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In the reduced-density-matrix variational method, a trial density matrix I'&~ ~ is varied sub-
ject to physical realizability conditions in order to calculate the ground-state energy Eo= —%min
TrH~ ~&&~2~ . Here @re expand I"~~ in a finite basis of Hartree-Fock geminals and apply a num-
ber of equalities to reduce the parameter space of 1"& ). The method is completely general, but
application is made only to the C" ion, where a six-geminal expansion coupled with positivity
of I'& ) recovers the Hartree-Fock result.

I. INTRODUCTION

It is known that the ground-state energy Z o(1&I')

for a system of electrons with Hamiltonian

a=2 r(f)+X v(i, j)
i=1 $&j

can be written in terms of a two-body reduced den-
sity matrix

(xg,xg xgyxg)=—f "'fdxg'"dxgX. C~

& 4e(~t» a &X3~ ~ ~ »N ) ~0 (~» ~

via the relation

Z (H) = min -'I» TrII"&r "&
all &~ ~

The mechanics of carrying out the minimization

required for (l. 3) is, however, far from trivial.
There are a number of obvious necessary con-

ditions which I' ' must satisfy —normalization,
positive definiteness, antisymmetry —and a number
of less obvious ones which have gradually come to
light. ' lf the I''~& in (l. 3) are taken as the set of all
trial densities I",' ' consistent with these conditions,
without assuring that each comes from the right-
hand side of (l. 2) —is N realizable —then one ob-
tains a lower bound to the energy Zo(11) Alower.
bound is of course guaranteed only if one varies
over azl X", '; any representation of the trial I", '

by a finite expansion wi11 result in an upper bound
to the lower bound, a fact which must be borne in
mind when any claims of accuracy are made.

In previous papers, it was shown how an ex-
pansion of 1"' 'in terms of the lowest states of helium
results in a one-particle density matrix for a
series of partially ionized atoms which does not
satisfy the Pauli principle, a fair indication that
the restrictions employed were not very efficient.
The purpose of this paper is to report on still
another necessary symmetry condition for N real-
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Accurate lower bounds to energy levels are
usually more difficult to obtain than upper bounds.
Our aim is to rectify this situation, if possible,
and the reduced-density-matrix technique for a
many-body system has the advantage of working
with quite simple quantities. In particular, as we
have pointed out, a lower bound to the ground-state
energy Eo(H) of a system with Hamiltonian of the
form (1.1) is obtained if ,' N TrH' '—I"' ' is minimized
over all positive definite functions of four argu-
ments I'6'(x,', x2

I
x&, x2), antisymmetric in each pair

of arguments (x denotes space and spin), with
Trl'~3'=1. This lower bound is, however, typically
so low as to be useless. The art in the field con-
sists of finding appropriate further restrictions onI' ' required by its construction [see (1.2)] from
an ensemble of N-particle wave functions. These
restrictions fall into two classes, inequalities and
equalities. The former are in principle sufficent
to obtain exact results but are hard to apply in
practice. The latter are presumably insufficient,
but their power has only come to be realized of
late, and they are extremely easy to use in practice.
In fact, our intention is to use equality conditions
as extensively as possible, reserving the inequal-
ities for crucial points to keep the computation
honest.

Equalities satisfied by I' ' are of two basic types,
Hamiltonian dependent and symmetry dependent.
The first arises from the observation that for the
ground-state wave function I tj 0 & satisfying H I $0 &

=&Oi&o&, we have IH, ~&o &(&0~]=0 Thus Tr(Ã(i)
x [H, ~ $0 & ( $o ~ ]]= 0 for any one body Q, integrating
down to '

or

Tr[q(1)+q(2)][H"', r "']=O

»[Q(1) Q(2), H"']I'"'=0.

(2. 1a)

(2. Ib)

Of course these remain true for a I"' ' constructed
from any eigenfunction of H. An important example
of (2. 1b), especially for Coulomb interactions, is
the virial theorem obtained by setting Q = (ih) r ~ p.
For a nonrelativistic atom,

izability of I' ', and to use it for an improved trial
density matrix for the atom C" which does satisfy
the Pauli principle. A companion purpose is that
of replacing the helium geminal expansion functions
used when somewhat naive ideas of the structure
of I' ' were adequate by a systematic expansion in
simpler Hax tree-Fock geminals —i.e. , an orbital
expansion. The computed energy resulting from the
severely truncated basis set of this initial investi-
gation is very good indeed —precisely the Hartree-
Fock energy —and one may anticipate rapid im-
provement as further orbitals are appended.

