ones.

The only theorem" at our disposal to relate the
energies deduced from the various approaches
concerns the ground state of a system of nuclei and
electrons: The zeroth-order BO energy is a lower
bound and the adiabatic energy an upper bound to
the exact ground-state energy. This is obviously
not sufficient to investigate the question raised
above. In order to get some more insight into this
problem, we have applied accurate numerical
methods to a simple model.

II. MODEL

We consider two electronic states p, and $2 de-
pending on a single internal nuclear coordinate Q.
The two electronic energies are harmonic, of
force constant k, with their minima at Q= ah, re-
spectively; the separation between the equilibrium
energies is noted as 2V (Fig. 1). Configuration in-
teraction is assumed to mix the two states. The
electronic problem is summarized by the set of
matrix elements:

(q q)le. il yi(q q)}.= u(q- ~)'+2v, (4a)

FIG. l. Two harmonic electronic potential curves,
of same force constant, with minima centered at q
= —X End Q =+A, , respectlvelg, and wltl1 a ver tlcal dis-
placement 2 V.

&y, (q, q) le„l y, (q, q)&, = -',u(q+ ~)', (4b)

&0 (q, Q}
l
II.

l 0 (q, Q}&,= &e (q, Q)
l
ff.

l 0 (q, q}&,=

(4c)
where the subscript q means integration only over
electronic coordinates. The mixing produces the
bvo states

y'(q, q) = c;(q) y, (q, q)+ c;(q)y2(q, q),
with coefficients

c,(q) = (2/&2}(2 2+ (}'2QX —V)'

+ (aq~ —V)[(uq~ —V)'+ ~']P"

,;(q) = (e/V 2) (e'+ (f2Q~ - V)'

, (uqX- V)[(aqua- V)'+ ~']]'"
(6)

c;(q)=- c,(q), c;(q)=c,-(q) .

The corresponding energies are

E'(Q)= 2k' + V+ 2kq +[(kqX —V) + V ]

If we assume that e is a constant: For V=O, E (q)
is either a single-well or double-mell potential for
v&kA or v&kX, while Z'(Q} is always a single-
well potential.

The vibronic wave function (the exact function
within the model) can be written

y(q, Q)= y'(q, q)y'(q)+ y (q, q)x (q). (7)

We assume further that

TN 41 41~N & TN 4 42TN ~ (6)

Assumption (6) means that we would not expect the
BOapproximation to break down if vie had only one
of the electronic states. The consequence is that the
adiabaticity of the electronic functions (5) resides
in the mixing coefficients which for small values
of v may vary rapidly with Q in the crossing region.
T~ is the nuclear kinetic operator corresponding
to the internal coordinate Q,

8

2M BQ
(9)

We may mention at this point that the model is
defined not in order to make the problem tractable
(the methods used below to obtain the energies
could be applied to arbitrary potential curves with
a Q-dependent configuration-interaction matrix
element) but to obtain the simplest case displaying
the essential features of the coupled equations (10).
With these assumptions, the two nuclear factors
y' (Q} and X (Q) obey the two equations

[T„+Z'(q)+ c,'(r„c',)+ c2(TNc;) —IV]1'(q) + c,'(r„c,)

+ C2(TNC2) Cl + C2 X ('q) 0
+ A + 8C& + 8C2 9

M BQ BQ Bq

(loa)
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and

cg ( Ncf)+ c2(TNc2) cg + c2 a g (Q)

+ [T„+E (Q) + c,(T„c,)+ c2(T„c2)—W]x (Q) = 0 . (10b)

2 + + 2
~Cy + &C2

cl q2
+ c2 q2

= c' '
q2

c

a (, a
C ' C C ' C

aQ ) aQ
(i8)

The limited-configuration-interaction calculation
leading to (5) is equivalent to replacing the elec-
tronic Schrodinger equation by a matrix equation

H ~ c=Ec

H being the matrix of elements given by (4). The
two solutions are column vectors C' and C obeying

92c& 92cz ~ &
82 9 ~ t 9c

c, 2+c2 2
=c' ' 2c=—c' . (19)

Etluations (18) and (19) are the counterpart in our
problem of the general relation for the exact elec-
tronic wave functions'2

H c-=E c-; H c'=E'c'.

