Transitions $(1s2p)^{3}P^{\circ}-(2p^{2})^{3}P^{\circ}$ in He and $(2s2p)^{3}P^{\circ}-(2p^{2})^{3}P^{\circ}$ in H⁻

A. K. Bhatia

Laboratory for Space Physics, NASA-Goddard Space Flight Center, Greenbelt, Maryland 20771

(Heceived 13 July 1970)

Precision calculations of the energies of the $(2p^2)$ $^3P^e$ states of He and H⁻ are carried out with a Hylleraas-type wave function and are the lowest variational results yet obtained. The associated wave functions are used to calculate the mass polarization of the state. With the reduced mass correction, the wave numbers of the transitions $(1s2p)^3P^o - (2p^2)^3P^e$ in He and $(2s2p)^3P^o - (2p^2)^3P^e$ in H are found to be 312222 and 3783 cm⁻¹, respectively. This former value is in disagreement with the experiment of Kruger (1930) who obtained 312118 cm^{-1} . The discrepency between the experimental and theoretical values of 100 cm⁻¹ is large enough to encourage renewed experimental observation.

I. INTRODUCTION

The $(1s\,2p)$ $^3P^{\circ}$ – $(2p^2)$ $^3P^e$ transition in He was observed by Kruger¹ in 1930. He obtained 312 118 cm⁻¹ for this transition. The most detailed calculation of Aashamar² gives $312 217 cm^{-1}$ for this transition and it differs by 100 cm^{-1} compared to the experimental value. He calculated the eigenvalues of $(2p^2)^3 P^e$ states in He and H⁻ by using variational perturbation method of Hylleraas-Scherr-Knight procedure.³ This method of calculation does not give any bound on the eigenvalues obtained. In view of the discrepancy between the theoretical and experimental results, it is appropriate to carry out a detailed variational calculation which gives an upper bound to the eigenvalues. The eigenvalues obtained are lower than the results of the other variational calculations. $4-6$

II. NONRELATIVISTIC EIGENVALUES

The most general P-wave function for even parity can be written

$$
\Psi(\vec{r}_1, \vec{r}_2) = [f(r_1, r_2, r_{12}) + f(r_2, r_1, r_{12})]_{-1}^{0+}(\Omega), \quad (1)
$$

where the $\mathfrak{D}(\Omega)$ is the rotational harmonics, depending on the symmetric angles θ , ϕ , ψ .⁷ The trial radial function $f(r_1, r_2, r_{12})$ is of Hylleraas type and

TABLE I. Variational nonrelativistic energy E and the mass-polarization correction E_M for He in units of rydberg (R_{μ}) . The nonlinear parameters are $\gamma = 0.786$ and δ = 1.390.

N	– E	$E_M\times 10^4$	
20	1.420 913 411 81	0.12518918	
35	1.420 995 752 67	0.125 260 75	
56	1.421 000 099 87	0.125 267 76	
70	1.421 000 281 02	0.125 268 33	
84	1,421 000 285 53	0.125 268 24	
90	1,421 000 299 90	0.125 268 26	
95	1.421 000 302 00	0.125 268 26	
96	1.421 000 303 03	0.125 268 25	
97	1.421 000 304 14	0.125 268 24	

is written as positive power expansions in terms of r_1, r_2, r_{12} , namely,

$$
f(r_1, r_1, r_{12}) = e^{-(\gamma r_1 + \delta r_2)} \\
\times \sum_{l \geq 0} \sum_{m \geq 0} \sum_{n \geq 0} C_{lmn} r_1^l r_2^m r_{12}^n.
$$
 (2)

Since under exchange⁷

$$
\mathcal{E}_{12} \mathfrak{D}_1^{0*} (\Omega) = - \mathfrak{D}_1^{0*} (\Omega) , \qquad (3)
$$

the above wave function is antisymmetric in exchange and therefore refers to the triplet state. It is of even parity⁷ because of

$$
\vartheta \, \mathfrak{D}_1^{0*}(\Omega) = + \, \mathfrak{D}_1^{0*}(\Omega) \quad . \tag{4}
$$

The expectation value of the energy is given by

$$
E = \langle \Psi H \Psi \rangle / \langle \Psi \Psi \rangle \quad , \tag{5}
$$

where the Hamiltonian H (in rydbergs) is given by

$$
H = -\nabla_1^2 - \nabla_2^2 - 2Z/r_1 - 2Z/r_2 + 2/r_{12} \quad . \tag{6}
$$

The eigenvalue E and the wave function Ψ are obtained variationally. The wave functions obtained are used to calculate the correction to the eigenvalue due to mass polarization, which is given by

$$
E_M = -\left(2m/M\right)\langle\Psi\nabla_1\cdot\nabla_2\Psi\rangle \quad . \tag{7}
$$

The resultant eigenvalue is given by

$$
E_T = E + E_M \quad . \tag{8}
$$

TABLE II. Variational nonrelativistic energy E and the mass-polarization correction E_M for H⁻ in units of rydberg (R_M) . The nonlinear parameters are $\gamma=0.48$ and $\delta = 0.153$.