II. CATALOG OF CONDITIONS

I'= p'/2m —Ze'/~, V(I, 2) =e'/~»,

and (2. 1b) becomes the standard

(2. 2)

Tr [H"'+ (P', +P',)/2m] I""'= O. (2. 3)

More generally, if I"' ' is expanded in a set of
orbitals f &/&, (x)f, it is appropriate to choose Q
= lg„.&(g, l. Since [H' ', I' '] is symmetric in
particles 1 and 2 anyway, (2. Ia) then yields

(y„(1) i Tr, [H"', I'"']
i @,,(I)) =O. (2.4)

The symmetries we have in mind are of the form

[Z q(i), H]=0 (2. 5)

for Hermitian Q, so that the ground state may be
taken to satisfy

Z Q(i)4=q40 ~ (2. 8)

It follows then that

[q(1)+q(2), r '"(1,2)]=o, (2. 8)

which has been used before. Applying the same
operation to the right-hand equation yields instead

Q(1) I'"(I).(N - 1)»,Q(2) I'"'(I, 2) = ql'"'(I),
(2. ~))

I'"(x,'fx, )=f dx, l"'(x,', x, fx„x,) (2. 1o)

is the one-particle reduced density matrix. The
new restriction (2. 9) in fact implies (2. 8). In this
paper we shall not be concerned with symmetries
involving two-body sums; instead it will suffice
'to note that (2. 9) remains true if Q is a non-Her-
mitian operator for which (2. 8) holds.

Proceeding to the well-tilled field of restrictions
in the form of inequalities, we have already
commented on the positive definiteness of I' ' as
a matrix; it follows that I' ' is positive definite
(more precisely, both are positive semidefinite).
But the eigenvalues of I' ' and F' ' are bounded
from above as well. The relevant theorems are

0'- ~{P"')'1/N,

0 &(I' ') - 1/(N —1), N even
' 1/N,

(2. 11a)

Eq. (2. 11a) is the justly famed pauli exclusion
principle, which says that at most one of the N
electrons can occupy a given orbital; the corre-
sponding principle for I' ' is also very well known
in the density-k. atrix lore but has proved relatively
ineffective. A c~ considerably stronger relation

I&.& &&oI ~ Q(i) =~ «') I&.& &&.
I
=~I&.&&&01 ~

(2. V)

Applying the trace over particles 3, ~ ~ ~, X to the
left-hand equation of (2. 7), we obtain
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{2.12)

has been suggested (for even N) but this remains
conjectural. An enormous number of more detailed
inequalities exist, upon which the ultimate success
of the reduced-density-matrix program undoubtedly
rests, but we shall not discuss these here.

III. EXPLICIT FORM FOR I. = 0, 8= 0 STATE

In order to deal with I' ' in practice, it is con-
venient to operate in some definite representation.
If the fu 8(1, 2)fare a complete orthonormal set
of (antisymmetric) geminals, we can of course
expand as

I'@(I', 2' 1, 2) = X A, , „u,~,(I', 2')u*„(1, 2).
O. BO. '8'

(3 1)
Here A must be Hermitian, TrA =PA„~„8=1, and
the eigenvalues of A satisfy (2. 11b). In Ref. 2, a
trial I", ' for the ion C" was constructed by restrict-
ing the u ~ to the first 14 states of helium (unitarily
equivalent to II'~' for C"), i.e. , 1 S 2'S(three
states), 2'S, and 2~P (nine states). Application of a
number of restrictions to this trial function resulted
in an excessively low computed energy, with the Pauli
principle not being automatically satisfied. There
was the strong suggestion that the higher autoion-
izing (doubly excited) states would be required for
improvement.

Here, we initiate a more systematic development
by basing the expansion upon a truncated set of or-
bitals (P (I)] and therefore choosing the geminal
basis as

'u„(1, 2) = (I/%2) [y (l)y, (2) —y,(I)y (2)],„(3.2)

with redundancy allowed in that u~ = —u z. To
handle rotational invariance most efficiently, we
select the P as appropriate orthonormal eigen-
states

where the C(aPL) are the standard Clebsch-Gordan
coefficients'

C(aPL)=C(I. , /„L„. m. , m, ), (s. 5)

and similarly for spin. For a state of zero total
angular momentum and zero spin, it has been
shown [by using Q = L„+iL„, S„ti S„L„S,in
(2. 8)] that only geminal pairs of identical L, S, mi,
mz occur in the geminal expansion of I' ', and in
fact with equal weight. Thus we may write

