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We describe a new approach to the problem of superradiant spontaneous emission, which
is applicable whether the number of atoms is large or small. We use this approach to form-
ulate intensity correlations of arbitrary order, and then explicitly evaluate the second-order
normally ordered relative intensity fluctuation. Large fluctuations at the onset of emission
indicate the discrete nature of the spontaneous emission process; and the very small fluctua-
tions found later at the emission peak show that the emitting process has by then become es-
sentially classical.

In his celebrated paper, ' Dicke determined the
angular correlations of successive photons emitted
spontaneously by a collection of N excited two-
level atoms. In this paper, we will present a
related result, the expected intensity fluctuations
of the radiation emitted by the same type of atomic
system.

There are two main motivations for our work.
In the first place, superradiant intensity Quctua-
tions seem to offer a cruder measure of the sta-
tistical properties of the radiation, and so should
be more readily measureable than single-photon
angular correlations. In the 'second place, we
can speak of an aspect of the superradiant emis-
sion problem that was not treated by Dicke, and
is not easily treated by his method. Specifically,
vie are able to discuss the change with time of the
intensity fluctuations as the system superradiantly
decays from its excited to its ground state.

Because of our ability to follow the intensity
fluctuations in time, we mill be able to comment
on the extent to which the radiation is "classical"
or "quantum" in character at the various stages
of the emission process. Thus, our approach of-
fers a very simple method of answering questions
which recently have interested several research-
ers. ' '

First, let us recall Dicke's method as it applies
to a calculation of the radiated intensity I(t) itself.
The central element is the imposition of an energy

balance between the energy leaving the atomic
system and the energy appearing in the radiation
field. That is

I(t) = h'u& x (single-photon emission. rate)

= h(d x (atomic transition rate),

and the atomic transition rate is then calculated
in first-order perturbation theory.

The interaction Hamiltonian which governs the
atomic transition rate is taken to be of the usual
electric dipole form

H~= -E(R, t) D, D=Q D), (2)
l =1

where for simplicity aQ of the two-level atoms with
dipole moment operators D, have been assumed lo-
cated within a wavelength of each other at the posi-
tion R.

If we define, with Dicke, the atomic raising
and lowering operators It, = constantx(D„+iD, ) for
4m = 1 transitions, and evaluate the transition
rate for spontaneous emission, we find Dicke's
result

I= constx(R, R ),
where the brackets signify expectation value taken
in the appropriate emitting atomic state.

Now let us consider an alternative approach,
which will be seen to offer a direct method of cal-
culating intensity fluctuations of all orders as well
as the intensity itself. We wi11 change our point
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of view from that of the emission process to that
of the detector. The far-field intensity of radia-
tion emitted from a localized current source is
simply related to the Poynting flux 8 in the usual
way,

(fk, t)) dn(k) = (:S ~ k:) d(area). (4)

The normal ordering eliminates vacuum fluctua-
tions.

In order to evaluate relation (4), we employ the
well-known retarded solution to Maxwell's wave
equation

XP», »I f = ~—»'
l

F
l
»-J- (f')

plus the relation

~=ED, ~'(r -r&) ~

~f&~& (:I(&)1(f):)-(:I(t):)
(:I(&):&'

which reduces to

„, (It„ft,ft It )-(ft, f~ )'
(ft, ft )'

Here we have defined the total intensity

f(t) = jI(k, t) dn (k).

In order to compute the expectation values in

(I), we work with the "radiation reaction" states
which we have described elsewhere. ' These
states are simply products of single-atom states.
The single-atom states are taken to be coherent
superpositions of upper and lower states of the
two-level atom

(Sa.)

One finds, of course, Dicke's result when (4) is
evaluated in the far-field radiation zone. That is
to say, Dicke's result given in (3), which was ob-
tained by perturbation theory, gives the far-field
radiated intensity without retardation corrections.
YVe will continue to ignore the small effects due to
retardation.

