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attendant on Stark broadening (damping) constants
from this method are typically + 10-20/q for the
resonance lines of atomic (ionic) species whose
ionization potentials are close to that of hydrogen
(ionized helium). Conversely, the optically thick
profiles of vuv resonance lines whose damping con-
stants and oscillator strengths are known can be

used to determine the temperature of a plasma with-
out recourse to absolute intensity measurements.

Note added in Proof: For 0 r and C u a curve of
growth analysis has be been used to determine the
product of oscillator strengths and Stark widths of
some vuv lines [J. C. Morris and R. L. Garrison,
Phys. Rev. 188, (1969)j.

4Supported by National Aeronautics and Space Adminis-
tration and National Science Foundation.

~Some of the material in this paper is part of a Ph. D.
thesis, University of Maryland, College Park, Md. , 1970.

B. C. Elton and H. B. Griem, Phys. Bev. 135, A1550
(1964).

G. Boldt and W. S. Cooper, Z. Naturforsch. 19a, 968
(1964).

3B. Lincke and H. B. Griem, Phys. Rev. 143, 66 {1966).
J. D. E. Fortna, B. C. Elton, and H. B. Griem, Phys.

Bev. A 2, 1150 (1970).
H. B. Griem, Phys. Bev. 140, 1140 (1965).
E. W. Smith, J. Cooper, and C. B. Vidal, Phys. Bev.

185, 140 (1969).
L. A. Jones (private communication).

Jalufka and J. P. Craig, Phys. Bev. A 1, 221
(1970).

W. Wiese, H. F. Berg, and H. B. Griem, Phys. Rev.
120, 1079 (1960).

«W. Wiese, H. F. Berg, and H. B. Griem, Phys.
Fluids 4, 250 (1961).

T. N. Lie, M. J. Bhee, and E. A. McLean, Phys.
Fluid 13, 2492 (1970).

«2P. Kepple and H. R. Griem, Phys. Rev. 173, 317
(1968). |See also P. Kepple, University of Maryland
Report No. 831 (unpublished). ]

B. Grj em, As trophys. J. 147, 1092 (1967).
«4J. B. Greig, H. B. Griem, L. A. Jones, and T. Oda,

Phys. Bev. Letters 24, 3 (1970).
'5B. L. Pfrogner, J. R. Greig, and G. Palumbo

(unpublished) .
H. B. Griem, Plasma SPeetsoscoPy (McGraw'-Hill,

New York, 1964), p. 150.
H. B. Griem, Bef. 16, p. 152.

8H. B. Griem, Bef. 16, p. 95.
D. N. Stacey and J. M. Vaughan, Phys. Letters 11,

105 (1964).
H. B. Griem, Bef,. 16, p. 86.
G. M. Lawrence, Phys. Bev. 175, 40 (1/68). [See

also G. M. Lawrence and H. S. Liszt, Douglas Advanced
Research Laboratory Research Communication No.
83, 1968 (unpublished).

I HYSICAL B, EVIEW A VOLUME 2, NUMB ER 5 NOVEMBER 1970

Relativistic Hartree-Fock Hyperfine-Structure Calculations
for the Scandium, Copper, Gallium, and Bromine Atoms

J. P. Desclaux
Commissariat a l'Energize Atonrique, 94-Villeneuve St &edges, France

N. Bessis*
CenA'e de Mecanique Ondulatoixe Appliquee, Pmis 198, I'vance

(Received 10 April 1970)

The magnetic dipole and electric quadrupole hyperfine constants have been calculated for
the D3~& and D5g2 states of scandium and copper and the I'«~2 and I'3g2 states of gallium and
bromine atoms. Both restricted and unrestricted numerical relativistic Hartree- Fock cal-
culR'tlons hRve been cRrrled out the relRtlvlstlc core-polalization contribution to the hypel"-
fine constants is studied in comparison with the nonrelativistic results.