I'"'=+A(a'P'aPLS)&(a'P'aP) iu". ~ .. .(1, 2) &

x (u „(1,2)i, (s. s)

where A is independent of m, m;. . . , Sz, s~. and
only if 62I + fÃ g

= 82 + e + sg g r
&
s oi + s p

= s of e + s g t
&

otherwise 4=0. In detail, then,

c(P L)=(-I)"" 'c( PL), (s. 8)

I'"'=X, [A{a'PaPLS)+(- I)'~''~(-I)

~ A(a'p pa LS)] &(a'Pap) C(a'PL) C*(apL)

x C&(a'pS)c*,(apS)i&. (1))(y.(I) i. (S.9)

I"' '=+A(a'p apLS)b, (a p ap) C(a p L)C*(apL)

«,(a'O'S)cl( PS)i...(1, 2)&&...(1, 2)I .

(3. 7)

The pair density I' ' will enter our computations
only in certain specific forms. Let us consider
these. First there is the reduced one-body den-
sity I'~' obtained by taking the trace over particle
2. Using the orthonormality of the orbital basis
fP J, and the symmetry of the Clebsch-Gordan co-
efficients~ in the form

4.(r, a)=g..i.(~)I'",.(~)X, (o) . (3. 3)

We also combine the geminals(3. 2) into simultaneous
eigenfunctions of L, I.„S~, 8, :

u'. ,'„,„,(I, 2) = 2 C(aPI. ) C, (aPS) u.,(1, 2),
SIO +Sf/

S~+Sg =Kg (3.4)

Applying the orthogonality condition~

2 C(I lqL; m mg)c~(l, .lgL; m, mg)

2I. +1
Of

we then readily find

(s. Io)

I" '(I'il)= Z [A(a'papIS)+( —1)'~''& ( —1) ' A(a'ppaLS)] 5,
on'gJ 8 ~l
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where A, is the projection onto L = l

W, (r",', i,) =Z F", (~,') r;(~,)*
2E+ 1

277
I,(,' ~ .,) . (3.12) (3. iS)

on substituting (3.11) and (3. 14) we have the useful
s

2 (2L+I)S, , [A(n'PnPLS)+(- I)'~'s(-I)"
gL, S

x A(n'P Pn LS)] [(1—S)N S -—2]= 0.

= —.'(S —1)& s X, (o') X,*(o) (3.13)

most easily obtained by direct substitution. In-
stead of (3.11), then

Tr, S,( 2)I' ~a'(
I, 2) = Z [A(n'PnPI. S)

We will also need (2. 9) for Q = S . The required
evaluation is very similar except for the additional
sum

Q C(-,' —,'S; s„ss)C*(—,",S; s s) s, y, (o')y*, (o)
8 s+g

Next, we have the very extensive set (2.4). It
is only necessary to observe that

Tr II"'(I, 2) Iu, , (1, 2)) (u„(1,2)
I [y „.(1) &

& y,(1)
I

+ y, (2) ) & e, (2)
I ]

= S.„, & u„lII"'lu, , &+6,„,&u.„lII"&lu. ., &

and similarly

»lu. ..(1, 2) & &...(I, 2) IH"'(I, 2) [~, (I) ) &e,(» I

+ ( —I)'~' 'S( —I)~'~A(n'PPn LS)]S,

n, , i &S n, i

x A, (s",', s,)S,(1) . (3.14)

For a spinless ground state, then q =0 in (2. 9) and

y, (2) &&0,(2) I]

=6",&u.slII"'Iu'8 )+so'& u.
l
sI"I'I u" &.

Since Tra[II' '(1, 2), I" ~ '(I, 2)] is diagonal in spin,
we lose no information by setting m~= m„. and

summing over m, Combining (2. 4) and (3. V), we
find

[A(n'P'~'PLS) ( I)'s"-'( I)"-A(n'P'W'LS)]~(n'P'~'P)(2S 1)
e '8'8I 8

xC(n'p'L) C"(&'pL) [(7,@slII"' le- e'& (- »' &sag»lII"'
I e"7» & ]

[A(~P"PLS).(-1)'"' (- )I"' A( 'P~ PLS)]~(~P' P)(» 1)
egg'I S

xc(»'LIc*( pL)[&e. e III"'Ie, e &+(-I)'&e e.lH"'le, 0 &]

where p, indicates that the spin factor is removed

from p, . The ubiquitous combination of A's occur-
ring in (3. 11), (3. 15), (3. 16) is of course due to our
use of u, z and u& independently in the geminal ex-
pansion. Ence u& ———u„z, we can without loss of

generality define

A(P'n'nPI S) = ( —1)'n" 's ( —1)~'~A(n'P'n P IS),

(3. 1V)