. aE'
C 'C +

aQ

=C
8

aQ

~CEc =c ' —Ec
aQ aQ

BHH' c'=c 'H ~ —c'+c ' —c'
aQ aQ

8, ~ BII=E c ' ' —c'+c ~ —c'.
aQ BQ

We have the following set of identities:

(12)
m ~ 2 n m ~ K K 8 n

BQ( 4Q ")' (20)

With the set of relations (14), (18), and (19), the
diagonal corrections and coupling operators of Eq.
(10) are easily obtained from the expressions (6)
for the mixing coefficients.

Equation (13) can be rearranged as

c-' —c'= [E'(q) —E-(q)]-'c-' —~ c'.
8Q 8

(i4)

This is very similar to the relation obtained with

the exact solutions of the electronic wave equa-
tion'2.

c o. =[E.(q)-E.(q)] '
42 4

In particular, (14) shows that the derivative of the

electronic function (a vector in our case) with re-
spect to a nuclear coordinate becomes large when

the electronic splitting is small for some value of

Q. Since this occurs at the crossing point Q, when

e is small,

E'(q, ) E (q,)=2v—-
We may also write

a. . . a .&, a

aQ aQ J aQ
— c'=c' c' —c' +c c t —c'

=c c t' —c' (16)

8 ~ ~ ~ t Q—c =c' c' —c l+c c c ' —c-)
BQ 9Q ) 8Q

=C C ' C

the simplification occurring because of the normal-
ization of the vectors c . Using (16) and (») we

obtain, for instance,

III. CALCULATIONS

We now present and comment on some calcula-
tions performed with the above model. In order to
make these calculations, we first of all introduce
the dimensionless parameters

42. =2 'i hi) /hv; p=v/hv;

1 /2

R = Q/X with hv = h

The equations for the adiabatic vibrational functions
(R) take the form

a2 ~2p2

2+[( )2 2]2 +4m(V+o)R )

44c)()'- 4c44)'+ 8')'I'- 44) x'"()))=4.

The + signs refer to the upper or lower potential
curves. The BO and adiabatic results are obtained
from a numerical integration of the Schrodinger
equation with the Cooley-Cashion program. ' The
nonadiabatic (or vibronic) energies are obtained
from a diagonalization procedure in a set of basis
functions associated with the electronic curves be-
fore decrossing.

We have studied the two following cases: (a)
degenerate situation (V= 0) for a = 1 and a varying

P (the-energies are given in Fig. 2); (b) nondegen-
erate situation (2V= 5hv) for 42= 1 and a varying P
(the energies are given in Fig. 3).

On these two correlation diagrams the descending
curves give the energies associated with the lower
potential and the ascending curves, those of the up-
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FIG. 2. Correlation diagrams for
the zeroth-order BO (dashed curve),
adiabatic (dotted curve), and exact
vibronic (solid curve) energies,
when o. =1 for the degenerate case
(v= 0).

0

per potential. The full curves give the nonadiabatic
energies.

In both cases, adiabatic and nonadiabatic effects
vanish in the limit of a large coupling between elec-
tronic functions. Thus, for large P all three ap-
proaches lead to the same results. Table I gives
the six lowest energies for P= 1 in the degenerate
and nondegenerate cases. One may note the fol-
lowing: (i) The adiabatic energies do not always
lie between the corresponding BO and vibronic
levels. However, for the ground state we have E~
& E„„&E~. in accordance with Brattsev's theorem.