I. INTRODUCTION

In a recent paper, ' the contribution of the rela-
tivistic effects to the hyperfine structure of atoms
with the (4p)" ground-state configuration was inves-
tigated using Dirac-Slater wave functions. These
effects were studied within the relativistic Hartree-
Foek framework, i. e. , by substituting a four-com-
ponent spinor for each one-electron spin orbital in
the expression of the nonrelativistie wave function

1n J-J coupling. The relatlv1stle 1adlal functions
were calculated by a numerical solution of the vari-
ational equations, using the Slater approximation
for the exchange terms. Moreover, as long as one
uses the relativistic method within the restricted
scheme, the closed shells do not contribute to the
hyperfine constants, i. e. , only the relativistic con-
tribution of the open shell is considered and, up to
now, core-polarization effects have to be obtained
apart from the nonrelativistie framework. It is



J. P. DESC LAUX AND W. BESSIS

then desirable to inquire whether a relativistic
treatment of core-polarization effects would lead
to any substantial improvement to the nonrelativis-
tic results.

In the present paper, the hyperfine structure of
the D, ~2 and D»2 states of scandium and copper
and of the P, + and Ps &2 states of gallium and
bromine is investigated. For these states, the
wave functions in j-j coupling are single determin-
ants, and restricted Dirac relativistic Hartree-
Fock (DHF) as well as unrestricted relativistic
Hartree-Pock (DUHF) hyperfine-structure calcula-
tions have been carried without any approximation
for the exchange terms. Relativistic results are
studied in comparison with the nonrelativistic ones
calculated from the nonrelativistic restricted Har-
tree-Fock (HF) and unrestricted Hartree-Fock
(UHF) methods.

II. CALCULATIONS

A. Nonrelativistic Core-Polarization Effects

In the nonrelativistic theory, the hyperfine mag-
netic dipole a(J) and electric quadrupole /)(J) con-
stants are obtained for single determinantal wave
function from the following expressions':

a(J) = a,(J)+a, (J)+a„(J),
where

a, (z)=2(),(~) —z -,'m, , [)),lo)['

a, (z) = s(), ——Z m, s; (r)—,z; (~)),

( )
P 1 g 2m';[/;(/;+1) —2m[;] (1)

(2/, + S)(2/, —/)

x ((, (r) —,));(r)),i

( ), ~ 2[);();+()—sm„] )( („)
(

)) (~))
(2/, + S)(2/; —1)

parts. Indeed, it has been shown3 that for config-
urations (g/) with / 40 1t ls important to include
not only spin but also orbital polarization effects.
A numerical program written by Froese-Fischer
and Bagus has been used to calculate the functions
as well as all the radial integrals (//;(r) ~ r II"/;(r)),
each of them depending on the values of the four
quantum-number values (n/m, m, ) of the UHF spin
orbitals.

As is well known, the UHF wave function is only
defined unambiguously from the single determinan-
tal HF wave function, i. e. , for the states J= J + S.
Although the UHF functions are not strictly eigen-
functions of I. , S, and J operators, we have as-
sumed the validity of the usual relations for calcu-
lating the hyperfine constants a(J) and b(J) of all J
states arising from the same (I,, S) term as a func-
tion of the partial constants calculated for the state
J= L+ S. The following relations are used" for
the D sta,te:

~(2) = —~,(a)+ ~g~)(2) - ~2a, (-'.), / (-.') =~~0 / (-,'); (2)

for the P state

a(—,') = —a,(2)+ 2a&(&) —10a„(a2) ~

8. Relativistic Effects

Relativistic Wave Emnctions

The relativistic one-electron wave functions are
conveniently expressed in the four-component spinor
form

y Pyy), . r Pry'
Pn)pm=

~'™
I

= = Pn)m ~

Zt' & gggfft

where the spin angular functions X~ are two-com-
ponent spinors which are eigenfunctions of the sin-
gle-particle operators /, j, j„andK=P(o ~ 1+1)
with /(/+1), jj(+1), m, and 0, respectively, as
eigenvalues such that

In these expressions, the spin orbitals are of the
usual central form ~(/);) =I/;(~)i /, m, ,m„); P, =eh/.
2mc is the Bohr magneton; p. and Q are the mag-
netic dipole and electric quadrupole moments of the
nucleus of spin I; and J is the total angular momen-
tum of the electrons. It is by now well known that
s orbitals (/= 0) make a zero contribution to a, (J),
a~(J), and b(J) while the others (/ 40) make a zero
contribution to a,(J). In the restricted HF frame-
work, the contribution of the closed shells to all
constants is zero.

The UHF wave functions used to introduce the
polarization of closed shells are obtained, for each
state J = L+ S with projection of spin M~ = S and pro-
jection of angular momentum MJ. =L maximum, in
allowing all the spin orbitals to have different radial

We have used the matrices

where o„, o.„o„and I are, respectively, the three
Pauli matrices and the unit matrix of second order.