A(n'P'PnLS) = ( —I)'~ ' 's( —1) ' A(n'P'nPLS)

and so reduce the combination to a single term.
Finally, we complete our enumeration of the

quantities required for the general L, = 8 = 0 ground
state by observing that for the energy itself

Eo=-,' NPA(n'P'nPIS) A(n'P'nP) C(n'P'L) C*(nPL)

IV. APPLICATION TO C

As a primitive first step in assessing the utility
of the technique we have discussed, we reconsider
C"(N = 4, Z = 6), the first N & 2 atomic ground state
with J- =8= O. The smallest number of orbitals we
can use is clearly just four, and four are sufficient
to construct a Hartree-Fock state, a not unreason-
Rble approximation Rt this prlmltlve stRge. Our
question then is whether we have enough restrictions
to at least reproduce the Hartree-Fock energy and

perhaps density matrix, noting of course that the
Hartree-Fock I"' ' must be consistent with any
N-realizability condition we impose. If this is the
case, we can hope to achieve rapid convergence
as further orbitals and appropriate restrictions
Rle Rdded.

As our four-orbital basis, we shall take

xC,(n'p'S) C*,(nps) (u, lH"'lu„, ) . (3.18) A&o. = 4~(s)X.(o), p&(s) = (u'u'/v)"'e "'",



Coo. = @2(~))t.(o), 42(~) = (I '/»»"'[« ""

—(~/u)e ""],
with the parameters pa=5. V4, p, b=4. 82, &=3 14&

A = (a+ b)o/(1+a), N= 1 —4L4(1+b) + 3Ao/bo T.hese
are fairly good simple approximations to the 1s
and 2s Hartree-Fock orbitals of C", yielding a
ground-state energy of —36. 38 eo/ao compared to
experimental —36. 598 /ao, and we certainly shall
not need greater accuracy at this stage of develop-
ment. The four orbitals then combine to six gemi-
nals: three singlets,

I2 S&=-(is 2s) =o I«&=-2s'

and one triplet,

lo&, I+1),
I

—1&=—(is 2s)s, ,

with 8, explicitly indicated. Hence our trial density
matrix in the form (3. V), assumed real, can be
expressed as

1", =~f1 s&(1 sf+a~f1's&&2'sf+1'il2's&&i s
+fll2's&(2'sl+f'I«& &«I+roll's&(«
+1' l«&&1'sf+&I+»&+if+&f0&«I+of

—1)(- il +r, f2's) &«I+r, «&(2's
(4. 2)

Equation (4. 2) reduces to simple Hartree-Fock
when A =B=C =P= 6, F,= I~ = 73=0. Let us now
see to what extent this is preordained.

Since all orbital angular momenta are zero, only
the one-body symmetry associated with spin is
available. There are now three independent con-
ditions [ (2. 9), (3.15)]; combined with normalization,
TrI' ' =1, they yield immediately

X=P, a=-,'-2P, C=-', , F,=-l', . (4. 3)

Only one independent restriction [(2.4), (3.16)]now

&4'&0 1/of». [H"' F'"]I |t »~io&= 0' as
well as the virial theorem (2. 3), and these can be
used to express F, and Y2 numerically in terms of
I' (see Table 1). The next step would normally be
to write the. energy expectation in terms of the free
parameter P and minimize with respect to P. How-
ever, in the present case of (4. 2), (4. 3), I'I" reduces
to

FI '=4 l&to&to&&4&oslo I+~ lfxo-syo&&4zo-x/al

+ 4 301/2 30 1/2 + 4 20-1/P. 30-j./3

(4. 4)

TABLE I. Eigenvalues of I ( ~ for allowed range of P.

3/36 —0.5573 —2. 9989
4/36 -0.3715 -1.9993
5/36 —0.1858 —0.9996
6/36 O. OOOO O. OOOO

7/36 O. 1858 O. 9996
8/36 0.3715 l. 9993
9/36 0.5573 2. 9989

3.2922
2. 2503
l. 2085
0.1667
1.1941
2.2215
3.2489

0.1234
0.1378
0.1522
0.1667
0.1811
0.1955
0.2100

—2. 9156
—1.8882
—0.8607

0.1667
—0.8752
—1.9170
—2. 9589

V. CONCLUSION

%ith the systematic use of equality conditions on
One cRn carry through the mlnlmlzatlon of