Ν	$-E$	$E_M\times 10^5$	
20	0.2506339181	0.83193836	
35	0.2506793267	0.82907873	
56	0.2507043288	0.81986173	
70	0.2507070029	0.81844692	
84	0.2507071403	0.81839141	
90	0.2507094102	0.81645284	

 \overline{a}

Author/System	He		H^-		Remarks
	$E(R_{\rm M})$	Transition $(1s2b)^3P^0 - (2p^2)^3P^e$ (cm ⁻¹)	$E(R_{\mu})$	Transition $(2s2b)^3P^0 - (2b^2)^3P^e$ (cm ⁻¹)	
Drake ^a			-0.2507008	3670	Variational, two non- linear parameters
Drake and Dalgarno ^b	-1.420999	312220.99			Variation, two non- linear parameters
Holoienc	-1.4210002990	312 220, 85	-0.250702012		Variational, one non- linear parameter
Present calculations	-1.421000304 14	312222.22^d	-0.2507094102	3787.03 ^d	Variational, two non- linear parameters
Aashamar®	-1.42100031120	312217^1	-0.2506536415		Variational Perturbation ⁸
Experiment ^h		312118^1			
^a Reference 4.		^d Includes mass polarization corrections.	${}^{\epsilon}$ Reference 3.		

TABLE III. Comparison of the calculated values of nonrelativistic energies with previous calculations and experiment.

^bReference 5. 'Reference 2.

'Reference 6. Includes mass polarization and relativistic corrections.

III. RESULTS AND DISCUSSION

The nonrelativistic energy E and the mass-polarization correction E_{M} are given in the Tables I and II as a function of the number of terms for He and H, respectively. In Table III the present results are compared with other calculations and also with experiment. The present results for the eigenvalues are lower than the other variational calculations.

The sharp line in far-uv regionwith wave number 312 118 cm⁻¹, corresponding to a wave length
320.392 Å, has been observed by Kruger¹ and is
ascribed by Wu⁸ to the transition $(1s2p)$ ³ $P^o - (2p^2)$
³ P^e in He. In order to compare with experiment, 320. 392 Å, has been observed by $Kruger¹$ and is ^{3*pe*} in He. In order to compare with experiment, we use the Pekeris⁹ value – 4. 266 556 218 R_M for the energy of the $(1s2p)$ ³ P^o state of helium in combination with our theoretical value of the $(2p^2)^3 P^e$ state. This gives rise to a line with wave number 312 222 cm^{-1} , corresponding to a wavelength 320. 284 A. This number differs by that of Aashamar by 5 cm^{-1} , which is the contribution due to relativistic corrections.² The discrepancy between the experimental and theoretical values is nearly 100 cm⁻¹. As noted by Aashamar also, this discrepancy cannot be accounted for on theoretical grounds and should be ascribed to the experimental errors. It will be worthwhile to repeat the experiment to ob-

serve this transition in question.

The state $(2p^2)^3 P^e$ in H⁻ can decay radiative. into $(1sKp)^{3}P^{\circ}$ continuum or to the $(2s2p)^{3}P^{\circ}$ autoionization state with a lifetime of 10^{-12} sec. The position and width of the autoionization state of H have been calculated accurately¹⁰ and are $-0.28519402 R_M$ and 0.006 eV, respectively. Combining with energy of the state $(2p^2)^3 P^e$, we find after reduced mass correction, the transition should give rise to a line of wave number 3783 cm^{-1} . The width of the line is dominated by the autoionization width of $(2s2p)^{3}P^{o}$ state and, therefore, should be of the order of 0. 006 eV, corresponding to 50. 9 cm^{-1} .

^hReference 1.

'See Note added in Manuscript.

Note added in manuscript. The transition (1s2p) ${}^{3}P^{o} - (2p^{2}) {}^{3}P^{e}$ in He is under reinvestigation by Dr. J. L. Tech and J. Ward of the National Bureau of Standards. The preliminary results appear to agree very closely with the theoretical calculations. More details will be given in their publication.

ACKNOWLEDGMENTS

I would like to thank Dr. W. C. Martin for pointing out the discrepancy between the experimental and theoretical results for helium. I wish to thank Dr. A. Temkin for helpful discussions and critical reading of the manuscript.

iP. G. Kruger, Phys. Rev. 36, 855 (1930).

2K. Aashamar, Institute for Theoretical Physics, University of Oslo, Norway, Institute Report No. 35,

¹⁹⁶⁹ (unpublished) .

- 3 C. W. Sherr and R. E. Knight, Rev. Mod. Phys. 35 , 436 (1963).
- ${}^{4}G$, W. F. Drake, Phys. Rev. Letters 24 , 126 (1970). 5 G. W. F. Drake and A. Dalgarno, Phys. Rev. $\underline{\text{Al}}$, 1325 (1970).

 ${}^{6}E$. Holøien, in Proceedings of the Fourth International

Conference on the Physics of Electronic and Atomic Collisions (Science Bookcrafters, New York, 1965), p. 6. 7 A. K. Bhatia and A. Temkin, Rev. Mod. Phys. 36, 1050 (1964).

 8 T.-Y. Wu, Phys. Rev. 66, 291 (1944).

 10 A. K. Bhatia and A. Temkin, Phys. Rev. 182, 15 (1969).

 9 B. Schiff, H. Lifson, C. L. Pekeris, and P. Rabinowitz, Phys. Rev. 140, A1104 (1965).