The total relativistic wave function is obtained
from the nonrelativistic one, in j-j coupling, by
replacing the nonrelativistic spin orbitals (n/jm)

by the four-component spinor as defined in (3). Al-
though the nonrelativistic wave functions used as
a starting point are simultaneous eigenfunctions of
the total electronic angular momentum operators
I. , S, J'3, and J„ the relativistic wave functions
thus obtained are not eigenfunctions of L, and S,2 2
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since the radial parts corresponding to j=l+ —,
' and

j= l ——,
' are different. In present examples the over-

laps are of the order of 0.SS8, and thus the lack of
I.S coupling is very small.

The radial functions P(r) and Q(r) are obtained
from a minimization of the total energy correspond-
ing to the Hamiltonian

closed shells (I = 0, l = 1), and the DH F equations,
including the exchange terms, do not involve off-
diagonal Lagrange multipliers. For gallium and
bromine atoms whose configurations are, respec-
tively, (4p) and (4p)', the variational DHF equations
do involve off-diagonal multipliers and have been
solved rigorously.

The relativistic unrestricted Hartree-Fock
(DUHF) wave functions are obtained in allowing all
the spin orbitals p„„ to have different radial parts;
one then obtains hyperfine-structure radial integrals
which depend, in addition, on the value of the quan-
tum number m. Programs, using a numerical so-
lution of the variational equations have been written
by one of us (J.P. D. )' to calculate the DHF and
DUHF radial functions as well as the corresponding
radial integrals.

For the sake of illustration, we have listed (Table
I) for the P, &2 state of gallium the values of the
relativistic one-electron energies and of the radial
integrals (r), (r~), (r'), where

g Z 1X=+ fcB; 0;'+p; c — +Q (4)

with the constraint that the wave functions form an
orthonormal set, i.e. ,

J [P„„(r)P„.„(r)+ Q~(r) Q„.~(r)]dr= 5„„,,

where 5„„.is the Kronecker 6. For each electron
i, the components of cy; are the first three Dirac
matrices and P,

' is given by

The rest-mass energy of the electron (c in a. u. )
is substracted from the Dirac one-electron Hamil-
tonian. The first term of the Breit's operator
(magnetic interaction)4

(x")= J [P (r)+ Q'(r)]r" Ch,

to compare with the nonrelativistic corresponding
quantities. The total energies obtained with the
different methods are given in Table II. From the
comparison of the relativistic and the nonrelativis-
tic results, it can be seen that the relativistic con-
tributions are, respectively, for scandium, copper,
gallium, and bromine atoms, of the order of 0.4%,
0. 8%. 0. 9%, and 1.1% of the total energies. Fur-
thermore, the relativistic calculated fine-structure
intervals (Table II, columns 6 and 7) are in very
good agreement with the observed ones.

is used as the relativistic interelectronic interac-
tion term and is treated as a first-order perturba-
tion. The second term (retardation) is neglected.
It should be pointed out that for scandium and cop-
per atoms, whose configurations are, respectively,
(3d) (4s) and (3d)9 (4s), the symmetry (l = 2) of the
open-shell orbitals 3d is different from those of the

nl HF DHF HF DHF HF DHF HF DHF

ls 378.8185
2s 48. 1683

383.920 43
49.305 284

0.049 408
0.220 632

0.048 576
0.216 705

0.003 271
0.057 352

0.003 175
0.055 462

0.000 027
0.005 699

0.000 026
0.005 358

43.441 198 0.188 223 0.043 511 0.003845
0 ~ 0

0.004 085

0.383 472

0.497 158

42. 4939 0.192085 0. 045 150
~ ~ ~

0.004 104
42. 413 133

6.582 942

4.620 028

0.191660 0.044 987

3s 6.3945 0.660 471 0.650 264 0.502 651 0.487 551 0.407 076

0.672 974 0.533 352
0.684 0914.4823 0.550 705 0.529328

3P 4.479 352

1.177750

0. 682 817

0.787 660

0.548 971

0.796 153

0.526 933

l.568 163
1.1933 0.787 901 1.568 1300.796 194

0.794 8751.158 332 0.812 248 1.647 793

4s
4p

2. 488 908
3.424 098

0.4246
0.2085

0.435 011
0.205 890

2. 447 484 7.207 083
3.438 590 13.899 550

6.973 845 90.391276
14.032 609 357.640 ill

84. 831064
365.766 88

TABLE I. Comparison of nonrelativistic and relativistic restricted Hartree-Fock results for Ga(P3~2).
—~ni &~) 6')
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TABLE II. Comparison of nonrelativistic and relativistic total energies (in a.u. ).