However, we can now see that we can compute
higher-order correlations of the type (:f(kq, t) ~

f(k~, t):) in terms of the atomic variables and
states by making systematic use of relations (4)
and (5). In this note we want to give the result of
calculating the simplest of such objects, the
single-time second-order total intensity fluctua-
tion. In order to eliminate irrelevant atomic con-
stants, as well as to exhibit the relative scale of
these fluctuations, we actually have evaluated the
normally ordered dispersion, normalized to the
square of the intensity itself. If we denote this
object by AI' ', we find

~

8) = sin —,
' 8 ~+ ),+ cos-,' 8

~
-), . (Bb)

Clearly, when 0 = m, all N atoms are in their ex-
cited state; when 0= 0, all atoms are in their
ground state; and when 0= —2n, each atom exhibits
its maximum dipole moment.

The result of evaluating the expectations in (V)
is a rational fraction in N, the number of two-
level atoms, which we may write

(p& nN +PN +yN +AN
aN +bN +cN

where the coefficients are the following polynomi-
als in cos0:

g = ~ [I —2 cos'6 + cos 6],
b= —,

' ——,
' cos0+-,' cos 0--,' cos'0,

c= yg
—4 cos0+ 8 cos 0 —g cos 0+ yg cos 0.1 2 I 3 1 4

In Fig. 1, we have displayed the dependence of
4I' ' on 0 for the case N= 10 . Figure 1 shows
that during the initial stages of the superradiant
emission when all N atoms are nearly in their
upper states, and 0 is nearly m, the fluctuations
are large, and ~I'"-1 as a result. Very quickly,
however, the relative fluctuation decreases below
10 . By the time half of the energy has been
emitted and 0 = —,'m, ~I' ' has become a very small
negative number. The exact limiting values at
0= n and 0=-,'m are

For the case of pure superradiant emission,
the time dependence of the radiation reaction
states 16& is known, and the parameter 8 may be
given explicitly as a function of time. The use
of this functional relation allows us to plot &I'"
as a function of time during the emission process.
This plot is shown in Fig. 2. Qualitatively, it is
the same as Fig. 1. The only important differ-
ence is that the interval of small dispersion is
seen to occupy a relatively small portion of the
time axis.

There are several comments that should be
made about the relative fluctuation AI' '. The
first is that the negative values (which are plotted
with a da.shed line as if they were positive) are

@=0,

p = —
& cos 8 [I —cos 8 —cos'8+ c os'8],

y= —8+ 4 cos0+ g cos 0 —
4 cos 0y —cos 04 (10)

5 = 8 —4 COS 0+ Cos 0 —
8 COS 03 3 4

and



SUP ERRADIANT INTENSITY FLUCTUATIONS

IO
4 FIG. 1. Relative intensity fluctua-

tion versus superradiant decay angle
The negative portion of the curve

is plotted with a dashed line as if it
were positive.

IO
8

never large, being at most of order 1/N The.
very existence of negative values is due to the
normally ordered form' employed in (6), and re-
flects the fact that the number of photons is limited
to N, the number of atoms which could have been
excited initially.

Note that if the state of the field were a coher-
ent state, ~I' ' would vanish identically. For this
reason, we can say that supprradiant emission,
near its peak around 0= —,'m, is nearly classical.
That is, it has the characteristic small DI'" of
radiation emitted by a classical deterministic
current. Bialynicka-Birula has indeed shown in
a certain approximation' that the density matrix
of the field in the diagonal coherent state repre-
sentation is just that of a pure coherent state.

Within the context of the above approach it is
reasonable to define a photon number operator n

by the relation

(13)

where R3 is the atomic energy operator in units of
S(d. Since we choose the zero of energy such
that (R, ) = ,'N whe—n all the atoms are excited, (13)
is consistent with the initial condition —all atoms
excited, no photons. At the time of peak emission,
we find, using (13), the variance and mean photon
number are related by

This is the result for a binomial distribution, and
is to be expected for independent emitters. Boni-
facio and Preparata have found an approximate
version of this result.

