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A formal operator definition of indistinguishability of identical particles alternative to permu-
tation invariance of configuration probabilities is presented. The exchange-symmetry proper-
ties of many-particle wave functions are shown to follow simply and directly from the new defini-
tion.

INTRODUCTION

The requirement that state functions for systems
of identical particles be either totally symmetric
or totally antisymmetric under interchange of the
coordinates' of two of the particles is so well es-
tablished experimentally that it is often presented
as a fundamental postulate of quantum mechanics
(the symmetrization postulate). 4 Upon agreement
that particles with totally symmetric states are
called bosons and particles with totally antisym-
metric states are called fermions, the symmetri-
zation postulate may be stated: AE/ particles are
either fexmions ox bosons. States with other sym-
metries are conceivable but particles have not
been found in nature to fit them.

The relatively late introduction of the symmetri-
zation postulate into the logical scheme of quantum
mechanics contributes to the feeling that it is an
ad hoc assertion introduced at the last minute to
make the theory fit experiment. It would be more
pleasing to derive the symmetrization postulate
from general principles and the indistinguishability
of identical particles. Accordingly, a number of
workers have attempted to reduce the symmetri-
zation postulate to a theorem, but most attempts
so far have either been based on assumptions which
are not generally true or have placed seemingly
unnecessary restrictions on the type of physical
systems to which they apply. Girardeau, after
pointing out the deficiencies of previous arguments,
presented a proof of the symmetrization postulate
which depends in an essential way on the topology
of the configuration space of the particles (in par-
ticular the argument depends on the connectedness
of the configuration space). Since there exists an

interesting class of systems' for which the topo-
logical requirements do not hold, the proof seemed
to be unnecessarily restricted. The connectedness
restriction on configuration space was lifted by
Flicker and Leff' for the case of particles with
no internal degrees of freedom, and then for the
general case by Giradeau. " These more recent
proofs are still topological in nature and use the
permutation invarlance of configurational prob-
abilities (stated variously as I PC I

= 14' I or
Pl%'I = I@ I for every 4) as the fundamental defi-
nition of particle indistinguishability. They thus
are very strongly tied to a particular representa-
tion of quantum mechanics, namely, the config-
uration-space representation.

In the present paper we offer an alternative
definition of particle indistinguishability which,
although more formal and lacking the lucid pic-
torialization of permutation invariance, charac-
terizes the indistinguishability of identical par-
ticles realistically. In particular, we show that
the statement "the exchange of two identical (in-
distinguishable) particles ls not observable leads
directly and unambiguously to the result "identical
particles are either fermions or bosons. " The
first statement implicitly defines identical particles
as those whose interchange is not observable.

%'e first establish that this definition is reason-
able and has precedent and then show that it leads
directly and simply to the desired result.

PERMUTATIONS OF INDISTINGUISHABLE
PARTICLES

The set of ¹&operations which produce all pos-
sible permutations of the coordinates of N particles
form the group 8„, the symmetric group of order
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N. The Hilbert space for N identical particles'
may be unambiguously factored into orthogonal
irreducible subspaces corresponding to irreducible
representations of 8„." Since all of the operators
of S„commute with the Hamiltonian of a system of
N indistinguishable particles (and indeed with the
operators of all the dynamical quantities definable
for the system), it follows that none of the opera-
tors representing dynamical quantities can rotate
states from one irreducible subspace to another.
Thus, the irreducible subspaces form a particular-
ly convenient and natural partitioning of the N-
particle Hilbert space; in the following we assume
the Hilbert space has been so partitioned.

We restrict our attention to one particular class
of operations in S„, the ', N(N —-1) pair exchange
operations (or transpositions) symbolized by
(1 ', 2). A typical member of this class P;& ex-
changes the coordinates of particles i and j; we
shall refer to this class as the exchange class.
The entire group S„can be generated from the ex-
change class and products of two or more exchange
elements (not all products are unique, however).
The operators of the exchange class are obviously
their own inverse and so have eigenvalues+1, i.e. ,

2— -1=O'= Pig = Pt'y ~

If Po 4 =a% then a'=1 and a=+1. The operators
of the exchange class are Hermitian' and linear.
(In general, the operators of S~ are linear but not
necessarily Hermitian. ) Further, we assume that
if C is in the N-particle Hilbert space so is 0'
= P,&

0 (this is clearly true in the usual represen-
tations, see Ref. 14), thus the exchange operators
are in a formal sense "observables" in quantum
mechanics. We shall see shortly that they are
"observables" which must be unobservable, and
herein lies the crux of the symmetry restrictions
for many-particle systems.