EDHF

Breit'sb
contribution

Fine-structure interval

Eg(calc)

Sc( D)

—2572. 4396

—763.1320

—1652.7064

—1652.7158

- 1941.6363

—1941.6327

—2603. 6001

—2603. 6170

0. 246 20

0.246 07

0.745 61

0.746 29

0. 938 90

0. 938 82

1.430 54

1.430 86

0.0007

—0.0094

0.0036

—0.0169

0. 0007

0.003 76

—0 ~ 01679

~The magnetic Breit's contribution is included in the relativistic values.
"See Eqs. (5).
&tornie Energy Levels, Natl. Bur. Std. (U. S.) Circ. No. 467 (U. S. GPO, Washington, D. C. , 1949).

2. HyPerflne Stract-ure Constants

The relativistic values of the hyperfine-structure
dipolar magnetic a(J) and quadrupole electric b(J)
constants are obtained for single-determinant DHF
and DUHF wave functions from the following rela-
tions'.

rr(z)= —2)).(
—")~ Z . ('. '

)
(r ');,

( ), ~ 2[3m', —j,(j;+1)][4-j;(j;+1)](,)j,(j,+1)(2j,+ 3)(2j;—1)

respondence between the DHF and HP integrals is
well defined, and it can be seen that the relativistic
values are, for the inner shells, slightly larger
than the nonrelativistic ones. Moreover, in the
relativistic ease, it should be pointed out that, with-
in the same nl shell, there is a large dependence of
the integrals on the value of the quantum number
j(j=l —2, j=l+2, ) For unrestricted functions, if
the DUHF and UHF polarization effects can be com-
pared easily for s shells, the comparison for the
other shells is more tedious and will be discussed
in Sec. IV.

(r '&;=2 j, P, (r)q, (r)(1/r')dr,

(r ); = j [&(r)+q;(r)](1/r~) dr.

It can be shown6 that, for s orbitals {l=o), the
nonrelativistic limit of the radial quantity [r ']„,
= (2/3o. )(r )„,is 9ns), while for other orbitals
(l co) the nonrelativistic radial integrals (H;(r)

I R; (r)), which come into the calculation of the
magnetic dipole and electric quadrupole constants,
are, respectively, the limits of the relativistic quan-
tities

[r-'],.=-—
)

(r-'), and (r ');.e 0&+1

In these expressions, ns is the value at the nucleus
of the radial part of the nonrelativistie orbital, cy

is the fine-structure constant, and 4 is the relativ-
istic quantum number previously defined. Ne have
listed {Table III), for the P, ~2 state of gallium, the

values of the relativistic quantities [r ]„„[r ];,
and (r ); in comparison with their nonrelativistic
counterparts. Using restricted functions, the cor-

nr. RFSUns WXD MSSCUSS&ON

Theoretical DUHF and UHF values for the dipolar
magnetic constants a(Z) as well as the individual
core-polarization contributions from each nl shell
are reported in Table IV. Results indicate that
core-polarization effects are, in that case, essen-
tially unaltered by incorporating relativistic effects
in the calculation. To better compare DUHF and
UHF core-polarization contributions to the quadru-
pole electric constants b(Z), we give (Table V) the
values which are obtained for the states J=4+8
if one uses the following quadrupole moments (in
IO-" cm'): q("Sc)= —O. 22, q("Cu) = —O. 19, q("Ga)
= 0. 19, and q(79Br) = 0. 33. Although the relativistic
total vlaues are seen to compare favorably with the
nonrelativistic ones, there is some discrepancy be-
tween the relativistic and nonrelativistic individual
"2P" and "3P"core polarization contributions. In
order to explain this difference, it is necessary to
point out that there is no one-to-one correspondence
between the DUHF and UHF methods for non-s
shells.

If the nonrelativistic UHF contributions to the
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TABLE III. Hyperfine-structure radial integrals for the Psg~ state of Ga.