Unfortunately, it does not seem useful to make
further comparisons. The other treatments of

BIt2)

10
FIG. 2. Relative intensity fluctua-

tion versus superradiant decay time,
in units of the single-atom spontaneous
lifetime. Dashed portion as in Fig. 1.
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fluctuations in the superradiating process known

to us are restricted to the cases of few atoms or
a single mode of the radiation field. The inter-
esting work of Bonifacio and Preparata is of the
latter type, and one sees in it the periodic ex-
change of energy between atoms and field which
should be expected in a cavity. The principal

drawback of the Bialynicka-Birula treatment is
the restriction to times sufficiently close to the
instant of peak emission, while Dillard and Robl
have concentrated on small numbers of atoms.

A'e would like to thank our colleagues, especially
G. S. Agarwal and L. Mandel, for several discus-
sions.

*Research partially supported by the National Science
Foundation.

A preliminary report of this research was made at
the Rochester Symposium on the Electromagnetic Inter-
actions of Two-Level Atoms, 1970 (unpublished).

R. H. Dicke, Phys. Rev. 93, 99 (1954).
M. Dillard and H. Bobl, Phys. Bev. 184, 312 (1969).
B. Bonifacio and G. Preparata, Phys. Rev. (to be

published) .
Z. Bialynicka-airula, Phys. Bev. D 1 400 (1970).
N. E. Rehler and J. H. Eberly (unpublished).

6J. H. Eberly and N. E. Behler, Phys. Letters 29A,
142 (1969); N. E. Behler, Ph. D. dissertation, Univer-
sity of Rochester (unpublished).

'L. Mandel, Phys. Bev. 136, 81221 (1964).

PHYSICAL BEVIE W A VOLUME 2, NUMB E B 4

Critical Isotherm of He-'

OCTOBER 1970

Barnie Wallace, Jr. and Horst Meyer
Department of Physics, Duke University, Durham, North Carolina 27706

(Received 27 April 1970)

The critical isotherm of He has been measured over a density range IAp I
=

) p —p~ I /p~ up

to 0.6, and the chemical potential change p —p, , was obtained as a function of the density

change p -p, . The departure from perfect antisymmetry about p„which can be represented

by an expression of the form (Ap (' with e = 6. 2, is compared with theoretical suggestions.

Recently Missoni, Sengers, and Green have re-
ported success in scaling the thermodynamic prop-
erties near the critical point for a number of fluids

and magnets. They found that the change in chem-

ical potential

AP = [P (P, T) —P (P., T)1/I'. ~.

equation of state. The corresponding Helmholtz

energy I' was expressed as a function of t and

reduced variable x= t I ~p j
~. Generalizing this

result to physical systems of no known symmetry,
CSG assert that the free energy in the critical re-
gion is given by an expression of the form

was antisymmetric in the change in density ~
= (p —p, ) /p, for I ap i& 0. 30 for the fluids He', Xe,
and CO2 when —0.01 &f= (T —T,)/T, &0. 03. Along

the critical isotherm, 6 p. Cch p j ~ p j
' ', where

6 =4.0 —4. 6 for all fluids. We have reported'
agreement for He with their scaled equation of
state for l 6p I & 0.25, and in the present note we

wish to describe the departure from antisymmetry
for 0. 25 & I ~ p I & 0. 6.

Cooper, Sengers, and Green' (CSG) have proposed
a modification of the scaling ideas to extend the
interpretation over an enlarged region about the
critical point and also to include systems lacking
an intrinsic or known symmetry. Cooper and

Green found for an ideal Bose gas that the simple
scaling form appears as the first term in an ex-
pansion about the critical point for a nonclassical

where the f, (x) are regular functions. Since one

has

(2)

we immediately see that along the critical isotherm
where the asymmetric 6 p. term varies as 6p
x ) 4 p )' ', the first correction which gives a sym-
metric term is of the order 6p l 6 p j

' ' with &

= 5+1.
Griffiths has discussed two asymmetric lattice-

gas models. For his first model, the leading sym-

metric term for the chemical potential change Ap.

as a function of hp along the critical isotherm has

an exponent e = 25. A more recent model, which

is a "decorated" system, gives a=25 —P '.