OBSERVABLES AND UNOBSERVABLES

In quantum mechanics, linear Hermitian opera-
tors whose domain and range are the same Hilbert
space are said to represent observables. " The
nomenclature is reasonable since Hermitian oper-
ators have real expectation values and the results
of physical measurements are real numbers. How-

ever, there is ample precedent' for consideration
of an aspect of observables other than the generation
of real numbers for comparison with experimental
results; namely, observables may be used to dis-
tinguish between (or label) the various states of a
system. That is, if one has a Hermitian operator
A, it is possible to distinguish between various
states by the values of their expectation values
with 2, &0 lA I 4'). 0 (There may be degeneracies,
of course, but one can at least use A to distinguish
between various sets of states. ) It is usually as-

sumed that with a sufficiently large set of Hermitian
operators, A, A', A", ~ ~ . , it is possible to use
their expectation values to completely characterize
(or label) the states of the Hilbert space. With
this second aspect of observables in mind, we can
unambiguously define an "unobservable" as a linear
Hermitian operator with the same domain as range
which cannot differentiate between states of the
Hilbert space. If a linear Hermitian operator B
is an unobservable then the expectation values
&4' tB l4) must be the same for every state in the
Hilbert space; otherwise it would be possible to
label (and thus distinguish between) the various
states by their expectation value with B.

BOSONS AND FERMIONS

When we say that two particles are identical (or
indistinguishable) we really mean that the inter-
change of the coordinates of the two particles is
unobservable. A definition of indistinguishability
of identical particles which gives precisely this
result is: Taboo Particles are identica/ if their
intexcharge is unobsexvaMe. Clearly, one can
identify whole sets of identical particles by applying
the definition two particles at a time. Thus, for
an ¹identical-particle system the ', N(N —1) e-x-

change operators P&& are unobservables, i.e. ,
they cannot label or distinguish between the various
allowable states of the system. If the states 4'„
C~, 4, , . . . are in the N-particle Hilbert space,
we must have

for all states in the space and for all ', N(N-1) of-
the P&&. This statement is not equivalent to the
statement that P&z 0 =c4, with c independent of
x„x2, x„.. . , x„(the proof of which statement is
the crux of the conventional argument' "). Here
the&I,

l P„ lC,), etc. , are expectation values
(pure numbers) with any configuration dependence
(in the appropriate representation) integrated out.
(It is not necessary to assume &4, 1P&; I 0', )
=&0', lPygl4', ), etc. ) Clearly only two of the sub-
spaces corresponding to irreducible representa-
tions of S„have the property that all ,'N(N —1) of-
the P; s are unobservable, namely, the totally
symmetric and totally antisymmetric subspace.
In the totally symmetric subspace all P; s are+1
and in the totally antisymmetric subspace all P;&
expectation values are —1. The states with in-
termediate symmetry will be neither totally sym-
metric nor totally antisymmetric so that there will
be at least one of the P;J which may be used to
label and distinguish between the states of the same
irreducible subspace (see Appendix).

Thus, it is a necessary consequence of our defi-
nition of indistinguishability that any system having
states with intermediate symmetry is necessarily
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composed of particles which are in some sense
distinguishable.

It should be emphasized that the only assumption
in the above argument is that all P;; are unobserv-
able; we have not assumed the existence of a com-
plete set of commuting observables nor have we
had to make any assumptions about the topology or
dimensionality of the configuration space of the
particles.

APPENDIX

The statement that states of the same irreducible
subspace (with intermediate symmetry) are dis-
tinguishable under the P;; operations, i.e. , that
the P&; are observable in these intermediate sub-
spaces, is readily verified. From any given ir-
reducible subspace we can select a finite set of
states which form a basis for the corresponding
irreducible representation of S„. Without loss of
generality we can construct from these states an
orthonormal, but not complete, set of states.
Since the P;; are Hermitian we can find a unitary
transformation of our finite orthonormal basis set
which brings the matrix representation of a partic-
ular one of the P&&, say P», to diagonal form. The
eigenvalues of P» are + 1, hence the diagonal ele-
ments of this matrix must be +1. The trace of this
matrix gives the character of the exchange class
for the particular irreducible representation chosen.
The rules for constructing the character table for

where X~ is the character of the identity class
(i.e. , the dimension of the representation) and

X~, is the character of the exchange class. InPg
our diagonal matrix representation of P», then,
some of the diagonal elements are +1 and some
are —1, but they are not all the same. Thus, in
every subspace except (N) and (1 ) it is possible
to use the expectation values of the P;& to distin-
guish between states of that subspace.

Stated differently, in order for the P;; to be un-
observable the matrix representations of the P„.
operators in the Hilbert space (which we most as-
suredly can construct) must be +1, which is only
true in subspaces corresponding to the represen-
tations (N) or (1")of S~.

Finally we note that linear combinations of sym-
metric and antisymmetric states are also forbidden
since P&& is capable of distinguishing some linear
combinations from others. For example, if

then
Qg = g+s + $+g and Q2 ——Q+s —Q+g

and (e, l P;, le, ) =b'-g'.

S„using Young's tableaux (which may be rigorously
derived) show that for every representation except
the totally symmetric (N) and totally antisymmetric
(1") representations
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Coordinates will always refer to all coordinates,
both internal and external, e.g. , position and spin for
an electron.
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