Nonrelativis tie values lativistic val

Dipolar-
' Quadrupolar

Dipolar
magnetic

Quadru polar
electric Dipolar magnetic

Quadrupolar
electric

1 1
2 2
1 1
2 2

1 12' 22s
2

1 1
2 238 ]
2 2

1 1
2 2
1 1

WW2 2

1
2 2
1 1
2 2
3 3
2 2
3 1
2 2
3 1
2 2
3 3
2 2

38459.57

537.322

29.228

38459.45
3S459.64

3693.987
3693.938

537.368
537.298

28.4l6
29.798

841.876
841.889

842. 030
841.876
841.889

841.873

841.SS4
841.845

DHF

41602.51

927. 763

DUHF

41602. 39
41602. 60

4125.248
4125. 228

603.495
603.345

32.371
34. 154

927.757
927.767
848. 887
848.741
848.736
848. 736

858. 282

DUHF

858.392
858. 245
858. 239
858. 239

3P

1 1
2 2
1 1
2 2
3 3
2 2
3 1
2 2
3 1
2 2
3 3
2 2

108,093

108.073
108.059

108.314
108.073
108.059

108.101

107.953
108.003

109.593

120.364
120.357
109.800
109.498
109.506
109.569

111.0S0

ill. 290
110.984
110.992
ill. 056

3
2
3

3
2
3
2

M
5
2
5
2
5
2
5
2
5
2

4p

4p

3
2
1
2
1
2
3
2
5
2
3
2
1
2
1
2
3
2
5
2

ll. 6547

2.S912

2.8912

11.681
ll, 661
11.652
11.669

ll. 637
ll, 661

. 11.652
ll. 669

11.595

11.706
ll. 649
ll. 657
11.663

ll. 535
ll. 642
11.659
11.677

11.713

11.470

11.728
11.705
ll. 704
1l.716
11.414
11.452
11.468
11.477
11.490
11.516

ll. 834

11.493

11.850
11.826
ll. 825
11,837
11.437
ll. 474
ll, 491
ll. 500
ll. 512
ll, 539

hyperfine constants a(J) and b(J) arising from each
(nlj) shell are expressed, in j-j coupling, as a func-
tion of the UHF radial integrals (R(r) lr-'IR(r)&
=(r ~&„,„,„,, one then obtains the following expres-
sions for the contribution of each "P" (j= —,') and "P"
(j= -') shells to b(J)

b(p)= e'q —,'o (& &,o
—&r '&p. —&r '&p +(r '&go),

(8)

b(p)= ~'e(- 5 &r '4, +k&r '&no-A(r '&n. —is&r '&.-

Vfhen the UHF values of the radial integrals
(r &„, ,„are used, it occurs that one gets (Table
VI) a nonzero contribution to b(J) from the "2P"
and "Sp" shells (j= -, ) while, as is well known, the

relativistic ones are zero. Moreover, quite dif-
ferent nonrelativistic UHF and relativistic DUHF
contributions from the "2p" and "3p" shells are
found. If ana1ogous expressions of the partial con-
tributions a(P) and a(P) to a(J') in jj coupling are
used, one obtains, in that case, quite comparable
calculated UHF and DUHF values a(p) and a(p) from
the 2p and Sp shells. Of course, the relations (8)
are obtained in assuming the validity of the usual
correspondence between (nljm) and (nlm, m, ) spin
orbitals although, within the unrestricted scheme,
different radial parts are associated with different
angular and spin quantum numbers. Nevertheless,
it should be noted that, if b(p) and b(p) [or a(p) and
a(p)j are added, the usual expression of the UHF
contribution from the total p shell is found again.
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TABLE IV. Nonrelativistic and relativistic core-polarization contribution to a (/).
Atom

45sc (2D)

"Cu ('D)

"Ga (2a)

Method

UHF
DUHF

UHF
DUHF

UHF
DUHF

UHF
DUHF

UHF
DUHF

UHF
DUHF

UHF
DUHF

UHF
DUHF

3s

—61
—82

117
132

—117
—151

—32
—111

—270
—235

1992
1996

—34
—40

973
1085

195
196

110
105

1922
1945

The use of relations (8) provides a better under-
standing but not an explanation of the discrepancy
between UHF and DUHF core-polarization effects
on b(Z). We are led to believe that this discrepancy
is one among the logical inconsistencies involved

in the use of unrestricted wave functions, and it
must be remembered that UHF and DUHF wave
functions, indeed, are defined from different re-
stricted wave functions; if a nonrelativistic UHF

wave function were defined from a restricted HF
wave function, in jj coupling, i. e. , in allowing all
the nonrelativistic @„„„spinorbitals (instead of
the @„. . .ones) to have different radial parts, the
nonrelativistic contributions to b(Z) which would be
obtained from each p shell (j= —,') would be zero as
are the relativistic ones.