(ii) This order does not persist as we go to upper
levels but adiabatic energies remain above the cor-
responding BG energies. This may be proved with
the help of the Hellman-Feynman theorem. Let H
be the Hamiltonian of the adiabatic approximation,
which can be written

H =H + XA, A=C+ ' TgC,

A being positive everywhere, (A) is positive also.
Since this is 8E(X)/sA, this latter quantity is an
increasing function of A.. Therefore, for all states
E~ & E",~. (iii) As we go up in energy in case b



TABLE I. Energies at p=1 for the six Iovrest states
in the degenerate case a, and the nondegenerate case b.
The OXigin COX'X'68POQdS t0 the Z6X'0-POjnt 6Q6X'Q? Of t56
vlbx'onlc Px'ObleIQ at zel'0 coUPling.

0 —l. 2789 —l. 2398
1 —0. 7375 -- 0.7182
2 -0.0762 —0.0569
3 0. 6256 0.6410
4 I.3595 l.3737
5 2. 1154 2, 1282

Evjb

—l. 2436
—0. 7316
-0.0762

0.6144
l.3418
2, 0887

0.3834
1.3680
2.3444
3.3047
4.2738
5. 1094

Ev~b

0.3842
1.3699
2.3349
3.3151
4.2495
5.0965

I

tions belonging to the bvo different electronic states.
Therefore, all levels below the threshold are nec-
essa.rily pushed down.

I"IG. 3. Cox'legation (4agx'axQS fox the zexoth~ox'der
po gashed curve), adiabatic (dotted cUx've), and exact
vibx'Onlc (8011d ctlx've) 6Qex'gles when G = 1 f01 a QOQde-

generated state (2 V=5A;p).

(Table I), the Bo energies become better than the
adiabatic energies. This is reminiscent of the
situation for the first 'Z~ excited state of Hz.
(iv) A general rule concerns the adiabatic levels
belonging to the lower potential and which are be-
low a threshoM coxresponding to the lowest adiaba-
tic level of the uppex' potentiRl: These levels Rre
always above the cox responding vibx onic levels.
This can be demonstrated by noting that the vibronic
problem can be formulated as a configuration inter-
action calculation based on the adiabatic functions,
with off-diagonal elements only between the func-

The correlation diagrams for the degenerate case
present several special features which, although
pxobably of little practical interest, will now be
commented on and explained. The two interacting
potential curves are exchanged by the operating Q

—Q. This results in the vibronic levels at zero
coupling being degenerate by pairs. The adiabatic
16vels Rre also degenerate by pMrs and this ls R
little less evident. Figure 4 shows the shape of the
diagonal correction (the same in both electronic
states) for n = l and various values of P. When P is
small, the correction is a sharp peak at @=0. This
wall separates the two half-potentials for Q & 0 or
Q & 0. The adiabatic vibrational functions which
are anyway either even or odd under the operation
Q —Q become at the limit of zero coupling the
even and odd combinations of the vibrational func-
tions belonging to the half-potentials. These func-
tions do not overlap because of the presence of the
infinitely high barrier and therefore the two com-
binations have the same energy. This behavior was
checked very carefully numerically. We may men-
tion here that we disagree with Bierman who, in a
similar problem concerning the vibronic levels of
R dimer, hRs stated thRt the RdiRbRtic enex'gies go
to the corxect energies for a vanishingly smaH
coupling. " Both kinds of levels show a, twofold
degeneracy at zero coupling, but are definitely dif™
fex'ent.

Another remarkable fact in Fig. 2 is the degen-
eracy of the odd BO levels with the adiabatic levels
at P = O. This is due to the fact that the vanishing
of these BO functions at @=0 lead to a problem
with the boundary conditions which govern also the
adiabatic calculations.

The adiabatic cox rections for different couplings
and different vibrationals quantum numbexs are
given in Fig. 5 (odd levels) and Fig. 6 (even levels).
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FIG. V. The
adabatic (solid
curves) and zeroth-
order BO lower
potentials (dashed
curve) for n =1 and
P=0. 3. The ener-
gy levels and wave
functions in the
figure are those
of the adiabatic
approximation

O.t-

0

FIG. 6. Adiabatic corrections &E (in hv units) for
some even levels (v=0, 2, 4, 6) of the lower potential,
as a function of P, with e =-1.