Trrl"'I" (2' win a small amount of labor for trun-
cated I"' ' expansions, The method is general and
so can be applied to any atomic system, the number
of available conditions increasing as the expansion
of I"' ' is given new orbitals. For example, the
commutator condition (3. 16) contains —,'n(n —1) in-
dependent relations for n spin-free orbitals, and
the one-body symmetry restrictions increase
similarly with e. For the very primitive expansion
used here, the positivity of I' ' was nearly suffi-
cient to specify the form of I' ' uniquely, but it is
anticipated that a more powerful inequality will
prove necessary when the orbital basis is further
expanded. %e intend to report in a later paper how
effective the "C-matrix" condition is in this re-
gRrd.

independent of P. Thus the kinetic energy, and the
total energy by virtue of the virial theorem, is in-
dependent of P, taking on precisely its Hartree-
Fock value. Only the eigenvalues of the singlet
part of I' ' are listed, since for our trial I'( ', the
triplet eigenvalues are 6 . For this table, p
= 1.82721V 5.

The more profound question, as an indication of
the convergence of the procedure of which we ex-
hibit only the first step, is whether subtle and ex-
tensive restrictions are required to force I", ' to
its Hartree-Fock form. Since I"," is already in
this form, the Pauli principle is no help. As Table
1 indicates, the corresponding 1 condition (2. lib)
that all eigenvalues be bounded by 3 renders sub-
stantial assistance: X& —, requires that P lie in the
range +o++o, very close to Hartree-Fock. How-
ever Rs TRble I Rlso indicates the Inuch more
basic restriction that l,' ' be positive semidefinite,
i.e. , that Xs ~ 0, results in precisely the same bound,
I'=

o ++o . Thus an inequality which is neither
subtle nor extensive proves sufflclent.

*Supported in part by the National Science Foundahon
under Grant No. GP-13963 and the U. S. Atomic Energy
Commission under Contract No. AT(30-1) -1480.
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A formal operator definition of indistinguishability of identical particles alternative to permu-
tation invariance of configuration probabilities is presented. The exchange-symmetry proper-
ties of many-particle wave functions are shown to follow simply and directly from the new defini-
tion.

INTRODUCTION

The requirement that state functions for systems
of identical particles be either totally symmetric
or totally antisymmetric under interchange of the
coordinates' of two of the particles is so well es-
tablished experimentally that it is often presented
as a fundamental postulate of quantum mechanics
(the symmetrization postulate). 4 Upon agreement
that particles with totally symmetric states are
called bosons and particles with totally antisym-
metric states are called fermions, the symmetri-
zation postulate may be stated: AE/ particles are
either fexmions ox bosons. States with other sym-
metries are conceivable but particles have not
been found in nature to fit them.

The relatively late introduction of the symmetri-
zation postulate into the logical scheme of quantum
mechanics contributes to the feeling that it is an
ad hoc assertion introduced at the last minute to
make the theory fit experiment. It would be more
pleasing to derive the symmetrization postulate
from general principles and the indistinguishability
of identical particles. Accordingly, a number of
workers have attempted to reduce the symmetri-
zation postulate to a theorem, but most attempts
so far have either been based on assumptions which
are not generally true or have placed seemingly
unnecessary restrictions on the type of physical
systems to which they apply. Girardeau, after
pointing out the deficiencies of previous arguments,
presented a proof of the symmetrization postulate
which depends in an essential way on the topology
of the configuration space of the particles (in par-
ticular the argument depends on the connectedness
of the configuration space). Since there exists an

interesting class of systems' for which the topo-
logical requirements do not hold, the proof seemed
to be unnecessarily restricted. The connectedness
restriction on configuration space was lifted by
Flicker and Leff' for the case of particles with
no internal degrees of freedom, and then for the
general case by Giradeau. " These more recent
proofs are still topological in nature and use the
permutation invarlance of configurational prob-
abilities (stated variously as I PC I

= 14' I or
Pl%'I = I@ I for every 4) as the fundamental defi-
nition of particle indistinguishability. They thus
are very strongly tied to a particular representa-
tion of quantum mechanics, namely, the config-
uration-space representation.

In the present paper we offer an alternative
definition of particle indistinguishability which,
although more formal and lacking the lucid pic-
torialization of permutation invariance, charac-
terizes the indistinguishability of identical par-
ticles realistically. In particular, we show that
the statement "the exchange of two identical (in-
distinguishable) particles ls not observable leads
directly and unambiguously to the result "identical
particles are either fermions or bosons. " The
first statement implicitly defines identical particles
as those whose interchange is not observable.

%'e first establish that this definition is reason-
able and has precedent and then show that it leads
directly and simply to the desired result.

PERMUTATIONS OF INDISTINGUISHABLE
PARTICLES

The set of ¹&operations which produce all pos-
sible permutations of the coordinates of N particles
form the group 8„, the symmetric group of order