The quadrupole moments Q deduced from the ex-
perimental values of the constant b(J) are given in

Table VI: For scandium and copper, both values
deduced from the two states J= —, and J = -', are re-
ported when they are different. In Table VII, the
theoretical values of the constants a(J) and b(J) ob-
tained from the different methods are recapitulated.
Since the UHF wave function is only defined for J
= I.+8, to c'alculate the UHF core-polarization ef-
fects for the other J states, one may assume that
either the validity of relations (8) and same core-
polarization contributions are obtained for all J
states arising from the same (I., S) term, or the

validity of the expression (2). The more usual lat-
ter method has been used to calculate the UHF
values reported (Table VI and VII). This difficulty
does not arise within the relativistic framework,
since the DUHF wave functions are defined for all
cj states studied.

Finally, the relativistic contributions to the hyper-

Atom

45Sc (2g))

"cu (2a)

"Ga (2S)

UHF
DUHF

UHF
DUHF

UHF
DUHF

6
0

7
13

TABLE V. Nonrelativistic and relativistic core-polarization contribution to b(J).~

Method 2p 2p 3p 3p 3d 3d 4p

202
192

UHF
DUHF

2

0

'The notation is y for j= t —2and q for j= )+2 ~
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TABLE VI. Quadrupole moments Q(10 4cm ) deduced from observed b(J) constants.

1629

Atom

"Sc
"Cu

69Ga

79B

HF

—0. 193; —0. 195

—0. 166; —0. 159

0.232

0.345

UHF

—0. 176; —0. 178

—0. 171; —0. 164

0. 182

0.308

DHF

—0, 200

—0. 164; —0. 162

0.225

0.332

DUHF

—0. 182; —0.216

—0 171 —0. 162

0. 192

0.306

Other values

—0.22(l) "~'
—0 224" —0. 19d

t- 0. 16{1);—0.224{5)]
0.19(1)"
0. 178
0.33{2)"
0 335

Moth values deduced from the two states J= 2 and J= ~ are reported when they are different.
E. Matthias and D. A. Shirley, HyPe~fine St~uctme and Nuclear Radiations (North Holland, Amsterdam, 1968).

'G. Fricke, H. Kopfermann, S. Penselm, and K. SchlCpmann, Z. Physik 156, 416 {1959).
W. Fischer, Z. Physik 161, 89, (1961).

'W. Fischer, H. Huhnermann, and K. J. Kollath, Z. Physik 200, 158 (1967).
fH. Kopfermann, NuclearMoments(Academic, New York, 1958).

fine-structure constants as well as to the energies
are, indeed, more significant as Z increases. How-

ever, although relativistic calculations give very
good results for the values of the fine-structure in-
tervals, they do not lead to a systematic improve-
ment of the theoretical values of the hyperfine-struc-
ture constants. The explanation of the remaining
discrepancy between theory and experiment would

require explicit consideration of correlation effects.
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TABLE VII. Hyperfine-structure constants a(J) and b(J) (in MHz).

45Sc (2D)

65Cu (D)

"Ga (2S)

79Br (2~)

a(—)
a(-', )
b(r')

b(g)

a(2)

b(-,')
b()
a(2)

b()
a{2)
a(-)
b()

HF

297
127
30
42

1978
848
146
208

973
195

52

4227
845
370

UHF

255
110
33
46

1922
834
142
202

1181
84
65

4611
871

— 415

DHF

294
125
29
41

1980
833
147
204

1090
197

53

4987
863
385

DUHF

252
105
32
38

1945
815
141
192

1319
51
63

5355
820
418

Experiment

269.56 +0.02
109,034+0.01

—26. 37 + 0. 1
—37.31 +0.1

1983.9
800. 37
127.5
174.-3

1338.78 + 0. 5
190.79428+ 0.00015
62. 52247 + 0. 00030

884.810+0. 003
—384.878 + 0. 008
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