I

+5&

the slope of the wave function in the region of the
(now) narrow barrier, and this slope increases as
the quantum number v increases. For even levels,
the barrier produces a dip in the wave function
which is more pronounced the smaller the vibra-
tional quantum number.

Finally, Figs. 7 and 8 reproduce some of the
adiabatic vibrational functions associated with the
lower and upper potentials for P = 0.3. Because of
the diagonal contribution, both potentials present
two wells. The two lowest even wave functions of
the lower potential and the lowest even function of
the upper potential already show the dip, which
when the barrier gets higher and narrower will be
present in all even functions.

V. CONCLUSIONS

Although based on a model, we think that the

pr .sent treatment has enough of the essential fea-
tures of a more realistic molecular calculation to
indicate that the so-called adiabatic corrections are
misnamed, since it may happen that the simple
BO results are better than the adiabatic ones.

FIG. 8. The
adiabatic (solid
curves) and ze-
roth-order BO
upper potentials
(dashed curve)
for n =1 and P
=0.3. The en-
ergy levels and
wave functions
in the figure are
those of the adia-
batic approxima-
tion.

+2.5&2 P
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Temperature Dependence of Hyperfine Pressure Shifts. II.
Nitrogen in Helium, Neon, and Molecular Nitrogen~*
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Spin-exchange optical pumping has been used to measure the hyperfine pressure shift of

atomic nitrogen in helium, neon, and molecular nitrogen as a function of temperature. In

the range 70—500'C, the change in pressure shift was linear with temperature, and the val-
ues were for helium, —(0. 1 + 0.1) &&10; for neon, (0.6 + 0. 1) X10; and for molecular nitro-

gen, (1.4+0.3) &&10 4 in units of HzjTorr'C. The measurements also give A=10450929. 4

+1.8 Hz for the free atom. The quadrupole interaction constant was also measured and found

to be independent of temperature and pressure. The value was B=1.3+0.5 Hz.

%'hen the hyperfine structure of an atom is mea-
sured in the presence of a buffer gas, small fre-
quency shifts are detected which depend essentially
linearly' on the buffer-gas pressure. Theoretical
attempts to understand these shifts indicate an ex-
pected dependence on the temperature of the buffer
gas as well as on the density. With the recently
discovered ability to optically pump over an extended
temperature range, it is now possible to investigate
this aspect of the theory.

Recently we reported measurements of the tem-
perature dependence of the hyperfine pressure shift
of deuterium in helium. ' The present paper de-
scribes similar measurements made on atomic ni-
trogen in helium, neon, and molecular nitrogen.
Pressure shifts of atomic hydrogen (the isotopic
mass dependence of these shifts is negligible ) and

atomic nitrogen are of particular interest because
of the recent extensive theoretical calculations made
for them. "

The experiment consisted of the measurement of
the hyperfine intervals of N' at a variety of buffer-
gas pressures and temperatures. By extrapolating

to zero pressure, at fixed temperature, one is able
to infer the free-atom magnetic dipole (A) and elec-
tric quadrupole (8) intera, ction constants. Although

nitrogen would not be expected to have any ground-
state hyperfine structure to first order if I.S coupling
were rigorously applicable, ' Heald and Beringer'
measured A to be 10.45+ 0. 02 MHz. Numerous
measurements since then have confirmed and ex-
tended this value.

The most recent theoretical" attempt to under-
stand the dipole constant A, utilizing a many-body
technique, predicts 10.49+ 0. 15 MHz. Core polar-
ization accounts for 5. 7 MHz of this, and correlation
effects the remaining 4. 8 MHz. The reported mea-
surements using the maser" also reported a value
of 1.3+0. 3 Hz for the quadrupole interaction con-
stant B. Prior to this measurement, Holloway,
Luscher, and Novick' attempted to predict B. Their
calculation utilized only the P and the D levels in
addition to the 8 ground state which can be con-
structed from the (ls) (2s)' (2p)' configuration.
These levels are used in second-order perturbation
theory with the magnetic dipole perturbation to get


